603 research outputs found

    A snake-based scheme for path planning and control with constraints by distributed visual sensors

    Get PDF
    YesThis paper proposes a robot navigation scheme using wireless visual sensors deployed in an environment. Different from the conventional autonomous robot approaches, the scheme intends to relieve massive on-board information processing required by a robot to its environment so that a robot or a vehicle with less intelligence can exhibit sophisticated mobility. A three-state snake mechanism is developed for coordinating a series of sensors to form a reference path. Wireless visual sensors communicate internal forces with each other along the reference snake for dynamic adjustment, react to repulsive forces from obstacles, and activate a state change in the snake body from a flexible state to a rigid or even to a broken state due to kinematic or environmental constraints. A control snake is further proposed as a tracker of the reference path, taking into account the robot’s non-holonomic constraint and limited steering power. A predictive control algorithm is developed to have an optimal velocity profile under robot dynamic constraints for the snake tracking. They together form a unified solution for robot navigation by distributed sensors to deal with the kinematic and dynamic constraints of a robot and to react to dynamic changes in advance. Simulations and experiments demonstrate the capability of a wireless sensor network to carry out low-level control activities for a vehicle.Royal Society, Natural Science Funding Council (China

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    Trajectory Tracking Control of Skid-Steering Mobile Robots with Slip and Skid Compensation using Sliding-Mode Control and Deep Learning

    Full text link
    Slip and skid compensation is crucial for mobile robots' navigation in outdoor environments and uneven terrains. In addition to the general slipping and skidding hazards for mobile robots in outdoor environments, slip and skid cause uncertainty for the trajectory tracking system and put the validity of stability analysis at risk. Despite research in this field, having a real-world feasible online slip and skid compensation is still challenging due to the complexity of wheel-terrain interaction in outdoor environments. This paper presents a novel trajectory tracking technique with real-world feasible online slip and skid compensation at the vehicle-level for skid-steering mobile robots in outdoor environments. The sliding mode control technique is utilized to design a robust trajectory tracking system to be able to consider the parameter uncertainty of this type of robot. Two previously developed deep learning models [1], [2] are integrated into the control feedback loop to estimate the robot's slipping and undesired skidding and feed the compensator in a real-time manner. The main advantages of the proposed technique are (1) considering two slip-related parameters rather than the conventional three slip parameters at the wheel-level, and (2) having an online real-world feasible slip and skid compensator to be able to reduce the tracking errors in unforeseen environments. The experimental results show that the proposed controller with the slip and skid compensator improves the performance of the trajectory tracking system by more than 27%

    Navigation control of an automated mobile robot robot using neural network technique

    Get PDF
    Over recent years, automated mobile robots play a crucial role in various navigation operations. For any mobile device, the capacity to explore in its surroundings is essential. Evading hazardous circumstances, for example, crashes and risky conditions (temperature, radiation, presentation to climate, and so on.) comes in the first place, yet in the event that the robot has a reason that identifies with particular places in its surroundings, it must discover those spots. There is an increment in examination here due to the requisition of mobile robots in a solving issues like investigating natural landscape and assets, transportation tasks, surveillance, or cleaning. We require great moving competencies and a well exactness for moving in a specified track in these requisitions. Notwithstanding, control of these navigation bots get to be exceptionally troublesome because of the exceedingly unsystematic and dynamic aspects of the surrounding world. The intelligent reply to this issue is the provision of sensors to study the earth. As neural networks (NNs) are described by adaptability and a fitness for managing non-linear problems, they are conceived to be useful when utilized on navigation robots. In this exploration our computerized reasoning framework is focused around neural network model for control of an Automated motion robot in eccentric and unsystematic nature. Hence the back propagation algorithm has been utilized for controlling the direction of the mobile robot when it experiences by an obstacle in the left, right and front directions. The recreation of the robot under different deterrent conditions is carried out utilizing Arduino which utilizes C programs for usage

    Optimizing the performance of a wheeled mobile robots for use in agriculture using a linear-quadratic regulator

    Get PDF
    Use of wheeled mobile robot systems could be crucial in addressing some of the future issues facing agriculture. However, robot systems on wheels are currently unstable and require a control mechanism to increase stability, resulting in much research requirement to develop an appropriate controller algorithm for wheeled mobile robot systems. Proportional, integral, derivative (PID) controllers are currently widely used for this purpose, but the PID approach is frequently inappropriate due to disruptions or fluctuations in parameters. Other control approaches, such as linear-quadratic regulator (LQR) control, can be used to address some of the issues associated with PID controllers. In this study, a kinematic model of a four-wheel skid-steering mobile robot was developed to test the functionality of LQR control. Three scenarios (control cheap, non -zero state expensive; control expensive, non -zero state cheap; only non -zero state expensive) were examined using the characteristics of the wheeled mobile robot. Peak time, settling time, and rising time for cheap control based on these scenarios was found to be 0.1 s, 7.82 s, and 4.39 s, respectively

    Nonlinear Model Predictive Control-based Collision Avoidance for Mobile Robot

    Get PDF
    This work proposes an efficient and safe single-layer Nonlinear Model Predictive Control (NMPC) system based on LiDAR to solve the problem of autonomous navigation in cluttered environments with previously unidentified static and dynamic obstacles of any shape. Initially, LiDAR sensor data is collected. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, is used to cluster the (Lidar) points that belong to each obstacle together. Moreover, a Minimum Euclidean Distance (MED) between the robot and each obstacle with the aid of a safety margin is utilized to implement safety-critical obstacle avoidance rather than existing methods in the literature that depend on enclosing the obstacles with a circle or minimum bounding ellipse. After that, to impose avoidance constraints with feasibility guarantees and without compromising stability, an NMPC for set-point stabilization is taken into consideration with a design strategy based on terminal inequality and equality constraints. Consequently, numerous obstacles can be avoided at the same time efficiently and rapidly through unstructured environments with narrow corridors.  Finally, a case study with an omnidirectional wheeled mobile robot (OWMR) is presented to assess the proposed NMPC formulation for set-point stabilization. Furthermore, the efficacy of the proposed system is tested by experiments in simulated scenarios using a robot simulator named CoppeliaSim in combination with MATLAB which utilizes the CasADi Toolbox, and Statistics and Machine Learning Toolbox. Two simulation scenarios are considered to show the performance of the proposed framework. The first scenario considers only static obstacles while the second scenario is more challenging and contains static and dynamic obstacles. In both scenarios, the OWMR successfully reached the target pose (1.5m, 1.5m, 0°) with a small deviation. Four performance indices are utilized to evaluate the set-point stabilization performance of the proposed control framework including the steady-state error in the posture vector which is less than 0.02 meters for position and 0.012 for orientation, and the integral of norm squared actual control inputs which is 19.96 and 21.74 for the first and second scenarios respectively. The proposed control framework shows a positive performance in a narrow-cluttered environment with unknown obstacles
    corecore