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ABSTRACT

PERCEPTION SYSTEMS FOR ROBUST AUTONOMOUS NAVIGATION IN NATURAL

ENVIRONMENTS

As assistive robotics continues to develop thanks to the rapid advances of artificial intelligence,

smart sensors, Internet of Things, and robotics, the industry began introducing robots to perform

various functions that make humans’ lives more comfortable and enjoyable. While the princi-

pal purpose of deploying robots has been productivity enhancement, their usability has widely

expanded. Examples include assisting people with disabilities (e.g., Toyota’s Human Support

Robot), providing driver-less transportation (e.g., Waymo’s driver-less cars), and helping with

tedious house chores (e.g., iRobot). The challenge in these applications is that the robots have

to function appropriately under continuously changing environments, harsh real-world conditions,

deal with significant amounts of noise and uncertainty, and operate autonomously without the

intervention or supervision of an expert. To meet these challenges, a robust perception system

is vital. This dissertation casts light on the perception component of autonomous mobile robots

and highlights their major capabilities, and analyzes the factors that affect their performance. In

short, the developed approaches in this dissertation cover the following four topics: (1) learn-

ing the detection and identification of objects in the environment in which the robot is operating,

(2) estimating the 6D pose of objects of interest to the robot, (3) studying the importance of the

tracking information in the motion prediction module, and (4) analyzing the performance of three

motion prediction methods, comparing their performances, and highlighting their strengths and

weaknesses. All techniques developed in this dissertation have been implemented and evaluated

on popular public benchmarks. Extensive experiments have been conducted to analyze and val-

idate the properties of the developed methods and demonstrate this dissertation’s conclusions on

the robustness, performance, and utility of the proposed approaches for intelligent mobile robots.
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Chapter 1

Introduction

The world of Robotics is one of the most exciting areas that has been through constant inno-

vation and evolution. Robotics are interdisciplinary and have become more and more a part of our

lives. They are no longer a vision for the future but a reality of the present. In recent years we have

witnessed a significant increase in intelligent robots. Nowadays, they are the subject of significant

research projects in industry, military, security, and even home environments as consumer products

for entertainment and home aid tasks. The ultimate goal is to achieve a fully autonomous robot that

can independently fulfill its tasks in continuously changing, unconstrained environments without

the need for human intervention. Such autonomy has only become possible thanks to the emer-

gence of "Artificial Intelligence" (AI), the primary technology behind most breakthroughs in fields

like self-driving cars. AI is "the study of agents that receive percepts from the environment and

perform actions" as defined by Stuart J. Russell and Peter Norvig [4]. Its main challenge is to con-

ceive and implement complex functions that can efficiently map the environmental percepts (such

as images, sounds, point clouds) captured by the robot’s sensors into appropriate actions. These

functions are typically associated with human intelligence, such as learning, reasoning, problem-

solving, and perception.

The project presented in this dissertation focuses on the perception component of autonomous

mobile robots. More specifically, it aims to shed light on two main perception topics: Object

detection/pose estimation, and motion prediction. These tasks serve to identify objects/actors in

the scene, estimate their poses, and predict their motion in the near future. Such knowledge is

crucial as it allows the robot to efficiently identify its surroundings and navigate without the risk

of collision with the other actors in the scene.
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1.1 Motivation

"Autonomous robot" is a vague term that refers to any system that can achieve a task solely

without human interventions. For instance, it can refer to a manipulator’s arm, an automation

system for vehicle construction, or a financial analysis software. However, most people tend to use

the term "robot" to refer to a particular category of robots commonly known, among technicians

and people from the field, as "service robots" whose purpose is to help humans achieve recurrent

and tedious tasks.

Though as straightforward as the problem statement might sound, autonomous robots nowa-

days are still far from being part of our everyday life. Current technologies only allow robots

to operate perfectly in constrained environments such as automation industries where complete

knowledge of the operating environment is required. In controlled space settings, robots can

achieve remarkable speed, accuracy, and reliability that by far exceeds human capabilities. Their

performance, however, decreases considerably in more natural unconstrained settings. This drop

in performance leads us to the question: Why do robots fail to perform as effectively in natural

environments as in controlled spaces? One reason behind this failure is the lack of adaptability of

robots behaviors. Many practitioners focus on improving the performance of specific robot tasks

and building systems to master certain applications. However, only a few researchers investigate

the adaptability of robots and study their performance on multi-tasking, especially taking advan-

tage of the correlation between multiple tasks and leveraging the knowledge from one task into

another.

Another reason for the ineffectiveness of intelligent robots in natural environments is the lack of

cognitive competence and adaptability to complex and rapidly changing environments. The ability

to reason about tasks and problems in highly uncertain, continuously evolving, and interactive

environments shared with other dynamic agents is a critical property for applying mobile robots

in natural environments. Hence, AI is a crucial technique that can be leveraged to solve these

challenges. More specifically, AI can be used to keep track of the evolution of the surrounding

2



environment by recognizing its different components and studying the motion of the dynamic

ones.

The project presented in this dissertation contributes to the ambitious target of developing mo-

bile robots that autonomously achieve complex tasks in unrestricted natural environments. Such a

goal requires equipping the robot with strong reasoning capabilities, which allows it to adapt to a

new unseen environment on the one hand and to reliably perceive and manipulate its environment

on the other hand.

The following three complex robot tasks are examples of applications to illustrate the impor-

tance of the perception systems in intelligent mobile robots:

• Pick-up and delivery services: A robot should be able to deliver objects from and to differ-

ent places. This task includes the perception of the object of interest, grasping capabilities,

and placing the object on a surface. This dissertation focuses on perception capabilities, in-

cluding the detection, recognition, and pose estimation of the object of interest. Issues on

grasping and placing capabilities of objects will be excluded since this is an area of active

research on its own.

• Navigation in challenging environments: The robot must be able to navigate safely in

a dynamic environment, possibly with the presence of humans and other dynamic entities

(such as other mobile robots). Navigation includes motion prediction of moving entities and

path planning. In this dissertation, the motion prediction component is studied.

• Inventory taking: The robot should be able to detect objects, identify them, and keep track

of their number, location and pose. This task targets objects of particular interest to the robot,

i.e., objects that can be manipulated or influence the robot’s navigation.

1.2 Basic Capabilities of Autonomous Robots

Autonomy is one of the most exciting problems of modern AI that has drawn the attention of

many companies and researchers. It has the potential to change our everyday life as it allows robots

3



to acquire the necessary skills and intelligence to achieve complex tasks (such as safe and reliable

navigation in unconstrained areas) that were once only achievable by humans.

Autonomous robots interact with the physical world by collecting percepts from the surround-

ing environment through their sensors. This capability is a crucial aspect of intelligent robots.

Several sensory inputs such as cameras, microphones, wireless signals, active LiDAR, sonar, and

radar are used to deduce the different aspects of the world.

Perception is one of the most critical capabilities for intelligent robots. It serves to translate the

percepts of the environment into spatio-temporal cues helpful in planning their future actions. First,

the environment is scanned using the robot’s sensors. The obtained percepts are then collected

and analyzed in order to decompose the scene into various entities, which are then utilized to

learn complex spatio-temporal relationships. Specifically, the perception module can help answer

questions like what actors are in the scene? Where are they located? How do they interact with

each other? And how do they intend to move in the near future? Answering these questions helps

the robot better plan their future actions, such as navigating in the surrounding without the risk of

colliding with other entities.

Since it is impossible to predict, at the development phase, all situations the robot might en-

counter during deployment, a robot needs the reasoning capability to draw inferences appropriate

to the situation flexibly. Given complex tasks assigned by their human instructor, a robot has to

decompose its given tasks into achievable sub-tasks. Then, goal-directed decisions on its future

actions have to be made.

Learning is one of the fundamental abilities as it guarantees the intelligent aspect of the system.

It may be generally defined as the process of improving behavior based on experiences. Two

significant learning capabilities are memorization and generalization. First, memorization is the

ability to recall past experiences by storing the solutions to the encountered problems and using

them in similar situations. Second, generalization involves the application of past experiences to

new unseen situations. Like reasoning capabilities, learning enables a system to form behavior that

the programmer did not foresee explicitly.

4



Planning is the capability responsible for translating the set of decisions taken by the robot into

action. Planning is a general capability that depends on features that characterize the robot, such

as object grasping/placing planning and path planning. For instance, to navigate in the environ-

ment, a robot needs to decide from all possible trajectories on what path to take. This path must

be dynamically feasible, avoid collisions with all present obstacles, and ideally, it must be optimal

to reach the target location with less energy consumption. The optimal path search capability is

known as "motion planning". Motion planning is mainly a non-linear optimization task. Gener-

ally, numerical approximation methods solve the optimal trajectory task since exact solutions are

usually computationally intensive. Multiple techniques have been used to solve this task, such as

variational methods, graph-search approaches, and incremental tree-based approaches [5].

