460 research outputs found

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    A distributed optimization framework for localization and formation control: applications to vision-based measurements

    Full text link
    Multiagent systems have been a major area of research for the last 15 years. This interest has been motivated by tasks that can be executed more rapidly in a collaborative manner or that are nearly impossible to carry out otherwise. To be effective, the agents need to have the notion of a common goal shared by the entire network (for instance, a desired formation) and individual control laws to realize the goal. The common goal is typically centralized, in the sense that it involves the state of all the agents at the same time. On the other hand, it is often desirable to have individual control laws that are distributed, in the sense that the desired action of an agent depends only on the measurements and states available at the node and at a small number of neighbors. This is an attractive quality because it implies an overall system that is modular and intrinsically more robust to communication delays and node failures

    Nonlinear Control Strategies for Outdoor Aerial Manipulators

    Get PDF
    In this thesis, the design, validation and implementation of nonlinear control strategies for aerial manipulators {i.e. aerial robots equipped with manipulators{ is studied, with special emphasis on the internal coupling of the system and its resilience against external disturbances. For the rst, di erent decentralised control strategies {i.e. using di erent control typologies for each one of the subsystems{ that indirectly take into account this coupling have been analysed. As a result, a nonlinear strategy composed of two controllers is proposed. A higher priority is given to the manipulation accuracy, relaxing the platform tracking, and hence obtaining a solution improving the manipulation capabilities with the surrounding environment. To validate these results, thorough stability and robustness analyses are provided, both theoretically and in simulation. On the other hand, a signi cant e ort has been devoted to improving the response and applicability of robot manipulators used in ight via control. In particular, the design of controllers for lightweight exible manipulators {that reduce the consequences of incidents involving unforeseen contacts{ is analysed. Although their inherent nature perfectly ts for aerial manipulation applications, the added exibility produces unwanted behaviours, such as second-order modes and uncertainties. To cope with them, an adaptable position nonlinear control strategy is proposed. To validate this contribution, the stability of the approach is studied in theory and its capabilities are proven in several experimental scenarios. In these, the robustness of the solution against unforeseen impacts and contact with uncharacterised interfaces is demonstrated. Subsequently, this strategy has been enriched with {multiaxis{ force control capabilities thanks to the inclusion of an outer control loop modifying the manipulator reference. Accordingly, this additional applicationfocused capability is added to the controlled system without loosing the modulated response of the inner-loop position strategy. It is also worth noting that, thanks to the cascade-like nature of the modi cation, the transition between position and force control modes is inherently smooth and automatic. The stability of this expanded strategy has been theoretically analysed and the results validated in a set of experimental scenarios. To validate the rst nonlinear approach with realistic outdoor simulations before its implementation, a computational uid dynamics analysis has been performed to obtain an explicit model of the aerodynamic forces and torques applied to the blunt-body of the aerial platform in ight. The results of this study have been compared to the most common alternative nowadays, being highlighted that the proposed model signi cantly surpasses this option in terms of accuracy. Moreover, it is worth underscoring that this characterisation could be also employed in the future to develop control solutions with enhanced rejection capabilities against wind conditions. Finally, as the focus of this thesis is on the use of novel control strategies on real aerial manipulation outdoors to improve their accuracy while performing complex tasks, a modular autopilot solution to be able to implement them has been also developed. This general-purpose autopilot allows the implementation of new algorithms, and facilitates their theory-to-experimentation transition. Taking into account this perspective, the proposed tool employs the simple and widely-known MAS interface and the highly reliable PX4 autopilot as backup, thus providing a redundant approach to handle unexpected incidents in ight.En esta tesis se ha estudiado el diseño, validación e implementación de estrategias de control no lineales para robots manipuladores aéreos –esto es, robots aéreos equipados con un sistema de manipulación robótica–, dándose especial énfasis a las interacciones internas del sistema y a su resiliencia frente a efectos externos. Para lo primero, se han analizado diferentes estrategias de control descentralizado –es decir, que usan tipologías de control diferentes para cada uno de los subsistemas–, pero que tienen indirectamente en consideración la interacción entre manipulación y vuelo. Como resultado de esta línea, se propone una estretegia de control conformada por dos controladores. Estos se coordinan de tal forma que se le da prioridad a la manipulación sobre el seguimiento de posiciones del vehículo, produciéndose un sistema de control que mejora la precisión de las interacciones entre el sistema manipulador y el entorno. Para validar estos resultados, se ha analizado su estabilidad y robustez tanto teóricamente como mediante simulaciones numéricas. Por otro lado, se ha buscado mejorar la respuesta y aplicabilidad de los manipuladores que se usan en vuelo mediante su control. Dentro de esta tendencia, la tesis se ha centrado en el diseño de controladores para manipuladores ligeros flexibles, ya que estos permiten reducir el peso del sistema completo y reducen el riesgo de incidentes debidos a contactos inesperados. Sin embargo, la flexibilidad de estos produce comportamientos indeseados durante la operación, como la aparición de modos de segundo orden y cierta incentidumbre en su comportamiento. Para reducir su impacto en la precisión de las tareas de manipulación, se ha desarrollado un controlador no lineal adaptable. Para validar estos resultados, se ha analizado la estabilidad del sistema teóricamente y se han desarrollado una serie de experimentos. En ellos, se ha comprobado su robustez ante impactos inesperados y contactos con elementos no caracterizados. Posteriormente, esta estrategia para manipuladores flexibles ha sido ampliada al añadir un bucle externo que posibilita el control en fuerzas en varias direcciones. Esto permite, mediante un único controlador, mantener la suave respuesta de la estrategia. Además cabe destacar que, al contar esta estrategia con un diseño en cascade, la transición entre los segmentos de desplazamiento del brazo y de aplicación de fuerzas es fluida y automática. La estabilidad de esta estrategia ampliada ha sido analizada teóricamente y los resultados han sido validados experimentalmente. Para validar la primera estrategia mediante simulaciones que representen fielmente las condiciones en exteriores antes de su implementación, ha sido necesario realizar un estudio mediante mecánica de fluidos computacional para obtener un modelo explícito de las fuerzas y momentos aerodinámicos a los que se efrenta la plataforma en vuelo. Los resultados de este estudio han sido comparados con la alternativa más empleada actualmente, mostrándose que los avances del método propuesto son sustanciales. Asimismo, es importante destacar que esta caracterización podría también usarse en el futuro para desarrollar controladores con una respuesta mejorada ante perturbaciones aerodinámicas, como en el caso de volar con viento. Finalmente, al ser esta una tesis centrada en las estrategias de control novedosas en sistemas reales para la mejora de su rendimiento en misiones complejas, se ha desarrollado un autopiloto modular fácilmente modificable para implementarlas. Este permite validar experimentalmente nuevos algoritmos y facilita la transición entre teoría y práctica. Para ello, esta herramienta se basa en una interfaz sencilla ampliamente conocida por los investigadores de robótica, Simulink®, y cuenta con un autopiloto de respaldo, PX4, para enfrentarse a los incidentes inesperados que pudieran surgir en vuelo

