
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Building program understanding tools using visitor
combinators

A. van Deursen, J.M.W. Visser

REPORT SEN-R0210 JUNE 30, 2002

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Building Program Understanding Tools Using Visitor Combinators

Arie van Deursen

CWI, P.O. Box 94079

1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/˜arie/

Joost Visser

CWI, P.O. Box 94079

1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/˜jvisser/

ABSTRACT

Program understanding tools manipulate program representa-
tions, such as abstract syntax trees, control-flow graphs, or
data-flow graphs. This paper deals with the use of visitor
combinators to conduct such manipulations. Visitor combi-
nators are an extension of the well-known visitor design pat-
tern. They are small, reusable classes that carry out specific
visiting steps. They can be composed in different constella-
tions to build more complex visitors. We evaluate the expres-
siveness, reusability, ease of development, and applicability
of visitor combinators to the construction of program under-
standing tools. To that end, we conduct a case study in the use
of visitor combinators for control-flow analysis and visualiza-
tion as used in a commercial Cobol program understanding
tool.

1998 ACM Computing Classification System: D.2.9, D.2.2,
D.2.5, D.2.7

Keywords and Phrases: Program analysis, program compre-
hension, visitor design pattern, software visualization.

Note: Work carried out under projects SEN 1.1, Software Ren-
ovation and SEN 1.3, Domain-Specific Languages.

Note: To appear in Proceedings of the 10th International
Workshop on Program Comprehension (IWPC), IEEE Com-
puter Society, 2002.

1. Introduction

Program analysis and source models Program analysis is
a crucial part of many program understanding tools. Program
analysis involves the construction of source models from the
program source text and the subsequent analysis of these mod-
els. Depending on the analysis problem, these source models
might be represented by tables, trees, or graphs.

More often than not, the models are obtained through a se-
quence of steps. Each step can construct new models or refine
existing ones. Usually, the first model is an (abstract) syntax
tree constructed during parsing, which is then used to derive
graphs representing, for example, control or data flow.

Visiting source models The intent of the visitor design pat-
tern is to “represent an operation to be performed on the el-
ements of an object structure. A visitor lets you define a
new operation without changing the classes of the elements
on which it operates” [8]. Often, visitors are constructed to
traverse an object structure according to a particular built-in
strategy, such as top-down, bottom-up, or breadth-first.

A typical example of the use of the visitor pattern in pro-
gram understanding tools involves the traversal of abstract
syntax trees. The pattern offers an abstract class Visitor, which
defines a series of methods that are invoked when nodes of a
particular type (expressions, statements, etc.) are visited. A
concrete Visitor subclass refines these methods in order to per-
form specific actions when accepted by a given syntax tree.

Visitors are useful for analysis and transformation of
source models for several reasons. Using visitors makes it
easy to traverse structures that consist of many different kinds
of nodes, while conducting actions on only a selected num-
ber of them. Moreover, visitors help to separate traversal from
representation, making it possible to use a single source model
for various sorts of analysis.

Visitor Combinators Recently, visitor combinators have
been proposed as an extension of the regular visitor design
pattern [14]. The aim of visitor combinators is to compose
complex visitors from elementary ones. This is done by sim-
ply passing them as arguments to each other. Furthermore,
visitor combinators offer full control over the traversal strat-
egy and applicability conditions of the constructed visitors.

The use of visitor combinators leads to small, reusable
classes, that have little dependence on the actual structure of
the concrete objects being traversed. Thus, they are less brit-
tle with respect to changes in the class hierarchy on which
they operate. In fact, many combinators (such as the top-down
or breadth-first combinators) are completely generic, relying
only on a minimal Visitable interface. As a result, they can be
reused for any concrete visitor instantiation.

Goals of the paper The concept of visitor combinators is
based on solid theoretical ground, and it promises to be a pow-
erful implementation technique for processing source models
in the context of program analysis and understanding. Now

1

A B

Operations

Library

Hierarchy

Instantation

Framework

VisitorVisitable

visitA
visitB

Fwd

VisitorVisitable
getChildCount

setChildAt

visit(Visitable)
getChildAt

Figure 1. The architecture of JJTraveler.

this concept needs to be put to the test of practice.
We have implemented ControlCruiser, a tool for analyzing

and visualizing intra-program control flow for Cobol. In this
paper, we explain by reference to ControlCruiser how visi-
tor combinators can be used to develop program understand-
ing tools. We discuss design tactics, programming techniques,
unit testing, implementation trade-offs, and other engineering
practices related to visitor combinator development. Finally,
we asses the risks and benefits of adopting visitor combinators
for building program understanding tools.

2. Visitor Combinators

Visitor combinator programming was introduced in [14] and is
supported by JJTraveler: a combination of a framework and li-
brary that provides generic visitor combinators for Java. This
section briefly discusses the key elements of JJTraveler.

2.1. The architecture of JJTraveler

Figure 1 shows the architecture of JJTraveler (upper half) and
its relationship with an application that uses it (lower half).
JJTraveler consists of a framework and a library. The applica-
tion consists of a class hierarchy, an instantiation of JJTrav-
eler’s framework for this hierarchy, and the operations on the
hierarchy implemented as visitors.

Framework The JJTraveler framework offers two generic
interfaces, Visitor and Visitable. The latter provides the min-
imal interface for nodes that can be visited. Visitable nodes
should offer three methods: to get the number of child nodes,
to get a child given an index, and to modify a given child. The
Visitor interface provides a single visit method that takes any
visitable node as argument. Each visit can succeed or fail,
which can be used to control traversal behavior. Failure is in-
dicated by a VisitFailure exception.