1.3 Dissertation Contributions

It goes without saying that one dissertation cannot solve all challenges of intelligent robot

research. However, the perception capability is one of the most crucial components of an intelligent

robot, and dealing with its challenges is inevitable. The project described in this dissertation aims

to tackle some of these crucial challenges to enable a robot to achieve a variety of complex and

abstract perception tasks autonomously. More specifically, it introduces a practical approach for

solving the neighboring actors’ recognition, poses estimation, and motion prediction. Ultimately,

this dissertation fulfills the following targets:

1.3.1 Detection and Pose Estimation of Objects

The first step towards a functioning intelligent robot is to assimilate its surrounding environ-

ment by analyzing and identifying its different components. The robot needs to be able to detect

objects, identify them and recover their 6D poses.

1. The detection and identification allow the robot to recognize the objects of special interest,

such as the objects that can be manipulated by the robot or the dynamic objects that may

influence its navigation.
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2. The 6D pose estimation of objects helps the robot learn the location and rotation of objects

with respect to the world. Such information is crucial for tasks such as object grasping.

Furthermore, it can be used to deduce additional information about dynamic objects, such as

their orientation, which helps predict their future movements.

In addition to accurate object detection, identification, and pose estimation, the project described in

this dissertation aims to build a fast approach that is deployable in real-world scenarios. Multiple

experimentation on public benchmarks will be used to analyze the performance of the proposed

approach.

A practical contribution of this work is the enhancement of the capabilities of the embodied

agent Diana [6–8]. Initially, Diana recognized the gestures and audio she received from the user

and followed their instructions to manipulate virtual objects by grasping, lifting, moving, and

sliding them in her virtual world. However, Diana could not interact with the real world as she

only interacts with her virtual world based on the commands she receives from the user. Thus,

this embodied agent will be used as a testbed to demonstrate the effectiveness of the proposed

perception modules. The new skills will boost Diana’s ability to interact with her surroundings by

allowing her to "see" the real world, recognize the real objects present in the table in front of the

user, and estimate their poses.

1.3.2 Motion Prediction of Moving Actors

Autonomous robots are rapidly advancing with various applications which require an effective

motion planning that can handle high uncertainties in the environment and motion constraints due

to static or dynamic obstacles. While dealing with these challenges in various capacities, this work

tackles two fundamental motion planning problems:

1. First, this project describes three motion prediction models to predict the movements of the

detected moving actors in the near future. This module is essential for planning safe and

comfortable navigation.
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2. Second, this dissertation highlights a crucial research question: What is the importance of

the tracking module, and to what extent can it influence the performance of the motion

prediction component? Generally, tracking, motion prediction, and planning components

are cascaded. The actor tracking output feeds into the motion prediction, whose output, in

turn, feeds into motion planning. However, such cascaded approaches are usually highly

affected by errors propagating from noisy components. For instance, errors propagated from

a noisy tracking module can hinder the performance of the motion prediction and, therefore,

the planning module. Thus the study described in this dissertation aims to evaluate the

influence of tracking on the performance of motion planning.

1.4 Dissertation Structure

This dissertation is organized as follows. Chapter 2 reviews the necessary background of the

two main topics: object detection and pose estimation (see § 2.1) and motion prediction (see

§ 2.2). Existing end-to-end approaches that solve the two problems in an end-to-end fashion are

also covered (see § 2.3). Chapter 3 presents the proposed approach for object detection and pose

estimation. The approach can be dissected into two main components: a Pose Proposal Network

(in § 3.1) and a Multi-Attentional Refinement Network (in§ 3.2). A set of experiments conducted

on pose estimation are then covered and the obtained results are reported in § 3.4. Chapter 4 covers

a comprehensive analysis of the motion prediction component. The set of experiments conducted

in this analysis as well as the obtained results are reported in § 4.6.
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Chapter 2

Related Work

This chapter aims to explore the intricacies of perception tasks in the context of autonomous

navigation. First two perceptual tasks: object pose estimation, and motion prediction, are explored

in their general context. Then, end-to-end methods that jointly solve the two perception tasks are

covered. Throughout this manuscript, the term ‘actor’ or ‘agent’ are used to refer to any moving

entity we are interested to identify and analyze its motion in the scene.

2.1 Object Detection and Pose Estimation

Object detection and pose estimation are two interconnected problems. Detection is the task of

locating and identifying instances of real-world objects in images or videos, while pose estimation

consists of determining the exact position and orientation of these objects relative to some coordi-

nate system (Figure 2.1 (A)). There are many works that treat object detection and pose estimation

as two separate problems [9, 10]; however, in this dissertation, the focus is on works that treat the

two problems jointly. In the rest of this dissertation, this joint task is referred to as object pose

estimation. Solving this problem has direct usage in multiple real-world applications such as robot

manipulation, self-driving vehicles, and augmented reality. For instance, autonomous navigation

requires precise object pose estimation to ensure accuracy and practicality. Though speed is a

crucial factor to consider when comparing different approaches, a little delay can be tolerated in

situations where time does not affect performance much. For example, self-driving and augmented

reality systems need to use real-time approaches to be operable. However, robot manipulation can

tolerate a little time delay without affecting its performance.

Though the task of object pose estimation can be defined with different types of sensor data

such as LiDAR, RADAR... [11–13], Image-based approaches are by far the most popular [14].

Image inputs can be further categorized into two forms: Monocular images which include RGB

and Gray-scale images, and RGB-D images which integrate depth information alongside RGB
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information. Theoretically, the addition of depth information boosts the reliability and accuracy of

pose estimation. Yet, in the real world, depth sensors suffer a variety of failure cases, have high

energy and monetary costs, and are less ubiquitous than their non-depth counterparts. Ultimately,

pose estimation from RGB alone is a more challenging problem, but also a far more attractive one.

This manuscript is inclusive to the different image-based methods and approaches with a more

focus on RGB based approaches.

The remainder of this section will cover the necessary background to explore the task of object

pose estimation. Similar to many other fields, the emergence of deep learning has been a turn-

ing point in the evolution of this technology. To this end, the chronological order is followed in

the following sections. Starting with an overview of the classical deep learning-free methods in

§ 2.1.1, deep learning-based methods will then be discussed in § 2.1.2. Furthermore, the refine-

ment methods which were introduced to improve the performance of pose estimation models will

be explored in § 2.1.3. This section will further highlight their advantages and drawbacks and

discuss their importance for an accurate 6D pose.

Figure 2.1: (A) Illustration of the 6D object pose estimation task. It is the estimation of the rigid transforma-

tion (R|T) from the object coordinate system to the camera coordinate system. (B) Illustration of key-points

correspondences between a 2D image and the 3D model of the object of interest. (C) Overview of the task

of iterative pose refinement using two inputs: an image crop and a rendered crop of the 3D model of the

object of interest using an initial pose estimate. The pose refinement output is an estimation of the relative

transformation (pose residual) between the ground-truth pose represented in the image crop and the initial

pose estimate represented in the render crop.
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2.1.1 Classical Object Pose Estimation

Object pose estimation has a long and storied history. In robotics, registration algorithms such

as RANSAC [15] and ICP [16,17] were widely used. The idea of these algorithms is to estimate the

6D pose estimation of an object of interest by fitting the object’s 3D model to images or 3D point

clouds of the same object. In order to properly converge, these methods require an accurate pose

initialization algorithm since failing to satisfy this condition can lead to sub-optimal pose estimates.

Therefore, many works rely on additional processes to generate accurate pose initialization which

can be cumbersome and time-consuming. For instance, one common process is a brute force multi-

hypothesis generation where a set of predetermined pose initializations are evaluated, and the best

fit is selected [18].

Many vision-based approaches were also introduced to solve the object pose estimation prob-

lem. Common classical approaches include template-based methods [19–21] and feature-based

methods [22, 23]. In template-based methods, templates are first created by rendering the 3D

model of the object of interest. Then, the templates are scanned over all locations of the input

image where a similarity score is measured. Finally, the best match is recovered by selecting

the location with the highest similarity score. Template-based methods are known to work well

with texture-less objects but fail to handle occluded objects as this will lead to a low similarity

score with the created occlusion-free templates. Feature-based methods consist in extracting local

features from the input image whether from every pixel or from selected points of interest. The

extracted features are then matched with features extracted from the object’s 3D model. The ob-

tained 2D – 3D correspondences can then be used to recover the object pose. While feature-based

methods can overcome occlusion, they generally fail with low textured objects.

