5,690 research outputs found

    Intelligent Road-Adaptive Semi-Active Suspension and Integrated Cruise Control †

    Get PDF
    The availability of road and vehicle data enables the control of road vehicles to adapt for different road irregularities. Vision-based or stored road data inform the vehicle regarding the road ahead and surface conditions. Due to these abilities, the vehicle can be controlled efficiently to deal with different road irregularities in order to improve driving comfort and stability performances. The present paper proposes an integration method for an intelligent, road-adaptive, semi-active suspension control and cruise control system. The road-adaptive, semi-active suspension controller is designed through the linear parameter-varying (LPV) method, and road adaptation is performed with a road adaptivity algorithm that considers road irregularities and vehicle velocity. The road adaptivity algorithm calculates a dedicated scheduling variable that modifies the operating mode of the LPV controller. This modification of operation mode provides a trade-off between driving comfort and vehicle stability performances. Regarding the cruise control, the velocity design of the vehicle is based on the ISO 2631-1 standard, the created database, and the look-ahead road information. For each road irregularity, the velocity of the vehicle is designed according to previous measurements and the table of ISO 2631-1 standard. The comfort level must be selected in order to calculate dedicated velocity for road irregularity. The designed velocity is tracked by the velocity-tracking controller evaluated with the LPV control framework. The designed controllers are integrated, and the operation of the integrated method is validated in a TruckSim simulation environment

    Work domain analysis and intelligent transport systems: Implications for vehicle design

    Get PDF
    This article presents a Work Domain Analysis (WDA) of the road transport system in Victoria, Australia. A series of driver information requirements and tasks that could potentially be supported through the use of Intelligent Transport Systems (ITS) are then extracted from the WDA. The potential use of ITS technologies to circumvent these information gaps and provide additional support to drivers is discussed. It is concluded that driver information requirements are currently not entirely satisfied by contemporary vehicle design and also that there are a number of driving tasks that could be further supported through the provision of supplementary systems within vehicles

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Towards Social Autonomous Vehicles: Efficient Collision Avoidance Scheme Using Richardson's Arms Race Model

    Full text link
    Background Road collisions and casualties pose a serious threat to commuters around the globe. Autonomous Vehicles (AVs) aim to make the use of technology to reduce the road accidents. However, the most of research work in the context of collision avoidance has been performed to address, separately, the rear end, front end and lateral collisions in less congested and with high inter-vehicular distances. Purpose The goal of this paper is to introduce the concept of a social agent, which interact with other AVs in social manners like humans are social having the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. The proposed social agent is based on a human-brain inspired mentalizing and mirroring capabilities and has been modelled for collision detection and avoidance under congested urban road traffic. Method We designed our social agent having the capabilities of mentalizing and mirroring and for this purpose we utilized Exploratory Agent Based Modeling (EABM) level of Cognitive Agent Based Computing (CABC) framework proposed by Niazi and Hussain. Results Our simulation and practical experiments reveal that by embedding Richardson's arms race model within AVs, collisions can be avoided while travelling on congested urban roads in a flock like topologies. The performance of the proposed social agent has been compared at two different levels.Comment: 48 pages, 21 figure
    • …
    corecore