Library The library consists of a number of predefined vis-
itor combinators. These rely only on the generic Visitor and
Visitable interfaces, not on any specific underlying class hi-
erarchy. An overview of the library combinators is shown in
Figure 2. They will be explained in more detail below.

Name Args Description
Identity Do nothing
Fail Raise VisitFailure exception
Not v Fail if v succeeds, and v.v.
Sequence v1, v2 Do v1, then v2
Choice v1, v2 Try v1, if it fails, do v2
All v Apply v to all immediate children
One v Apply v to one immediate child
IfThenElse c,t, f If c succeeds, do t, otherwise do f
Try v Choice(v,Identity)
TopDown v Sequence(v,All(TopDown(v)))
BottomUp v Sequence(All(BottomUp(v)),v)
OnceTopDown v Choice(v,One(OnceTopDown(v)))
OnceBottomUp v Choice(One(OnceBottomUp(v)),v)
AllTopDown v Choice(v,All(AllTopDown(v)))
AllBottomUp v Choice(All(AllBottomUp(v)),v)

Figure 2. JJTraveler’s library (excerpt).

Instantiation To use JJTraveler, one needs to instantiate the
framework for the class hierarchy of a particular application.
To do this, the hierarchy is turned into a visitable hierarchy by
letting every class implement the Visitable interface. Also, the
generic Visitor interface is extended with specific visit meth-
ods for each class in the hierarchy. Finally, a single imple-
mentation of the extended visitor interface is provided in the
form of a visitor combinator Fwd. This combinator forwards
every specific visit call to a generic default visitor given to it
at construction time. Concrete visitors are built by providing
Fwd with the proper default visitor, and overriding some of its
specific visit methods.

Though instantiation of JJTraveler’s framework can be
done manually, automated support for this is provided by a
generator, called JJForester [10]. This generator takes a gram-
mar as input. From this grammar, it generates a class hierar-
chy to represent the parse trees corresponding to the grammar,
the hierarchy-specific Visitor and Visitable interfaces, and the
Fwd combinator. In addition to framework instantiation, JJ-
Forester provides connectivity to a generalized LR parser [2].

Operations After instantiation, the application programmer
can implement operations on the class hierarchy by specializ-
ing, composing, and applying visitors.

The starting point of hierarchy-specific visitors is Fwd.
Typical default visitors provided to Fwd are Identity and Fail.
Furthermore, Fwd contains a method visitA for every class A
in the hierarchy, which can be overridden in order to construct
specific visitors. As an example, an A-recognizer IsA (which
only does not fail on A-nodes) can be obtained by an appro-
priate specialization of method visitA of Fwd(Fail).

Visitors are combined by passing them as (constructor) ar-
guments. For example, All(IsA) is a visitor which checks that
any of the direct child nodes are of class A, and OnceTop-
Down(IsA) is a visitor checking whether a tree contains any
A-node. Visitors are applied to visitable objects through the
visit method, such as IsA.visit(myA) (which does nothing), or

2

public class Sequence implements Visitor {
Visitor v1;
Visitor v2;
public Sequence(Visitor v1, Visitor v2) {
this.v1 = v1;
this.v2 = v2;

}
public void visit(Visitable x) {
v1.visit(x);
v2.visit(x);

} }

Figure 3. The Sequence combinator.

public class Try extends Choice {
public Try(Visitor v) {
super(v, new Identity());

} }

Figure 4. The Try combinator.

IsA.visit(myB) (which fails).

2.2. A library of generic visitor combinators

Figure 2 shows high-level descriptions for an excerpt of JJ-
Traveler’s library of generic visitor combinators. A full
overview of the library can be found in the online documen-
tation of JJTraveler. Two sets of combinators can be distin-
guished: basic combinators and defined combinators, which
can be described in terms of the basic ones as indicated in the
overview. Note that some of these definitions are recursive.

Basic combinators Implementation of the generic visitor
combinators in Java is straightforward. Figures 3 and 4 show
implementations for the basic combinator Sequence and the
defined combinator Try. The implementation of a basic com-
binator follows a few simple guidelines. Firstly, each argu-
ment of a basic combinator is modeled by a field of type Visi-
tor. For Sequence there are two such fields. Secondly, a con-
structor method is provided to initialize these fields. Finally,
the generic visit method is implemented in terms of invoca-
tions of the visit method of each Visitor field. In case of Se-
quence, these invocations are simply performed in sequence.

Defined combinators The guidelines for implementing a
defined combinator are as follows. Firstly, the superclass of
a defined combinator corresponds to the outermost combina-
tor in its definition. Thus, for the Try combinator, the super-
class is Choice. Secondly, a constructor method is provided
that supplies the arguments of the outermost constructor in the
definition as arguments to the superclass constructor method
(super). For Try, the first superclass constructor argument is
the argument of Try itself, and the second is Identity. The visit
method is simply inherited from the superclass.

Recursive combinators In order to demonstrate how visitor
combinators can be used to build recursive visitors with so-
phisticated traversal behavior, we will develop a new generic

public class TopDownWhile extends Choice {
public TopDownWhile(Visitor v1, Visitor v2) {
super(null,v2);
setArgument(1,new Sequence(v1,new All(this)));

}
public TopDownWhile(Visitor v) {
this(v,new Identity());

} }

Figure 5. The TopDownWhile combinator.

visitor combinator TopDownWhile�v1�v2�.