2.1.2 Modern Object Pose Estimation

With the emergence of deep learning in many fields, the object pose estimation domain was

also revolutionized as deep neural network architectures have shown to be more effective than

handcrafted descriptors and classical algorithms. The switch to deep learning has come about
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gradually with time. With the success of deep learning techniques in other tasks such as object

detection and segmentation, researchers started to integrate those techniques in pose estimation by

introducing hybrid methods where only a part of the pipeline was deep learning-based, such as

the feature extractor or the classifier/regressor. Some other researchers chose to use deep neural

networks to extract local object key-points to learn correspondences between the object in the 2D

input and the corresponding 3D model. These correspondences are then used to recover the object’s

6D pose with a PnP algorithm [15]. PnP algorithm is a method to estimate the pose of a calibrated

camera given a 2D-3D (image pixels to 3D points in the world) correspondence of a set of n points.

This two-stage pipeline has witnessed great success given that 2D key-point detection is relatively

easier than 3D localization and rotation regression directly from the input image. Assuming we

obtain rich and noise-free local information from the detected key-points, PnP has shown to be

effective for 6D pose recovery. More recently, fully deep learning-based methods were introduced.

These methods estimate 6D poses directly from the input image in a single shot and have shown

to give competitive results. In the remainder of this section, hybrid methods will be covered in

§ 2.1.2. Then, § 2.1.2 will briefly dwell in 2D-3D correspondences based methods. Finally, end-

to-end methods and their effectiveness as compared to 2D-3D correspondence-based methods will

be discussed in § 2.1.2.

Hybrid Methods

Early works on object pose estimation with deep learning tried to benefit from the advantages of

both classical and deep learning techniques by adopting hybrid approaches. In some works, hand-

crafted feature representations were used to work with neural networks based classifier/regressor.

The work of Mousavian et al. [10] started with 2D bounding boxes of objects in the input image

and, used projective geometry to recover translation components and add geometric constraints

to the object’s orientation and size estimates. The object orientation was then regressed by dis-

cretizing the orientation angle and dividing it into overlapping bins. For each bin, CNN networks

were used to estimate a confidence value for each bin and a residual rotation. Others chose to use

CNNs to extract feature representations from the input image and then applied classical algorithms
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to learn the objects’ poses. For instance, a more recent work of Kehl et al. [24], used CNNs to

learn descriptors of locally sampled RGB-D patches. The learned features were then matched to

a codebook of pre-computed synthetic object patches using k Nearest Neighbors (kNN) [25] to

extract k nearest synthetic patches which were then used to cast votes for the final 6D pose.

With the great success of deep neural networks in object detection, other hybrid approaches

[26, 27] tried to leverage popular deep learning-based 2D object detectors [28–30] and augment

them for 6D pose estimation. Kehl et al. [27] extended the “Single Shot Detector” (SSD) [29]

to determine 2D bounding boxes as well as possible viewpoints and in-plane rotations. The ro-

tation estimation was then treated as a classification problem based on an appropriate sampling

of the rotation space. The translation estimation was processed offline and used to pre-compute

bounding boxes for all possible sample rotations and selecting the best fit as the final estimation.

Although hybrid methods try to achieve the best of both worlds, the following sections will show

that extending the network to the full pipeline has shown to achieve better performance.

Two-Stage Methods Based on 2D – 3D Correspondences

Despite the many successes, many researchers have argued that deep neural networks have

a major limitation [31, 32]: Though deep networks have proven their effectiveness in the task

of object detection and classification, their effectiveness in regression tasks is still controversial

due to the large output space which can grow to infinity when regressing real-valued outputs.

To overcome this problem, many works attempted to convert the pose regression problem into

key-points detection. A two-stage pipeline was adopted where the first stage detects local 2D key-

points of the object of interest from the input image (See Figure 2.1 (B)). The second stage uses the

obtained 2D-3D correspondences between the detected key-points and their matches in the object’s

3D model to compute the 6D pose using a classical algorithm such as the PnP algorithm [33].

Thanks to the robustness of CNNs in key-point localization, these methods managed to overcome

the difficulty in handling texture-less objects and low-resolution images [32]. For instance, Rad et

al. [34] introduced Bb8 which leveraged CNN based segmentation techniques to localize objects

of interest in the 2D input image as well as their classes. It then applied CNN-based architecture
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on the detected region of interest to detect the vertices of the object 3D bounding box projected in

the image space. The 6D pose was recovered using PnP.

Tekin et al. [31] opted for 2D detection techniques instead of segmentation. It used the popular

YOLO detector [35] and extended it to detect the vertices of the object’s 3D bounding box in the

input image. The object’s 6D pose was then similarly estimated using a PnP algorithm. Tekin et

al.’s approach is now known as YOLO6D. Since its introduction, YOLO6D has witnessed great

success not only thanks to its relatively simple one-block architecture followed by PnP but also

thanks to its fast runtime which was estimated by 50fps on a Titan X GPU. That being said, due to

the competitiveness of the field, the performance of YOLO6D was quickly beaten by other 2D-3D

correspondences-based approaches which were later introduced.

The novelty of HMap [36] resides in the use of independently predicted heat-maps extracted

from multiple small patches of the image to predict the 2D projections of 3D points related to the

target object. The authors argued that predicting heat-maps is more robust than regular key-point

detection which can be highly sensitive to partial occlusions. The main focus of their paper was

on predicting heat-maps and accumulating the results to obtain accurate and robust predictions.

However, since heat-maps have a fixed size, these methods have difficulty in handling truncated

objects where some of the key-points lay outside of the input image.

Further attempts to better model the 2D-3D correspondences aimed to find a more flexible rep-

resentation for key-point prediction such as vector fields. Vector fields fall under the category of

dense methods where every pixel outputs a prediction and casts a vote for the final output follow-

ing a voting scheme [37, 38]. More specifically, every pixel predicts a direction to the estimated

key-point location. The final key-point location is then determined by voting from the predicted

directions of all pixels. In 2018, Peng et al. [32] introduced PVNet, which stands for “Pixel-wise

Voting Network”. PVNet regresses pixel-wise unit vectors that point to the predicted key-point

directions. These vectors are then aggregated to vote for the final key-point locations using a

RANSAC [37] based voting scheme. Final poses are then recovered using PnP.
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Despite the success of these methods which achieved state-of-the-art performance when first

introduced, this two-stage process is still considered, by many, sub-optimal. First, this process is

hybrid since it still uses a geometric algorithm to recover the final 6D object poses. As a result,

such methods cannot be trained in an end-to-end manner, something that is known to help improve

the performance of the model [39, 40]. Second, training the network for 2D-3D correspondences

relies on a loss function that does not reflect the final 6D pose estimation task. Furthermore,

these methods can still fail when dealing with texture-less objects. In the following section, the

alternative of end-to-end methods will discussed and their performances will be compared with the

above-mentioned methods.

End-to-End Methods

Despite the popularity and success of end-to-end methods in other regression tasks such as

disparity estimation and flow estimation, most of the recent 6D object pose estimation methods

are still based on the two-stage pipeline described in § 2.1.2. That being said, early attempts to

apply end-to-end approaches for pose estimation were suggested. PoseNet [41], introduced in

2016, is one of the earliest fully deep learning-based methods for pose estimation. Unlike other

methods introduced at the time, PoseNet adopts an end-to-end approach that relies on a modified

version of Inception architecture [42] to directly regress a 6D camera pose from an input RGB

image. At inference time, the network operates in real-time and is able to generalize to unseen

scenes. However, regressing the 3D translation vector directly from the input image was a little

challenging especially due to the lack of depth information since it only relies on RGB inputs,

and also the large search space. To address this problem, PoseCNN [39], introduced two years

after PoseNet, operates by localizing the object center in the 2D RGB input and then estimates the

center’s distance from the camera to finally obtain its translation components.

The PoseCNN network [39] consists of two blocks: The first block extracts feature maps at

multiple resolutions from the RGB input, and the second block embeds the high dimensional fea-

ture maps extracted from the first block into low-dimensional task-specific features. The second

block consists of three sub-networks that perform three different tasks: semantic labeling, 3D
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translation estimation, and 3D rotation regression. It is important here to highlight the decoupling

of the estimation of 3D translation and 3D rotation as these two components are considered as

two separate tasks. The regression of the object 2D center for translation estimation is obtained

by a pixel-wise regression of a unit vector pointing towards the object center. Each pixel casts a

vote to the direction it points to, then the center is selected after aggregating all votes using Hough

Voting algorithm [38]. This approach allows the object center detection to be robust to occlu-

sion and truncation. The rotation is estimated by regressing a 4-dimensional quaternion vector.