    Grasping, Perching, And Visual Servoing For Micro Aerial Vehicles

    Get PDF
    Micro Aerial Vehicles (MAVs) have seen a dramatic growth in the consumer market because of their ability to provide new vantage points for aerial photography and videography. However, there is little consideration for physical interaction with the environment surrounding them. Onboard manipulators are absent, and onboard perception, if existent, is used to avoid obstacles and maintain a minimum distance from them. There are many applications, however, which would benefit greatly from aerial manipulation or flight in close proximity to structures. This work is focused on facilitating these types of close interactions between quadrotors and surrounding objects. We first explore high-speed grasping, enabling a quadrotor to quickly grasp an object while moving at a high relative velocity. Next, we discuss planning and control strategies, empowering a quadrotor to perch on vertical surfaces using a downward-facing gripper. Then, we demonstrate that such interactions can be achieved using only onboard sensors by incorporating vision-based control and vision-based planning. In particular, we show how a quadrotor can use a single camera and an Inertial Measurement Unit (IMU) to perch on a cylinder. Finally, we generalize our approach to consider objects in motion, and we present relative pose estimation and planning, enabling tracking of a moving sphere using only an onboard camera and IMU

    Haptic Tele-operation of Wheeled Mobile Robot and Unmanned Aerial Vehicle over the Internet

    Get PDF
    Teleoperation of ground/aerial vehicle extends operator\u27s ability (e.g. expertise, strength, mobility) into the remote environment, and haptic feedback enhances the human operator\u27s perception of the slave environment. In my thesis, two cases are studied: wheeled mobile robot (MWR) haptic tele-driving over the Internet and unmanned aerial vehicle (UAV) haptic teleoperation over the Internet. We propose novel control frameworks for both dynamic WMR and kinematic WMR in various tele-driving modes, and for a mixed UAV with translational dynamics and attitude kinematics. The recently proposed passive set-position modulation (PSPM) framework is extended to guarantee the passivity and/or stability of the closed-loop system with time-varying/packet-loss in the communication; and proved performance in steady state is shown by theoretical measurements.For UAV teleoperation, we also derive a backstepping trajectory tracking control with robustness analysis. Experimental results for dynamic/kinematic WMR and an indoor quadrotor-type UAV are presented to show the efficacy of the proposed control framework
    corecore