TopDownWhile�v1�v2� �

Choice�Sequence�v1�All�TopDownWhile�v1�v2����v2�

The first argument v1 represents the visitor to be applied dur-
ing traversal in a top-down fashion. When, at a certain node,
this visitor v1 fails, the traversal will not continue into sub-
trees. Instead, the second argument v2 will be used to visit
the current node. The encoding in Java is given in Figure 5.
Note that Java does not allow references to this until after
the super constructor has been called. For this reason, the
first argument, which contains the recursion, gets its value not
via super, but via the setArgument()method. Note also
that the visitor has a second constructor method that provides
a shorthand for calling the first constructor with Identity as
second argument.

3. Cobol Control Flow

The example we use to study the application of visitor com-
binators to the construction of program understanding tools
deals with Cobol control flow. Cobol has some special
control-flow features, making analysis and visualization an
interesting and non-trivial task. The analysis we describe is
taken from DocGen (see [5]), an industrial documentation
generator for a range of languages including Cobol, which has
been applied to millions of lines of code.

Control flow in Cobol takes place at two different levels.
A Cobol system consists of a series of programs. These pro-
grams can invoke each other using call statements. A Cobol
system typically consists of several hundreds of programs.

In this paper, we focus on control flow within a program,
for which the perform statement is used. This perform state-
ment is like a procedure call, except that no parameters can
be passed (global variables have to be used for that). Typical
programs are 1500 lines large, but is not uncommon to have
individual programs of more than 25,000 lines of code, result-
ing in significant program comprehension challenges.

3.1. Cobol Procedures

Cobol does not have explicit language constructs for proce-
dure calls and declarations. Instead, it has labeled sections
and paragraphs, which are the targets of perform and goto

3

PROCEDURE DIVISION.
P1. ACCEPT X

IF X = "1"
PERFORM P2 THRU P3

ELSE
PERFORM S4.

STOP RUN.
P2. DISPLAY "HELLO".
P3. PERFORM S5.
S4 SECTION.
P4. DISPLAY "HI".
P5. PERFORM S5.
S5 SECTION.

DISPLAY "WORLD".

(a) Cobol source

P1

3
T F

P2 ..
P3

S4

S5

(b) Corresponding call graph

Figure 6. Example Cobol source and graph

statements. Perform statements may invoke individual sec-
tions and paragraphs, or ranges of them. A section can group
a number of paragraphs, but this is not necessary.

Figure 6(a) shows an example program in which sections,
paragraphs, and ranges are performed. Paragraph P1 acts as
the main block, which reads an input value X. If it is “1”,
the program invokes the range of paragraphs P2 through P3.
This range first prints HELLO, and then performs section S5,
which prints WORLD. If the value read is not “1”, the main
program invokes just the section S4. This section consists of
two paragraphs, of which P4 displays HI, and P5 invokes S5
to display WORLD.

This example illustrates an important program understand-
ing challenge for Cobol systems. Viewed at an abstract
level the program involves four procedures: P1, the range
P2..P3, S4, and S5. Paragraphs P3, P4 and P5 are not
intended as procedures. This abstract view needs to be recon-
structed by analysis, because the entry and exit points of per-
formed blocks of code is determined not by their declaration,
but by the way they are invoked in other parts of the program.
In general, this makes it hard to grasp the control flow of a
Cobol program, especially if it is of non-trivial size.

Typical, Cobol programmers try to deal with this issue by
following a particular coding standard. Such a standard pre-
scribes that, for example, only sections can be performed, or
only ranges, or that perform...thru can only be used for para-
graphs with names that explicitly indicate that they are the
start or end-label of a range. Such standards, however, are not
enforced. Moreover, especially older systems may have been
subjected to multiple standards, leaving a mixed style for per-
forming procedures. Again, it takes analysis in order to find
out which styles are actually being used at each point.

The formal semantics of “perform P1 thru Pn” is that para-
graphs are executed starting with P1 until control reaches Pn.
In principle, this makes determining which paragraphs are ac-
tually spanned by a range a run time problem, which cannot
necessarily be solved statically. In the vast majority (99%)
of Cobol programs, however, ranges coincide with syntactic
sequences. In this paper, we will assume that ranges are syn-

tactically sequenced, and we refer to [6] for ways of dealing
with dynamic ranges (where visitor combinators may well be
applicable as well).

3.2. Analysis and visualization

To help maintenance programmers understand the control
flow of individual Cobol programs, a tool is needed for anal-
ysis and visualization of a program’s perform dependencies.
From such a call graph, one could instantly glean which
perform style is predominant, which sections, paragraphs or
ranges make up procedures, and how control is passed be-
tween these procedures.

When discussing these procedure-based call graphs with
maintenance programmers, they indicated that they would
also like to know under what conditions a procedure gets per-
formed. This gave raise to the so-called conditional call graph
(CCG), an example of which is shown in Figure 6(b). These
graphs contain nodes for procedures and conditionals, which
are connected by edges that represent call relations and syn-
tactic nesting relations. CCGs are part of the DocGen redoc-
umentation system, in which these graphs are hyperlinked to
both the sources and to documentation at higher levels of ab-
straction (see [5]).

Conditional call graphs are also a good starting point for
computing detailed (per-procedure) metrics, as part of a sys-
tematic quality assurance (QA) effort. Example QA met-
rics include McCabe’s cyclomatic complexity, fan-in, fan-out,
deepest nesting level, coding style violations (goto’s across
section boundaries, paragraphs performing sections, or v.v.),
dead-code analysis, and more.