In addition to the novelty of its architecture, PoseCNN uses two novel loss functions for rotation

estimation, "PLoss" and "SLoss", to handle both asymmetric and symmetric objects, respectively.

PLoss measures the average squared distance between points on the ground-truth model pose and

their corresponding points on the predicted model pose. SLoss measures the offset between each

point on the predicted model pose and their closest point on the ground-truth model pose.

Despite the success of PoseCNN in industry, thanks to its meticulously established network

and loss function, end-to-end approaches were still not popular for pose estimation and most con-

temporaneous works, such as HMap and PVNet, still opted for two-stage approaches where deep

networks are only used to establish the 2D-3D correspondences. Recently, in 2020, a resurgence

of end-to-end methods for pose estimation has been taking place [40, 43]. Hu et al. [40], for in-

stance, introduced a novel network that extends the 2D-3D correspondence networks to directly

regress the 6D poses. The proposed network can be exploited in conjunction with any existing 2D-

3D correspondence network. Experiments with existing methods such as PVNet and their novel

single-stage variants showed that the single-stage approach consistently outperformed its two-stage

counterpart in both accuracy and speed.

Overall, these methods can handle texture-less objects very well unlike two-stage approaches.

Nonetheless, there is still room for improvements in terms of pose estimation accuracy, especially

because small errors in the pose regression can easily lead to pose mismatches. To further improve

the pose estimation performance, many works tend to use an additional component known as pose

refinement which will be discussed, in the following section.
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2.1.3 Pose Refinement

Regression of object poses in a single shot straight from an input image can have limited ac-

curacy. A common way to improve the pose estimation performance is to include an additional

component to further refine the initial estimates. Figure 2.1 (C) shows an overview of the refine-

ment step. Given an initial pose estimate, a new synthetic image can be created by rendering the

3D model of the object of interest. The obtained render image is then matched with the original

input image to learn a better pose estimate. A common traditional refinement method is the It-

erative Closest Point (ICP) algorithm with projective data association and a point-plane residual

term. First, a point cloud of the object 3D model is rendered using the initially estimated pose.

The depth values of the observed points are obtained by associating them with the depth values

of the rendered points at the same pixel locations. Then, a residual distance is measured as the

3D distance from the observed point to the plane defined by the rendered point and its normal.

Finally, points are rejected if their residuals lie above the selected threshold and the residuals of

the remaining points are minimized using gradient descent. ICP refiner has been adopted by many

pose estimation methods that have been mentioned in previous sections, notably PoseCNN and

SSD-6D. However, ICP is highly slow for real-time applications and is not differentiable so it can-

not be trained jointly with the pose estimation network. Therefore, many works switched to deep

learning-based refiners such as Manhardt et al.’s refiner [44] and DeepIM [45].

The work of Manhardt et al. [44] presented a novel CNN network that iteratively refines an

initial pose estimate, given an input image and an object’s 3D model. Their approach operates by

aligning object contours between object rendering, using the initial pose estimate and the observed

image. Furthermore, this work introduced a novel formulation of a visual alignment loss that

implicitly optimizes for metric translation and rotation. Architecture wise, the network consists of

3 main steps. First, a subset of Inception V4 network [46] is used to extract deep feature maps

from both inputs. The extracted features of the first step are then concatenated and fed to another

sub-network to extract higher-level features. Finally, the obtained features are fed into two separate

branches for rotation regression and translation estimation. In summary, even though Manhardt et
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al.’s method does not need depth information to operate unlike ICP, it has shown to be robust to

occlusion and accurate even with rough initialization.

Generally, refinement methods proceed by extracting appearance features from both inputs

using networks pretrained on image classification such as VGG16 [47] or Inception [46]. The

obtained features are then concatenated and fed to the next steps of the process for pose residual

estimation. In 2019, DeepIM [45] proposed a novel feature extraction approach that relies on

optical flow estimation. DeepIM leveraged the FlowNet Simple architecture [48], which is an

encoder-decoder network that estimates the optical flow between two input images. The extracted

features from the FlowNet encoder are used to learn the transformation between the predicted and

the target pose. The authors confirmed their intuition about the usefulness of optical flow-related

representation in the task of pose matching. To show the effectiveness of the proposed approach,

they compared the performance of their network with its variant using VGG16 [47] and showed that

their network, by accounting for flow features, outperformed its counterpart variant. DeepIM also

proposed a novel disentangled representation of pose residuals. The proposed pose representation

helped the network to learn a pose transformation independent from the camera parameters and

actual size of objects in addition to any complex geometric relationships between translations and

rotations. According to the authors, such representation helped achieve accurate pose estimates

and enabled the network to handle unseen objects.

2.1.4 Performance Comparison and Summary

In Table 2.1, a performance summary of some of the methods described in this chapter on

two benchmarks LINEMOD [20] and Occlusion [49] is given. The methods are divided into three

categories representing the three general approaches noted in this chapter: Hybrid, Two-stage

based on 2D-3D correspondences, and end-to-end methods. We also report the results of the

methods before and after the refinement step if available. The results are reported in ADD metric

[20] with a threshold of 10% of the object’s diameter.
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Table 2.1: The reported results of the discussed methods on two common datasets LINEMOD and Occlu-

sion. We divide the methods into three categories: Hybrid, Two-stage (based on 2D-3D correspondences),

and end-to-end methods. We also report results of some methods after adding a refinement step, used to im-

prove the performance. The reported metric is ADD [20] with a threshold of 10% of the object’s diameter.

The best results are highlighted in bold.

Category Input Approach LINEMOD [20] Occlusion [49]

Hybrid RGB SSD-6D [27] 2.42 -

+ Ref RGB-D SSD-6D+ref [27] 79 -

Two-stage RGB YOLO6D [31] 55.95 6.42

PVNet [32] 86.27 40.77

HMap [36] - 30.4

BB8 [34] 43.6 33.8

+ Ref RGB BB8+ref [34] 62.7 -

End-to-end RGB PVNet [32] + [40] - 43.3

PoseCNN [39] - 24.9

+ Ref PoseCNN [39] + DeepIM [45] 88.6 55.5

RGB-D PoseCNN [39] + ICP - 78.0

First, the Hybrid approaches perform the poorest among the three categories which proves the

superiority of pure deep learning based approaches. YOLO6D, for instance, shows a huge im-

provement over SSD-6D on the LINEMOD dataset with an ADD of 55.95% compared to 2.42%

for the SSD-6D. Second, both the two-stage and end-to-end methods show competitive results

with end-to-end methods showing some improvements compared to the two-stage approaches.

For instance, the end-to-end extension of PVNet ( [32] + [40]) outperforms its two-stage version

( [32]) by 6.2% in ADD on the Occlusion dataset. Furthermore, the integration of a refinement

step considerably enhances the model’s performance. The addition of a refinement step in BB8

has increased its performance by 43.8% on the LINEMOD dataset. Similarly, the integration of

the refiner DeepIM in PoseCNN has boosted its performance by 122.8% on the Occlusion dataset.

Finally, the integration of depth information in the model’s input have shown to considerably in-

crease its performance. The use of ICP refiner which takes advantage of the depth information

with PoseCNN have shown to increase its performance over DeepIM refiner by 40.5% in ADD on

the Occlusion dataset. Though, the integration of depth information has shown to be advantageous
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in terms of performance, in this dissertation, the focus is on methods with RGB only inputs since

it is a cheaper and more adaptable approach to tackle the 6D pose estimation problem.

2.2 Future Motion Prediction

Understanding actors’ motion is essential for intelligent systems to coexist and interact with

surrounding actors. It has a direct effect on many aspects such as perception and motion analysis.

Depending on the application, actors can be humans, vehicles, or any other moving entities. Motion

prediction is a crucial task as it allows to predict the evolution over time of a scene involving

multiple actors. Such knowledge can be incorporated for an enhanced perception, human-robot

interaction, and planning.

Many important applications exist including autonomous driving systems, advanced surveil-

lance systems, and service robots. Given the growth of this research topic in multiple domains,

this dissertation will mainly consider works that focus on motion prediction in the context of au-

tonomous driving systems. In an autonomous driving scenario, surrounding actors include vehi-

cles, cyclists, and pedestrians. The challenge of making accurate motion predictions arises from

the complexity of the highly uncertain, rapidly changing, and interactive environment. As a matter

of fact, an actor movement can be directly influenced by their own intent, presence or actions of

surrounding actors, and the environmental constraints such as lane boundaries, walls, crossroads. . .

