2,636 research outputs found

    On the benefits of resource disaggregation for virtual data centre provisioning in optical data centres

    Get PDF
    Virtual Data Centre (VDC) allocation requires the provisioning of both computing and network resources. Their joint provisioning allows for an optimal utilization of the physical Data Centre (DC) infrastructure resources. However, traditional DCs can suffer from computing resource underutilization due to the rigid capacity configurations of the server units, resulting in high computing resource fragmentation across the DC servers. To overcome these limitations, the disaggregated DC paradigm has been recently introduced. Thanks to resource disaggregation, it is possible to allocate the exact amount of resources needed to provision a VDC instance. In this paper, we focus on the static planning of a shared optically interconnected disaggregated DC infrastructure to support a known set of VDC instances to be deployed on top. To this end, we provide optimal and sub-optimal techniques to determine the necessary capacity (both in terms of computing and network resources) required to support the expected set of VDC demands. Next, we quantitatively evaluate the benefits yielded by the disaggregated DC paradigm in front of traditional DC architectures, considering various VDC profiles and Data Centre Network (DCN) topologies.Peer ReviewedPostprint (author's final draft

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    Perception systems for robust autonomous navigation in natural environments

    Get PDF
    2022 Spring.Includes bibliographical references.As assistive robotics continues to develop thanks to the rapid advances of artificial intelligence, smart sensors, Internet of Things, and robotics, the industry began introducing robots to perform various functions that make humans' lives more comfortable and enjoyable. While the principal purpose of deploying robots has been productivity enhancement, their usability has widely expanded. Examples include assisting people with disabilities (e.g., Toyota's Human Support Robot), providing driver-less transportation (e.g., Waymo's driver-less cars), and helping with tedious house chores (e.g., iRobot). The challenge in these applications is that the robots have to function appropriately under continuously changing environments, harsh real-world conditions, deal with significant amounts of noise and uncertainty, and operate autonomously without the intervention or supervision of an expert. To meet these challenges, a robust perception system is vital. This dissertation casts light on the perception component of autonomous mobile robots and highlights their major capabilities, and analyzes the factors that affect their performance. In short, the developed approaches in this dissertation cover the following four topics: (1) learning the detection and identification of objects in the environment in which the robot is operating, (2) estimating the 6D pose of objects of interest to the robot, (3) studying the importance of the tracking information in the motion prediction module, and (4) analyzing the performance of three motion prediction methods, comparing their performances, and highlighting their strengths and weaknesses. All techniques developed in this dissertation have been implemented and evaluated on popular public benchmarks. Extensive experiments have been conducted to analyze and validate the properties of the developed methods and demonstrate this dissertation's conclusions on the robustness, performance, and utility of the proposed approaches for intelligent mobile robots

    An Overview about Emerging Technologies of Autonomous Driving

    Full text link
    Since DARPA started Grand Challenges in 2004 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. This paper gives an overview about technical aspects of autonomous driving technologies and open problems. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Especially we elaborate on all these issues in a framework of data closed loop, a popular platform to solve the long tailed autonomous driving problems
    corecore