4. ControlCruiser Architecture

We have implemented the analysis and visualization require-
ments just described using visitor combinators. The result is
ControlCruiser, a Cobol analysis tool that provides insight into
the intra-program call structure of Cobol programs. The tool
employs several visitable source models, and performs vari-
ous visitor-based traversals over them. This section discusses
the ControlCruiser architecture; the next covers in detail how
visitor combinators have been used in its implementation.

4.1. Initial Representation

The starting point for ControlCruiser is a simple language
containing just the statements representing Cobol sections,
paragraphs, perform statements, and conditional or looping
constructs. An example of this Conditional Perform Format
(CPF) is shown in Figure 7(a).

We obtain CPF from Cobol sources using a Perl script writ-
ten according to the principles discussed in [4]. This script

4

PARA 2 P1
IF 3

THRU 4 P2 P3
ELSE 5

PERFORM 6 S4
END-IF 7

END-PARA 9 P1
PARA 9 P2
END-PARA 10 P2
PARA 10 P3

PERFORM 10 S5
END-PARA 11 P3
SECTION 11 S4

PARA 12 P4
END-PARA 13 P4
PARA 13 P5

PERFORM 13 S5
END-PARA 14 P5

END-SECTION 14 S4
SECTION 14 S5
END-SECTION 15 S5

(a) CPF for Fig 6

Block

*

CPF

1..2
SectionParagraph

*

Stmt

*

Program

SectionList

perform

section

block

StmtList

program

ParagraphList

para

thru goto if

(b) The generated CPF class hierarchy

Figure 7. Conditional Perform Format (CPF)

CCG

JJTraveler

graph

Conditional

Nesting

Edge

CallGraph

Procedure

Visitable

Graph Node

GraphVisitable

ProgramPoint Call

CCGVisitable

Figure 8. Class hierarchy for graph representations.

takes care of handling the tricky details of the Cobol syntax,
such as scope termination of if-constructs.

The result is an easy to parse CPF file. We have written
a grammar for the CPF format, and used JJForester to de-
rive a class hierarchy for representing the corresponding trees.
All nodes in such trees are of one of the types shown in Fig-
ure 7(b). Since these all realize the Visitable interface, we can
implement all subsequent steps with visitor combinators.

4.2. Graph Representation

To analyze Cobol’s control flow in an easy way, we have to
create a graph out of the tree representation corresponding
to Cobol statements. For this, we use an additional visitable
source model which consists of two layers (see Figure 8).

The first layer is a generic graph model, with explicit
classes for nodes, edges, and the overall graph providing en-
try points into the graph. Each of these classes implements
a GraphVisitable interface, which is an extension of generic
visitables. The classes are implemented such that the chil-

dren of a node are defined as its outgoing edges, the children
of an edge as its outgoing node, and the children of a graph
as the collection of all nodes, thus making it possible to tra-
verse a graph using visitor combinators. A forwarding visitor
combinator taking a generic visitor as argument is provided as
required (not shown).

The second layer is a specialization of the generic graph
model to the level of control flow, called Conditional Control
Graphs (CCGs). This representation contains classes for pro-
cedures, conditional statements, and different types of edges.
Program points correspond to places in the original CPF tree,
and have a pointer back to their originating construct. Each
class implements the CCGVisitable interface. The forward-
ing combinator of CCG (not shown) contains three levels of
forwarding. First, visit methods of classes low in the hierar-
chy (such as Procedure and Conditional) invoke a visit method
higher up in the hierarchy (to ProgramPoint). Second, visit
methods for top-level CCG classes forward to visit methods
in a visitor at the generic graph level. Third, graph-specific
visitors forward to generic visitors by default. Observe that
thanks to this two-layer design, visitors designed for graphs
can be reused to build visitors for CCGs. This will be demon-
strated in Section 5.2.

4.3. Graph Construction

Constructing the CCG graph from the initial CPF tree rep-
resentation is done using various visitors operating on CPF
trees. In order to identify those paragraphs, sections and
ranges that act as procedures, a visitor PerformedLabels is
used to collect all performed labels and ranges. A second
visitor ConstructProcedures then uses these to find the cor-
responding paragraphs or sections and to add procedure nodes
to the graph. For ranges, the corresponding list of paragraphs
or sections is collected.

After the procedure nodes are created, the RefineProcedure
visitor is applied, in order to extend the graph with the condi-
tionals and outgoing call edges of this procedure.

4.4. Graph Analysis

Once the CCG graph is constructed, it can be analyzed. For
this, we use a number of visitors that operate on CCG graphs.

To visualize a CCG graph, we traverse it with a visitor that
emits input for the graph-drawing back-end dot. This visitor
is layered, as is the CCG class hierarchy on which it operates.

To compute metrics per procedure we have devised a num-
ber of collaborating visitors, shown in Figure 9. Most of these
metrics are based on a SuccessCounter(v), which, when vis-
ited, applies its argument v and increments a counter if this
application was successful. An example application is the Mc-
CabeIndex combinator, which takes a visitor recognizing if-
statements, and then counts the number of successes. Observe

5

Name Description
SuccessCounter v Add one if v succeeds
CpfIfRecognizer Succeed on CPF conditions
CcgIfRecognizer Succeed on CCG conditions
... Other recognizers
McCabeIndex i SuccessCounter(i), i an IfRecognizer
FanOut p SuccessCounter(p), p PerformRecogn.
GotoCounter g SuccessCounter(g), g GotoRecognizer
MaxNesting v Maximum nesting level of v-Recognizer
MaxNestedIf i MaxNesting(i), i an IfRecognizer

Figure 9. Selected Metrics Visitors

public class PerformedLabels extends cpf.Fwd {
Set performedLabels = ...;
Set performedRanges = ...;
public PerformedLabels() {
super(new Identity());

}
public void visit_perform(perform p) {
performedLabels.add(p.getcallee());

}
public void visit_thru(thru x) {
performedRanges.add(
new Pair(x.getstartlabel(), x.getendlabel()));

}}

Figure 10. Collect performed labels.

that these metrics combinators are parameterized by recogniz-
ers: hence they can be applied to both the CPF and the CCG
source models.