Most of these factors cannot be extracted directly from the system sensors and require additional

processing by extracting them from noisy perceptual cues or modeling them from context infor-

mation.

This section will cover methods that rely on a subset of these factors to predict the future motion

of actors, as well as methods that are exhaustive to all factors. The following topics in this section

are divided as follows: First, in § 2.2.1, classical engineered methods for motion prediction that are

still widely used in industry are revisited. Then, more recent deep-learning-based approaches are

covered in § 2.2.2 which will be categorized based on their proposed architecture. First, sequence

prediction models that rely on actors’ historical dynamics in order to predict their future behaviors
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are explored (See § 2.2.2). Second, CNN-based approaches that operate on Bird’s Eye View (BEV)

raster representations of the scene to predict future movements of actors are covered (See § 2.2.2).

Finally, Graph Neural Network (GNN) based approaches where each entity of the scene is treated

as a node in an interconnected graph as well as other hybrid approaches are presented (See § 2.2.2).

Figure 2.2: (A) The Transformer model architecture taken from [50]. (B) Example of RGB rasterization

results of a Bird’s Eye View scene extracted from the self-driving HD map of the Lyft Dataset [51]. Compo-

nents of the scene are represented with different colors such as roads in black, lanes in yellow, traffic lights in

green and red, crosswalks in orange, and vehicles in light green. The historical polygons of the vehicles are

also shown with the same color but with a reduced brightness. (C) Polyline representation for GNN based

methods. The illustrated approach follows the work of Gao et al. [52] where each map entity is represented

by a polyline of vectors. Each polyline forms a separate subgraph and all subgraphs are connected through

a Global Interaction Graph. This approach allows to integrate both social and context interaction in a Graph

representation.

2.2.1 Classical Methods

Most of the classical methods rely on kinematic models to predict the future movements of

actors. In this section, a subset of these methods are briefly examined. Despite the unfolding

of deep learning in all domains including motion analysis, well-established engineered motion

prediction methods are still witnessing great success in industry thanks to their simplicity and

acceptable performance.

20



One standard technique for motion prediction is Kalman-filter-based (KF) prediction of dy-

namic obstacles using a constant acceleration model [53]. KF is used to recursively estimate and

propagate the actor’s state in the future, given noisy sensor measurements. Generally, an actor’s

state at a given time-step comprises its position, speed, acceleration, and heading. In the standard

KF based methods, the uncertainty of the actor’s current state and its evolution are modeled by

a normal distribution. Overall, KF based methods consist of two main steps: a prediction step

and an update step. In the prediction step, the actor’s state at the current time-step is fed into the

dynamic model which projects it into the next predicted state in the form of a gaussian distribu-

tion. In the update step, the obtained sensor measurements at the following time-step are combined

with the predicted state to form an estimated state, at that time-step, which also follows a gaussian

distribution. These two steps are repeated recursively every time a new measurement is available.

In the case of motion prediction, the goal is to predict multiple states in the future where sensor

measurements are not available. To this end, the prediction step is looped over multiple times to

obtain multiple future states prediction. The mean and covariance matrix of each predicted state

can be transformed into mean location and its associated uncertainty. Multiple extensions to KF

were developed such as the Extended KF [54] and the Unscented KF [55] which work on nonlinear

systems.

Other classical methods that are based on machine learning were introduced in the context of

motion prediction. Hidden Markov Models [56], Gaussian Mixture Models [57] and Processes

[58] are some of the techniques that were leveraged to solve this task. While these methods are

relatively simple to use in deployed systems, they usually suffer from generalization issues when

applied to real-world scenarios, especially with noisy detections. Furthermore, they can fail in

modeling complex actor/environment interactions. More sophisticated deep learning methods were

introduced to tackle these problems which will be covered in the remainder of this section.
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2.2.2 Deep Learning Methods

Solving the motion prediction task using deep learning techniques is an appealing option since

deep neural networks are flexible and can be designed to capture complex patterns. Furthermore,

if properly designed and trained with rich datasets, deep learning models can be generalizable to

unseen scenarios. In this section, deep learning methods are categorized into three classes based on

their input representations and architectures. The first class comprises the majority of the proposed

methods which are sequence-based models that operate on a sequence of actor’s historical states

to predict their future trajectory. The second class represents CNN-based methods that operate on

a BEV raster representation of the scene. Finally, the third class includes GNN-based methods as

well as hybrid methods which combine different techniques and types of networks.

Memory Based Models

It is straightforward to address the motion prediction task using sequence-based models, where

the actor’s history of movements is modeled as a sequence of states, mainly because these models

are known to best capture the sequence’s dependencies and dynamics. One common technique for

sequence learning is Recurrent Neural Networks (RNN) and specifically Long Short-term Memory

Networks (LSTM) which has become a widely popular modeling approach for predicting human

[59,60], vehicle [61], and cyclist [62] motion. However, treating the actors as separate independent

entities often leads to sub-optimal performance since they live in an interactive inter-dependent

environment where each entity can be directly affected by its surrounding. As a result, recent

works proposed various approaches to handle the task at hand while accounting for the different

factors that can affect their predictions.

As a pioneer, Alahi et al. [59] introduced the Social LSTM model to predict pedestrians’ tra-

jectories while accounting for the interactions among them. Each person was modeled by a single

LSTM and the interaction between people was modeled using a social pooling system where each

LSTM shared its hidden state with other spatially neighboring LSTMs. Further attempts to im-

prove the performance of socially aware sequence models focused on including the interaction

with other entities such as static objects. As an example, the work of Bartoli et al. [60] extended
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Social-LSTM by adding a “context-aware” pooling layer which accounted for neighboring static

entities when predicting future movements of pedestrians. Despite their success, RNNs have been

target to many critics since the sequential nature of RNNs prevents parallel processing of the in-

put sequence. Unlike CNNs, the predictions for later time-steps using RNNs must wait for their

predecessors to complete which makes their running time relatively slow. Further, with long in-

put sequences, RNNs have a major issue of exploding/vanishing gradients. Furthermore, RNNs

suffer from high memory requirements to store partial results especially in the case of long input

sequences.

While most recent memory-based successes on motion prediction are based on LSTM models

and the main focus of researchers in this field is on better modeling the interaction of the ac-

tors with their surroundings, some researchers [63–66] chose to side-step sequential learning and

proposed only-attention-based memory mechanisms of Transformers (TF). Transformer networks

were first introduced in the field of Natural Language Processing (NLP) in 2017 to model word

sequences [50]. They mainly rely on their attention mechanism that learns to focus on the more im-

portant parts of the input sequence for a better prediction. Besides, TFs operate on the full sequence

at the same time, while RNNs operate sequentially which boosts the running time optimality. Fur-

thermore, Transformers allow for more parallelization during training compared to RNNs which

enabled training on larger datasets. Quickly after its introduction, Transformer based methods

became state-of-the-art in NLP field which proved its effectiveness. The architectural details are

given in Figure 2.2 (A). The building blocks of a TF architecture mainly are embedding layers and

positional encoding layers, at the start of both the encoder and the decoder, multi-head attention

mechanism and fully connected layers. The embedding layers serve for learning an embedding

representation for their input while positional encoding layers are responsible for the notion of

order in the input/output sequential data of the TF. Multiple variants of Transformers were also in-

troduced such as the Bidirectional Encoder Representations from Transformers (BERT) [67] which

is a bidirectional architecture consisting of a sequence of stacked TF encoders.
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Giuliari et al. [63] used TFs to model each actor separately without considering the different

interactions with the environment. More specifically, they assessed the performance of the orig-

inal TF as well as BERT on common benchmarks and showed that TF outperformed all existing

techniques, even those including social mechanisms. The novel application of TFs in motion pre-

diction has opened a new research direction in this field. Many recent research works revolved

around leveraging TF techniques while taking the social interaction into account [64–66]. Saleh et

al. [64] for instance, extended the original TF architecture by proposing a novel context-augmented

TF architecture focusing on the embedding layers and positional encoding layers to account for

contextual information around moving agents i.e. their interaction with other agents and the scene.

Raster Based CNN Models

Unlike in RNNs where the input sequence is processed in sequential order, convolutions can

be done in parallel since the same filter is used in each layer and the input sequence is processed

as a whole. CNNs can process a multi-dimensional input, where the spatial and temporal informa-

tion are represented in separate dimensions while being efficient in terms of running time. As a

result, many researchers [68–70] worked on using a Bird’s Eye View (BEV) representation of the

scene and applied rasterization techniques to provide complete context information through time

necessary for accurate motion prediction.

To better illustrate the rasterization technique, it is necessary to cover the concept of vector

graphics. The vector graphics representation consists of a stack of multiple vector layers where

each layer is formed by a collection of polygons and lines that represent a specific object class. For

example, in the context of self-driving vehicles, layers can represent lanes, boundaries, crosswalks,

and other elements present in the scene. Rasterization is the task of converting vector graphics into

a raster image. For instance, to rasterize into RGB format, each vector layer is represented by a

different color. Besides, to capture the past movements of actors, their bounding boxes at historical

time-steps are rasterized on top of the vector layers. Each historical actor polygon is rasterized with

the same color as its corresponding current actor but with a reduced level of brightness resulting in

a fading effect (See Figure 2.2 (B)).
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Raster representation has witnessed great success especially in the domain of self-driving ve-

hicles. Djuric et al. [68] proposed to use RGB raster representation of the BEV of the autonomous

vehicle (AV) and its vicinity to account for complete context and actor-scene interactions. The au-

thors suggested a deep CNN model that takes the BEV raster centered around the actor of interest

as input. The extracted features are then combined with the actor’s state information, including

velocity, acceleration, and heading, and fed to fully connected layers. The model finally predicts

the actor’s future trajectory as well as the inherent uncertainty of their motion in road traffic which

they assumed to follow a half-normal distribution. The intuition behind uncertainty estimation

is to reflect the situation’s peculiarity by estimating all possible directions an actor might take as

well as their corresponding probabilities. For example, if an actor decided to unfollow the traffic

flow and take an unexpected turn or cut the road and change lanes, the uncertainty distribution

should account for all possibilities with their relative probabilities. In addition to their first model,

Djuric et al. [68] experimented with decoding the actor trajectory using an LSTM layer which

they stacked after the first fully connected layer. Experiments have shown that their second variant

outperformed the first LSTM free variant.

Just like in pose estimation domain, some approaches tried to convert the motion prediction

problem, which is originally a regression task, to a multi-modal probabilistic classification task

by spatially discretizing the prediction space into a set of possible trajectories or modes [69–71].

CoverNet [69] followed this path and extended the work of Djuric et al. [68] by proposing a multi-

modal probabilistic trajectory prediction where engineered algorithms were used to dynamically

structure the trajectory set based on the actor’s current state. This aimed to ensure the coverage

of all possible scenarios while eliminating the physically impossible ones. TPNet [72] followed a

similar idea to CoverNet but solved the problem in an end-to-end fashion. TPNet first generated a

set of trajectory proposals as candidates of possible hypotheses, then made the final predictions by

classifying and refining the proposals following the underlined physical constraints.

Further amelioration of motion trajectory prediction methods from raster inputs aimed to use a

joint input representation by considering both raster representation of the scene and specific feature
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representation of the actors’ historical states. Messaoud et al. [70], for instance, used LSTMs to

learn feature embeddings of the actors’ recent movements and combined it with context features

learned from the scene information. The combined representation was used as input to a multi-

attentional CNN based network where each attention head generated a possible distribution over a

possible predicted trajectory.

Other Methods: GNN and Hybrid Methods

Social interactions can be naturally modeled using connected graphs where each node rep-

resents a single actor, and each edge connecting two nodes represents a direct social interaction

between the two actors. Further, thanks to the tremendous increase in the available computational

power in recent times, a lot of attention has been directed towards Graph Neural Networks (GNN)

to solve the motion prediction task.

An example of GNN-based methods is Social-STGCNN [73]. Social-STGCNN modeled the

pedestrian trajectories as a spatio-temporal graph and used Graph Convolutional Neural Networks

(GCNN) followed by Time-Extrapolator Convolution Neural Network (TXP-CNN) to operate on

the temporal dimension. Though these methods used graph representation which is a natural and

straightforward tool to capture the social interactions, they failed to model the interactions of ac-

tors with other environment entities and constraints. VectorNet [52] addressed this problem by

adopting a polyline representation where each entity was represented by its vectorized form (See

Figure 2.2 (C)) in a separate subgraph. The formed subgraphs were then connected through a

global interaction graph to capture the different interactions between the environment entities. The

authors of VectorNet suggested that their method could capture the different social interactions,

outperformed convolution-based methods, and also reduced the computational cost. Nevertheless,

it is known that polyline representation is often hard to extract automatically from sensors and

requires human annotations.

As many techniques have been adopted to solve the motion prediction task, some works tried to

achieve the best of all worlds and proposed to use hybrid methods where two or more techniques

are jointly used to solve the task at hand. Social-BiGAT [74], for instance, presented a graph-
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attention-based generative adversarial network that generated multi-modal trajectory predictions.

It first used a graph attention network (GAT) to learn feature representations modeling social in-

teractions. Then, it relied on a recurrent encoder-decoder that was trained adversarially to predict

the future trajectories.

Trajectron [75] and Trajectron++ [76] were two consecutive works for motion prediction. Tra-

jectron was first introduced as a graph-structured model that combined tools from recurrent se-

quence modeling and variational deep generative modeling for multi-modal trajectory predictions

of multiple agents in the scene. Trajectron++ was built upon Trajectron to produce a dynamically

feasible trajectory hypothesis for multiple agents in the scene and include environment context

information by extracting map features using CNNs.

2.2.3 Performance Evaluation and Summary

Table 2.2 summarizes the described methods in this section and provides a comparative anal-

ysis based on the different characteristics of their approaches. First, we can see the advantage

of using TFs against LSTMs in the task of motion prediction. The TF model outperforms S-

LSTM by 0.48m on the ETH dataset. Similarly, the integration of CNNs operating on raster input

representation in addition to the sequence information improves the model’s performance over

sequence-only based methods. For instance, MHA-JAM outperforms S-STGCNN by 0.10m in

ADE on ETH dataset. Comparing MHA-JAM to Trajectron++ shows that the addition of GNNs

does not necessarily improve the model’s predictive performance. Comparing TPNet and Tra-

jectron++, on the other hand, proves the advantage of accounting for social interactions. In fact,

Trajectron++, by accounting for social interactions, outperforms TPNet by 0.19m in ADE on ETH

dataset. Furthermore, looking at the two best performing models (Multipath on nuScenes dataset

and Trajectron++ on ETH dataset) show the importance of all of the factors social interactions,

context and multimodality in improving the performance of the model.
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Table 2.2: Overview of the described methods and their characteristics. The input type and the main ap-

proach/architecture are described. Other factors such as whether the method accounts for social interaction

and context awareness and whether it outputs a single unimodal possible trajectory or probabilistic multi-

modal trajectories are also considered. The performance of the models is reported in ADE on two datasets

nuScenes [2] (on the left) and ETH (on the right) [77]. Results on nuScenes are reported over a prediction

horizon of 6 seconds and k = 5 modes. Results on ETH are over the next 12 frames.

Method Input Approach Social Context Multimodal Performance

UKF [55] seq UKF No No No -/-

Social LSTM [59] seq LSTM Yes No No -/1.09

Multipath [71] raster CNN Yes Yes Yes 1.78/-

TF [63] seq TF No No No -/0.61

MTP [78] raster+seq CNN Yes Yes Yes 2.22/-

CoverNet [69] raster+seq CNN Yes Yes Yes 2.62/-

TPNet [72] raster+seq CNN No Yes Yes -/0.54

MHA-JAM [70] raster+seq CNN+LSTM Yes Yes Yes 1.85/-

S-STGCNN [73] seq GCNN+CNN Yes No Yes -/0.64

VectorNet [52] polyline GNN Yes Yes No -/-

S-BiGAT [74] seq+RGB GAT + LSTM Yes Yes Yes -/0.69

Trajectron++ [76] seq+raster CNN+LSTM+GNN Yes Yes Yes 1.88/0.35
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2.3 End-to-end Object Detection and Motion Prediction

Identifying the environmental states is crucial for several applications such as human-robot

interaction and motion planning for self-driving systems. The full understanding of the environ-

mental states generally includes the identification of the objects of interest from the background

and the prediction of their motion in the near future. Many researchers have focused on these

two problems especially in the domain of self-driving systems and multiple milestones have been

achieved in this domain.

Modern approaches to self-driving systems heavily rely on end-to-end networks since this tech-

nique has shown to be effective in translating the raw sensor data into useful information for the

system’s planning module. These approaches can be divided into two categories: The first cate-

gory relies on three main tasks: Object detection, object tracking, and object motion prediction.

The second category removes the need for the object tracking component and solves the problem

at hand using only object detection and motion prediction. In this dissertation, end-to-end methods

are covered in § 2.3.1 and § 2.3.2 for first and second category respectively.