In a similar way we construct visitors for recognizing cod-
ing standards. For example, a visitor MixedStyle operates on
the CCG format, and recognizes all call edges from section to
paragraph or vice versa. Such edges indicate a mixed style,
and usually are forbidden by coding standards.

5. ControlCruiser Implementation

In this section we discuss some of ControlCruiser’s visitors in
full detail. Due to space limitations, we limit ourselves to the
visitors dealing with graph construction and visualization.

Collect performed labels Recall that perform statements
come in two flavors: with and without thru clause. Conse-
quently, we need to collect both individual labels, and pairs
of labels. For this purpose we use a visitor combinator Per-
formedLabels with two collections in its state (see Fig-
ure 10). Note that there are no dependencies between the code
in this visitor pertaining to pairs of labels and the code per-
taining to individual labels. If desired, we could refactor this
visitor into two even smaller separate ones, and re-join them
with Sequence (visitor extraction).

To actually collect the labels from the input program p,
we need to create the visitor, pass it to the generic TopDown
combinator, and visit the tree with it:

public class CreateProcedures extends cpf.Fwd {
CallGraph callGraph;
Set performedLabels;
public CreateProcedures(CallGraph g, Set labs){
super(new Identity());
...

}
public void visit_section(section s) {
addProc(s.getlabel(), s);

}
public void visit_para(para p) {
addProc(p.getlabel(), p)

}
void addProc(String name, Visitable v) {
if (performedLabels.contains(name)) {
Procedure p = new Procedure(name,v);
callGraph.addProcedure(p);

}}}

Figure 11. Create procedures for individual labels.

PerformedLabels pl = new PerformedLabels();
(new TopDown(pl)).visit(p);

After the traversal has completed, we can obtain the per-
formed labels and ranges via the instance variables of pl.

Paragraphs and Sections Every performed label corre-
sponds to either a section or a paragraph. In order to create
a procedure node with the proper link back to the CPF tree
representing the procedure body, we use a visitor that triggers
at individual sections and paragraphs (see Figure 11). It only
actually creates a procedure node if the given label is one of
the performed labels, which it receives at construction time.
The created procedure nodes are added to a call graph, which
is also provided at construction time. To ensure we will be
able to retrieve the added nodes at a later stage, we assume
they become direct children of the graph.

Again, this visitor can be passed to the TopDown combi-
nator, in order to traverse the tree and collect the procedures.
Below, however, we will see how we can make better use of
combinators in order to avoid visiting too many nodes.

Ranges To construct procedure nodes for a pair of (start and
end) labels, we collect those section or paragraph nodes that
lie between those labels. For this purpose we have developed
an auxiliary visitor (see Figure 12) which takes the start and
end labels, and is triggered at each section or paragraph. If the
start or end label is encountered, a boolean flag is switched,
and paragraphs or sections visited are added to the list.

Given this auxiliary visitor, a visitor can be developed
that constructs procedure nodes for pairs of labels (see Fig-
ure 13). This visitor triggers at ParagraphList and Section-
List nodes. This is appropriate, because the sections and
paragraphs spanned by a pair of labels must always occur in
the same list. When such a list is encountered, the method
addSpannedASTs is invoked to perform an iteration over
the collection of label pairs. At each iteration, the All com-
binator is used to fire the auxiliary visitor SpannedASTs se-
quentially at all members of the current paragraph or section

6

public class SpannedASTs extends cpf.Fwd {
VisitableList spannedASTs = new VisitableList();
String startLabel;
String endLabel;
boolean withinRange = false;
public SpannedASTs(String start, String end) {
super(new Identity());
...

}
public void visit_para(para p) {
addIfWithinRange(p.getlabel(), p);

}
public void visit_section(section s) {
addIfWithinRange(s.getlabel(), s);

}
void addIfWithinRange(String label,

Visitable x) {
if (label.equals(startLabel)) {

withinRange = true; }
if (withinRange) {

spannedASTs.add(x); }
if (label.equals(endLabel)) {

withinRange = false;
}}}

Figure 12. Collect section and paragraph nodes
spanned by a given pair of labels.

list. If this yields a non-empty result, a new procedure node is
created and added to the graph.

Top Down While Finally, we can apply the developed vis-
itors to the input program. This could be done with a simple
top-down traversal. However, any nodes at the block level
and lower would be visited superfluously, because our visitors
have effect only on sections, paragraphs, and lists of these. To
gain efficiency, we will use the TopDownWhile combinator
instead. To detect blocks, we first define the following visitor
(using an anonymous class):

Visitor isBlock
= new Fwd(new Fail())

{ public void visit_block(block x) {} };

This visitor fails for all nodes, except blocks. We compose it
with our procedure creation visitors to do a partial traversal:

graph = new CallGraph();
cp = new CreateProcedures(graph,labels);
cr = new CreateRanges(graph,ranges);
(new TopDownWhile(

new IfThenElse(isBlock,
new Fail(),
new Sequence(cp,cr))

)).visit(p);

Thus, at each node the IfThenElse combinator is used to
determine whether a block is reached and the traversal should
stop, or the visitors for procedure creation should be applied.
Note that these two separate visitors are combined into one
with the Sequence combinator. After this traversal, the
graph g contains a node for every procedure reconstructed
from the CPF tree. Each such procedure node contains a ref-
erence to the CPF subtrees that gave rise to it.

public class CreateRanges extends cpf.Fwd {
CallGraph callGraph;
Set todoRanges;
public CreateRanges(CallGraph g, Set todo) {
super(new Identity());
...

}
public void visit_ParaList(ParaList pl) {
addSpannedASTs(pl);
}
public void visit_SectionList(SectionList sl) {
addSpannedASTs(sl);

}
void addSpannedASTs(Visitable list) {
Iterator pairs = todoRanges.iterator();
while (pairs.hasNext()) {

Pair pair = (Pair) pairs.next();
VisitableList asts = getASTs(pair, list);
if (! asts.isEmpty()) {

addProc(pair.start, pair.end, asts);
} } }
VisitableList getASTs(Pair p, Visitable list) {
SpannedASTs sa=new SpannedASTs(p.start, p.end);
(new GuaranteeSuccess(new All(sa))).visit(list);
return sa.spannedASTs;

}
void addProc(Pair p, VisitableList ast) {
...

} }

Figure 13. Create procedure for ranges

Construct program entry point We will not show the visi-
tors for constructing the program entry point. They are similar
to the creation of performed procedure nodes. An auxiliary
visitor collects ASTs, starting from the top of the program,
and stopping at the first STOP RUN statement or the first per-
formed label. This implements the heuristic that performed
sections and paragraphs are never part of the main procedure.

5.1. CCG Refinement

Now we have created the CCG’s procedure nodes, we need
to refine them by creating nodes that represent the conditions
that occur in their bodies, and by adding nesting and call rela-
tions between the nodes. For these tasks, we have developed
the RefineProcedure visitor (see Figure 14). For a given
procedure node in the CCG, this visitor is used to create nodes
and edges for the conditionals and performs contained in its
AST.

For a perform or a perform-thru statement, it adds a call
edge from the caller to the procedure node that corresponds
to its label (pair).

For if statements, it first creates a new conditional node
and adds a nesting edge from the callee to this new condi-
tional node. It then restarts itself with two new starting points:
one for the then branch, and another for the else branch. The
restart invokes the TopDownUntil combinator to traverse
these branches. Such restarts are a general mechanism that
can be used when stack-like behavior is needed, for example

7

public class RefineProcedure extends cpf.Fwd {
CallGraph graph;
ProgramPoint caller;
public RefineProcedure(CallGraph g,

ProgramPoint c) {
super(new Fail());
...

}
public void visit_perform(perform perform) {
String label = perform.getcallee();
Procedure callee = graph.getProcedure(label);
caller.addCallEdgeTo(callee);

}
public void visit_thru(thru x) {
String s = x.getstartlabel();
String e = x.getendlabel();
Procedure callee = graph.getProcedure(s,e);
caller.addCallEdgeTo(callee);

}
public void visit_if$(if$ x) {
Conditional cond = graph.addConditional(x);
caller.addNestingEdgeTo(cond);
start(graph, cond.getThenPart());
start(graph, cond.getElsePart());

}
public static void start(CallGraph graph,

ProgramPoint caller) {
Visitable ast = caller.getAst();
RefineProcedure rp

= new RefineProcedure(graph, caller);
(new GuaranteeSuccess(

new TopDownUntil(rp))) . visit(ast);
}}}

Figure 14. Refine the CCG for a given procedure.

public class Visited implements Visitor {
Set visited = new HashSet();
public void visit(Visitable x)
throws VisitFailure {
if (!visited.contains(x)) {

visited.add(x);
throw new VisitFailure();

} } }

Figure 15. The Visited combinator.

when dealing with nested constructs such as if statements.
We need to traverse the initial CCG to actually apply the

RefineProcedure visitor at each procedure node. To pre-
vent visiting nodes more than once and running in circles, we
use the visitor Visited from JJTraveler’s library (See Fig-
ure 15). This generic combinator keeps track of nodes already
visited in its state. Now, to traverse the graph, we do a top-
down traversal where each node that has not been visited yet
is refined:

Visitor refine = new ccg.Fwd(new Identity()){
public void visitProcedure(Procedure p) {

RefineProcedure.start(graph, p);
} };

(new TopDownWhile(
new IfThenElse(new Visited(),

new Fail(),
refine)

public class GraphToDot extends graph.Fwd {
Set dotStatements = new TreeSet();
public GraphToDot() {
super(new Identity());

}
public void visitNode(GraphNode n) {
add(n+";")

}
public void visitEdge(DirectedEdge e) {
add(e.inNode()+"->"+e.outNode()+";");

}
void add (String dotStatement) { ... }
public void printDotFile(String fname) {...}

}

Figure 16. Graph visualization.

public class CCGToDot extends ccg.Fwd {
GraphToDot printer;
public CCGToDot() {
super(new GraphToDot());
printer = (GraphToDot) fwd;
}
public void visitCall(Call c) {
add(e.inNode()+"->"+e.outNode()

+"[style=bold,color=blue];")
}
void add(String dotStatement) {
printer.add(dotStatement);
}
public void printDotFile(String fname) {
printer.printDotFile(fname);

}}

Figure 17. CCG visualization.