Different types of input representations are commonly used in end-to-end methods namely the

voxelized representation and the HD maps. To encode the spatio-temporal sensor information,

voxelization is a quantized representation of the 3D world which is easier to process with convolu-

tions. It is a binary 3D voxel grid that indicates the occupancy of each voxel. Typically, the voxel

tensor is four-dimensional where the first three dimensions represent the 3D spatial dimensions,

and the fourth dimension encodes the temporal information. In addition to the voxelized represen-

tation, some approaches also used HD map information. "HD maps" or "High-Definition maps"

is a term that defines the maps that are built for self-driving systems. They are highly precise

inventories of all static assets including road lanes, boundaries, traffic signals. . .

2.3.1 End-to-End Detection, Tracking and Motion Prediction

End-to-End Detection, Tracking and Motion Prediction approaches are designed to perform

simultaneous 3D detection, tracking, and motion prediction by exploiting raw spatio-temporal data
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captured from the system’s 3D sensors. Since the object detection and motion prediction tasks have

already been tackled in the previous sections, this section will also cover a brief overview of the

object tracking task. Object tracking consists of assigning unique IDs to the objects present in

the scene throughout a sequence of frames. Starting with the initial frame, a unique ID is first

created for each of the initial detections. Then, as the objects move, the assignments of unique

IDs are maintained. This last step is called the association of the current object detections with

the previous tracks. The advantage of including a tracking step into the pipeline is that it allows

identifying the specific past trajectory of each current actor which helps to study the dynamics of

their past movements to better predict their future trajectories.

Two variants of these methods exist, depending on the position of the tracking step in the

pipeline. In the first variant, the tracking step is placed at the end of the pipeline where the outputs

of both object detection and motion prediction are fed to the tracking to aggregate the information

of current detections and future predictions of previous tracks (or also called past future predic-

tions). For instance, when there is an overlap between a current detection and past future predic-

tions, they are considered to be the same object. The goal of tracking in this pipeline is to help in

scenarios where we have strong past predictions and no current evidence (in the case of occlusion

or a false negative from detection for instance) or in the opposite situation, where we have strong

current detection and no past predictions which is evidence for a new object. Fast and Furious

(FaF) [79] is an example of the first variant. FaF proposed a one-stage detector which took as

input a voxelized representation of the 3D space over several time frames and produced detections

and short-term motion forecasting of the objects’ trajectories into the future followed by a simple

tracker to improve the performance of the two other tasks.

The second variant represents the methods that put the prediction module after explicit object

tracking. The tracking module uses the detection outputs to track the objects. After identifying the

different objects in the scene, each object trajectory representation is fed to the prediction module

to estimate their future movements. PnPNet [80] follows this direction. It takes advantage of both

the HD map and voxelized representation and outputs at each time step object tracks and their
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future trajectories. They specifically introduced a novel multi-object tracker that performed online

tracking directly from the detection output and suggested using trajectory level features for motion

prediction. To store extracted features at previous time steps, they suggested using two explicit

memories for global features maps and past trajectories which were updated dynamically at each

time step. It is also worth to note that, in addition to CNNs, PnPNet also integrated an LSTM layer

which was used to model the temporal dynamics of actor trajectories.

2.3.2 End-to-End Detection and Motion Prediction

These approaches are designed to perform simultaneous object detection and motion predic-

tion. Specifically, they remove the need for an object tracking step without loss in performance.

To achieve that goal, most of these methods paid a lot of attention to the meticulous design of their

networks as the very architectural detail can play a crucial role in the effectiveness and robustness

of their methods.

A key component for an effective multi-task learning method is the design of the backbone

network that is needed to extract rich feature representation from the inputs. MotionNet [81]

introduced a novel spatio-temporal pyramid network, which extracted deep spatial and temporal

features through a series of hierarchical spatio-temporal convolutions. Following the spirit of re-

cent studies, the suggested pyramid network replaced the bulky 3D convolutions with blocks of

2D convolutions (to operate on the spatial dimensions) followed by pseudo-1D convolution (3D

convolutions of kernel size k×1×1 operating on the temporal dimension) which allowed reducing

the complexity of the model. The features extracted from the pyramid network were fed to three

heads performing cell classification, motion prediction, and state estimation. It is worth noting

that in MotionNet, all tasks were performed simultaneously, and they were only connected using

the loss function during training where the outputs of cell classification and state estimation heads

were used to regularize the motion prediction head output.

Furthermore, in addition to the backbone network, some approaches included a jointly trained

trajectory refinement step that helped improve the trajectory prediction. MultiXNet [82] is a multi-
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class multimodal end-to-end network that adopted a refinement step. MultiXNet was built upon

IntentNet [83], prior work on actor detections and motion prediction. IntentNet was an anchor-

based object detection and motion prediction that output uni-modal future trajectories. MultiXNet

extended it by transforming the uni-modal motion prediction component into a multi-modal multi-

class motion prediction step.

With the new trend of transformers and their applications in multiple research areas, some ap-

proaches tried to leverage these techniques for motion prediction (see § 2.2.2 for more details about

transformers). Li et al. [84] adopted a classical deep CNN detector and tackled the task of motion

forecasting by introducing a novel transformer architecture called “Interaction Transformer”. The

latter was an adaptation of the original architecture, which was designed for sequence modeling,

to the task at hand. First, the Interaction Transformer adopted a pairwise attention mechanism to

capture the spatial relative positions of actors. Furthermore, it integrated the temporal information

captured using a recurrent structure that predicted the actors’ motion in an auto-regressive fashion.

In addition to the initial motion prediction, a per-time-step refinement step was adopted to further

refine the initial estimates.

2.4 Conclusion

For decades, perception tasks such as object pose estimation and motion prediction have been

the center of interest of many researchers as these tasks play a crucial role in AI systems by helping

them translate the received percepts of the environment into useful cues for their planning and

control modules. More recently, the researchers’ interest in these tasks has been buoyed by the

success of deep learning technologies in many fields. In object pose estimation, researchers have

tried different directions to solve the task at hand: Some tried to convert the pose regression task

into a classification to a set of possible poses. Others tried to learn a key-point correspondence

between the 2D image of the object of interest and its corresponding 3D model, and, some others

tried to solve the pose regression directly in one shot from the input image. In addition to the

main object pose estimation module, many works suggested a refinement step to further improve
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the pose estimation performance. In this chapter, a brief overview of the different approaches and

techniques used to solve object pose estimation and refinement was given.

In motion prediction, multiple deep learning techniques were experimented with such as CNNs,

RNNs, TFs, and GNNs. One major key for an effective motion prediction module is the under-

standing of the dynamics of the agent’s motion history. However, with the advance of research

in this topic, many studies have shown that treating the agent as an independent entity and only

focusing on its history is not sufficient and generally yields to sub-optimal performance. To over-

come this issue, many works have studied the effect of social interaction on the future movements

of agents. Other works further included the effect of the environmental context on the future

movements of agents. This chapter comprehensively analyzed the evolution of motion prediction

approaches and the different factors that they highlighted as major keys for better performance.

The absence of a common benchmark, to evaluate and compare the performances of the different

methods, is still a problem in the motion prediction domain that needs to be overcome in the near

future.

For a long time, these perception tasks were treated separately and a cascaded approach was

used where the output of the first task was fed to the other. However, recent studies have shown

that the cascaded approaches generally suffer from a major error propagation problem where errors

from upstream processes propagated to the end of the pipeline causing, in some cases, catastrophic

failures. As an alternative, end-to-end approaches have been proposed where all the tasks are

jointly learned in a single network. Such approaches have shown to lead to a great performance

improvement compared to their counterparts. In the third section of this chapter, existing works that

jointly solved object detection and motion prediction were examined by considering two categories

for those that account for a tracking step and those that do not. However, a comprehensive analysis

of these methods and a thorough experimentation to measure the importance of the tracking module

in the pipeline is still needed.
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Chapter 3

Pose Estimation and Refinement from RGB Inputs

Accurate 6D object pose estimation is crucial for many real-world perception based applica-

tions, such as autonomous navigation systems, robot grasping, and augmented reality. This chapter

will cover a novel end-to-end 6D pose estimation approach from RGB inputs that my colleagues

and I have proposed. This work was published in WACV2021 [85] and won the "Best Student

Paper Award". In Figure 3.1, an overview of the proposed approach is shown.

Figure 3.1: An overview of the proposed approach, consisting of a pose proposal module and a pose

refinement module. The pose proposal module (PPN), outputs an object classification and an initial pose

estimation from RGB inputs. The pose refinement module consists of a differentiable renderer and an

iterative refiner called MARN. The renderer initializes the rendered crop of the detected object using its

initial pose estimate and its 3D model. The refinement step utilizes a hybrid representation of the initial

render and the input image, combining visual and flow features, and integrates a multi-attentional block to

highlight important features, to learn an accurate transformation between the predicted pose and the actual,

observed pose.