)).visit(graph);

Note that we use an anonymous extension of the Identity
visitor to invoke the start() method of the RefinePro-
cedure visitor that does the actual refinement.

5.2. CCG visualization

The layered class hierarchy for graph representation allows us
to implement a layered visualization visitor as well.

Visualizing generic graphs The visitor GraphToDot im-
plements the construction of a representation in the dot input
format for a given generic graph (see Figure 16). This visitor
simply collects a set of dot statements, where an appropri-
ate statement is added for each node and edge. After appli-
cation of this visitor to each node and edge in a graph, the
printDotFile method can be used to print the collected
statements to a file.

Visualizing CCGs For our CCGs, the generic graph visual-
ization does not suffice, because we want to generate different
visual clues, for instance for call edges. For this purpose, we
implemented CCGToDot (see Figure 17). Note that this vis-
itor forwards to a generic GraphToDot visitor for all CCG
elements but call edges. For these, the redefined visit method

8

generates an adapted dot statement.

The visualization visitors are applied to the CCG in the exact
same fashion as the refine visitor above. This calls for a
refactoring of this traversal strategy into a reusable Graph-
TopDown combinator (extract strategy). We have added this
combinator to JJTraveler’s library.

6. Discussion

During the development of ControlCruiser we have learned
many practical lessons about the use of visitor combinators
for constructing program understanding tools. In this section
we summarize some development techniques we have adopted
and evaluate the benefits and risks of visitor combinator pro-
gramming.

6.1. Development techniques

Separation of concerns Visitor combinators allow one to
implement conceptually separable concerns in different mod-
ules, whilst otherwise they would be entangled in a single code
fragment. As a result, these concerns can be understood, de-
veloped, tested, and maintained separately. Examples of (cate-
gories of) concerns we encountered include traversal, control,
state, and testing (see below). Throughout all these concerns,
we found it natural and beneficial to separate application-
specifics from generics.

Testing and benchmarking We developed ControlCruiser
following the extreme programming maxim of test-first de-
sign, which involves writing unit tests for every piece of code
that can potentially fail. As a result, we wanted to test not
only the compound visitors that are invoked by the applica-
tion, but also each individual visitor combinator from which
such compound visitors are composed.

To this end, we developed a testing combinator LogVis-
itor, which logs every invocation of its argument visitor into
a special Logger. In combination with the standard unit
testing utility JUnit, this testing combinator can be used to
write detailed tests for hierarchy-specific visitors. To test the
generic visitors of JJTraveler itself, we used a mock instantia-
tion of JJTraveler’s framework (with a single visitable class).

For detailed benchmarking, we needed to collect timing re-
sults, again not just on compound visitors, but also on individ-
ual visitor combinators. To this end, we created a specializa-
tion TimeLogVisitor of our testing combinator that mea-
sures and aggregates the activity bursts of its argument visitor.
This enables us to separately measure the time consumed by
different concerns, such as traversal and node action.

Failure containment When using visitor combinators that
potentially fail, one needs to declare the VisitFailure ex-
ception in a throws clause. In many cases, the program-
mer knows from the context that such failure can actually

never occur. Examples are the expressions Try�Fail� and
TopDownWhile�Fail�. To relieve the programmer from the
burden of writing catch-throws contexts to contain such ‘im-
possible’ failures, we developed the combinator Guaran-
teeSuccess. Judicious placement of this combinator re-
duces code cluttering and makes code more self-documenting.

Class organization We have used several kinds of inner
classes to improve code organization. For tiny visitors (no
more than a few lines) we have used anonymous classes.
For small visitors (no more than a few methods) that operate
within the context of another visitor (i.e. using its state), we
used member classes. This removes the need for additional
instance variables and constructor method arguments.

6.2. Evaluation

Benefits Visitor combinators enable separation of concerns.
This helps understanding, development, testing, and reuse.
Combinators enable reuse in several dimensions. Within an
application, a single concern, such as a particular traversal
strategy or applicability condition, needs to be implemented
only once in a reusable combinator. Across applications, vis-
itors can be reused that capture generic behavior. Examples
are the fully generic combinators of the JJTraveler library, but
also the DotPrinter combinator that can be refined by any
application that uses or even specializes the graph package
on which this combinator operates.

A related benefit is robustness against class-hierarchy
changes. Using visitor combinators, each concern can be im-
plemented with explicit reference only to classes that are rele-
vant to it. As a result, changes in other classes will not unduly
affect the implementation of the concern.

In relation to other approaches to separation of con-
cerns and object traversal, visitor combinators are extremely
lightweight. Optionally, the JJForester tool can be used to in-
stantiate JJTraveler’s framework. However, visitor combina-
tors do not essentially rely on tools. The required implemen-
tation of the (very thin) Visitable interface and the Fwd
combinator is straightforward, and can easily be done by hand.

Risks Visitor combinators pose two risks with respect to
performance. Firstly, the development of many little visitors
may lead to many (relatively expensive) object creations. One
should take care to keep these within reasonable limit. For in-
stance, stateless combinators need only be created once. State-
ful visitors can often be re-initialized to run again, instead of
continually creating new ones.

Another performance penalty may come from heavy re-
liance on exceptions for steering visitor control. One should
take care to choose the interpretation of VisitFailure
such that failure is less common than success. E.g. one can
use TopDownWhile with Identity as default, instead of
TopDownUntil with Fail as default.

These performance risks can be combatted by profiling

9

(maybe using TimeLogVisitor) and refactoring. Refac-
toring rules for combinators can often be described with sim-
ple equations. However, when we applied ControlCruiser to
our code bases, including a 3,000,000 loc system, we did not
experience performance problems. (in fact, the majority of the
time was spent on parsing the CPF format, not on running the
visitors on them).

7. Concluding Remarks

Related work We refer to [14] for a full account of related
work in the areas of design patterns and object navigation ap-
proaches: of particular interest are the extended [7] and stag-
gered [15] visitor patterns, and adaptive programming [11]
for expressing “roadmaps” through object structures. The ori-
gins of visitor combinators can furthermore be traced back to
strategic term rewriting, in particular [13].

Traversals in the context of reverse engineering tools are
discussed by [3], who provide a top-down analysis or trans-
formation traversal. Their traversals have been generalized in
the context of ASF+SDF in [1]. Similar traversals are present
in the Refine toolset [12], which contains a pre-order and post-
order traversal. In both cases, only a few traversal strate-
gies are provided, and little support is available for composing
complex traversals from basic building blocks or controlling
the visiting behavior.

In the field of program understanding and reengineering
tools exchange formats have attracted considerable attention
since 1998 [16]. Visitor combinators provide an interesting
perspective on such formats. Instead of focusing on the un-
derlying structure, visitor combinators make assumptions on
what they can observe in a structure. By minimizing these as-
sumptions, for example by trying to use the generic Visitable
interface, the reusability of these combinators is maximized.

One of the outcomes of the exchange format research is the
Graph Exchange Language GXL [9]. Visitor combinators are
likely to be a suitable mechanism for processing GXL repre-
sentations. This requires generating directed graph structures
that implement the Visitable interface from GXL schema’s,
similar to the way JJForester generates visitable trees from
context free grammars and to the way our graph package im-
plements the visitable interface.

Contributions We have demonstrated that visitor combi-
nators provide a powerful programming technique for pro-
cessing source models. We have given concrete examples of
instantiating the visitor combinator framework provided by
JJTraveler, and of developing complex program understand-
ing visitors by specialization and combination of JJTraveler’s
combinator library. We have applied the developed visitors to
a large code base to establish feasibility and scalability of the
approach. Finally, we have summarized the development tech-
niques surrounding visitor combinator programming and we
have made an assessment of the risks and benefits involved.

Availability JJTraveler, JJForester, and ControlCruiser can
be downloaded from www.jjforester.org/.

Acknowledgements We would like to thank Huub de Hes-
selle, Paul Klint and Leon Moonen for reading drafts of our
paper.

References

[1] M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term rewriting
with traversal functions. Technical Report SEN-R0121, CWI,
2001.

[2] M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser.
Disambiguation filters for scannerless generalized LR parsers.
In N. Horspool, editor, Compiler Construction (CC’02), Lec-
ture Notes in Computer Science. Springer-Verlag, 2002.

[3] M. G. J. van den Brand, A. Sellink, and C. Verhoef. Generation
of components for software renovation factories from context-
free grammars. Sc. of Comp. Progr., 36(2–3), 2000.

[4] A. van Deursen and T. Kuipers. Rapid system understanding:
Two COBOL case studies. In International Workshop on Pro-
gram Comprehension, pages 90–97. IEEE, 1998.

[5] A. van Deursen and T. Kuipers. Building documentation gen-
erators. In International Conference on Software Maintenance,
ICSM’99, pages 40–49. IEEE Computer Society, 1999.

[6] J. Field and G. Ramalingam. Identifying procedural structure in
cobol programs. In Workshop on Program analysis for software
tools and engineering; PASTE, pages 1–10. ACM Press, 1999.

[7] E. M. Gagnon and L. J. Hendren. SableCC, an object-oriented
compiler framework. In TOOLS USA 98 (Technology of Object-
Oriented Languages and Systems). IEEE, 1998.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[9] R. Holt, A. Winter, and A. Schürr. GXL: Toward a standard
exchange format. In Proceedings of the 7th Working Confer-
ence on Reverse Engineering, pages 162–171. IEEE Computer
Society, 2000.

[10] T. Kuipers and J. Visser. Object-oriented tree traversal with
JJForester. Electronic Notes in Theoretical Computer Science,
44(2), 2001. Proceedings of the Workshop on Language De-
scriptions, Tools and Applications (LDTA).

[11] K. J. Lieberherr and B. Patt-Shamir. Traversals of Object Struc-
tures: Specification and Efficient Implementation. Technical
Report NU-CCS-97-15, College of Computer Science, North-
eastern University, Boston, MA, July 1997.

[12] L. Markosian, P. Newcomb, R. Brand, S. Burson, and
T. Kitzmiller. Using an enabling technology to reengineer
legacy systems. Comm. of the ACM, 37(5):58–70, 1994.

[13] E. Visser, Z. Benaissa, and A. Tolmach. Building program
optimizers with rewriting strategies. ACM SIGPLAN Notices,
34(1):13–26, January 1999. Proceedings of the International
Conference on Functional Programming (ICFP’98).

10

[14] J. Visser. Visitor combination and traversal control. ACM
SIGPLAN Notices, 36(11):270–282, November 2001. OOP-
SLA 2001 Conference Proceedings.

[15] John Vlissides. Visitor in frameworks. C++ Report, 11(10),
November 1999.

[16] S. Woods, L. O’Brien, T. Lin, K. Gallagher, and A. Quilici.
An architecture for interoperable program understanding tools.
In 6th International Workshop on Program Comprehension
(IWPC), pages 54–63. IEEE, 1998.

11