First, the Pose Proposal Network (PPN) extends the region proposal framework to classify

and regress initial estimates of the rotations and translations of objects present in the RGB input.
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Notably, the proposed PPN method requires no additional steps, unlike methods that use PnP [15]

or matching with pre-engineered codebook.

Second, the pose refinement module consists of a differentiable renderer and a Multi-Attentional

Refinement Network (MARN). MARN can be depicted as two main components: first, visual fea-

tures from both the input crop and the rendered crop are fused using the flow vectors to learn better

object representations. Second, a spatial multi-attention block highlights discriminative feature

parts, insulating the network from adverse noise and occlusion effects. MARN is designed to al-

low iterative refinement; MARN outputs an estimated pose that directly maps to MARN’s input.

In the conducted experiments, the greatest performance gains typically occurred within a couple

of refinement iterations. The entire pipeline is trained end-to-end and in Chapter 3.4, we will show

that the full end-to-end model achieves state-of-the-art results on three separate datasets.

In the following, the 6D pose is represented as a homogeneous transformation matrix, p =

[R|t] ∈ SE(3), composed of a rotation matrix R ∈ SO(3) and a translation t ∈ R
3. R can also be

represented by a quaternion q ∈ R
4.

3.1 Pose Proposal Network

In this approach, the object pose estimation is reframed as a combined object classification and

pose estimation problem, regressing from image pixels to region proposals of object centers and

poses. Figure 3.2 illustrates the 6D object pose proposal network architecture. The architecture

has two stages: first, a backbone encoder, modeled on the YOLOv2 framework [35], extracts high-

dimensional region feature representations from the input image. Second, the obtained feature

representations are embedded into low-dimensional, task-specific features extracted from three

decoders which output three sets of region proposals for translations, rotations, and object centers

and classes. It is worth noting that, similar to [31], the YOLOv2 framework (§ 2) was adopted

to extract feature representations from the input image. However, the application of the YOLOv2

network in this work is fundamentally different in the sense that it serves only the purpose of

extracting appearance features from the input image which will be used as input to the second stage

35



Figure 3.2: The Pose Proposal Network (PPN) Architecture. The encoder/multi-decoder network takes an

RGB image, A. encodes it into high dimensional feature embedding of size d dividing the input image into

a S × S grid, and B. decodes it into 3 task-specific outputs, which correspond to the rotation, translation,

and confidence in the presence of the detected object. C. Architectural details of blocks A, B, and C in PPN

consisting of three decoders to ultimately estimate the objects poses. Specifically, the backbone

encoder (Figure 3.2A) produces a dense feature representation F by dividing the input image

into a S × S grid, each cell of which corresponds to an image block, that produces a set of high

dimensional feature embeddings {Fi,j}, with Fi,j ∈ R
d for each grid cell (i, j) ∈ G2 s.t. G =

{1, . . . , S} and d is the embedding size. F is decoded by 3 parallel convolutional blocks (as shown

in Figure 3.2B) that produce a fixed-size collection of region proposals {(Conf ok
i,j , T

ok
i,j , Q

ok
i,j)} for

each object in the set of target objects ok ∈ {o1, . . . , oC}, where C is the number of target objects.
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Block A: This block is a rotation proposal network that regresses a 4-dimensional quaternion

vector Qok
i,j for each image region and object class.

Block B: This block is a translation proposal network that regresses a 3-dimensional translation

vector T ok
i,j for each image region and object class. Rather than predicting the full translation vector

T = [tx, ty, tz]
T , which can be cumbersome for training as discussed in [39], the object center

coordinates in the image space c = (cx, cy)
T is regressed and the depth component tz. The two

remaining components of the translation vector are then easily computed with the camera intrinsics

and the predicted information:

tx =
(cx − px)tz

fx
,

ty =
(cy − py)tz

fy

(3.1)

where fx and fy denote the focal lengths of the camera, and (px, py) is the principal point offset. To

regress the object’s center coordinate, offsets for the 2D coordinates are predicted with respect to

(gx, gy) ∈ G2, the top-left corner of the associated grid cell. this offset is constrained to lie between

0 and 1. The predicted center point (cx, cy) is defined as: cx = f(x)+gx and cy = f(y)+gy where

f(·) is a 1-D sigmoid function.

Block C: This block is a confidence proposal network, which should have high confidence in

regions where the object is present and low confidence in regions where it is not. Specifically, for

each image region, Block C predicts a confidence value for each object class corresponding to the

presence or absence of that object’s center in the corresponding region in the input image.

Duplication Removal: After the inference of object detection and pose estimation, which

is done by one pass through PPN, non-maximal suppression is applied to eliminate duplicated

predictions when multiple cells have high confidence scores for the same object. Specifically,

the inference step provides class-specific confidence scores, referring to the presence or absence

of the class in the corresponding grid cell. Each grid cell produces predictions in one network

evaluation, and cells with low confidence predictions are pruned using a confidence threshold.
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Non-maximal suppression is then applied to eliminate duplicated predictions when multiple cells

have high confidence scores for the same object and only consider the predictions with the highest

confidence score, assuming either the object center lies at the intersection of two cells or the object

is large enough to occupy multiple cells. The similarity of the projected bounding boxes of the 3D

models given the predicted poses is specifically measured by computing the overlap score using

intersection over union (IoU). Given two bounding boxes with high overlap score, the bounding

box that has the lower confidence score is removed. This step is repeated until all of the non-

maximal bounding boxes has been removed for every class. Two projections are considered to be

overlapping if the IoU score is larger than 0.3.

3.2 Multi-Attentional Refinement Network

The proposed multi-attentional refinement network (MARN) iteratively corrects the 6D pose

estimation error. Given the success of end-to-end trainable models [86, 87], my colleagues and I

opted for an end-to-end refinement pipeline. Figure 3.3 depicts the MARN architecture and illus-

trates a typical refinement scenario. Two color crops (Iim and Ir), corresponding to an observed

image and an initial pose estimate of the object in the image, are input into MARN, which out-

puts a pose residual estimate to update the initial predicted pose. This procedure can be applied

iteratively, potentially generating finer pose estimation at each iteration.

3.2.1 Input Crops

Input Crops are sampled from a given predicted 6D pose p. Crops circumvent the difficulty of

extracting visual features from small objects. Two crops, a rendered and an RGB, are generated.

Images are cropped under the assumption that only minor refinements are needed. Both crops

will be used as input to the refinement network. The rendered crop is generated by rendering

the 3D object model viewed according to the predicted pose p. The RGB crop is generated from

the original input image. A bounding box, that bounds the object’s 3D model, projected on the

image space using the predicted pose p is computed. The bounding box is then padded by epsilon
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Figure 3.3: The proposed multi-attentional refinement network (MARN) takes a proposed pose and itera-

tively refines it. In the context of the proposed pipeline, the initial pose estimate, represented as a render

image crop and a real image crop, are input into MARN. First, the network extracts visual feature represen-

tations from the inputs and an optical flow estimation between the two inputs (the Feature Extraction Block).

Then, multiple attention maps, which correspond to different parts of the target object, are extracted from the

flow and render crop features and applied to the feature representation of the real image crop, highlighting

the important feature parts (the Spatial Multi-Attentional Block). Subsequently, the highlighted features are

used to refine the pose estimate (the Residual Pose Estimation Block). The output refined pose estimate can

be input into MARN for iterative refinement

pixels for each side to take into account the error introduced by the pose prediction. The enlarged

bounding box is then used as a mask applied to the RGB image. Note that the mask cancels out

the background, it does not crop the images. The images are cropped with a fixed size window

H × W , where the crop center corresponds to the object center, as defined by the 2D projection

of the predicted pose p. Predicting (∆cx,∆cy) consists of estimating how far the object center is

from the image center.

3.2.2 Feature Extraction Block

MARN refines the estimated pose by predicting the relative transformation to match the ren-

dered view of the object to the observed view in the original image. To this end, MARN’s feature

extraction block is composed of two different networks: 1) a visual feature embedding network

that captures visual features of the object, and 2) a flow estimation network that estimates the ob-

ject "motion" between the rendered image and the observed image. The network takes two input

crops: Ir ∈ R
H×W×3 and Iim ∈ R

H×W×3. Both crops are processed through the shared visual
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feature embedding network to extract visual feature representations Fim ∈ R
H×W×dem for the im-

age crop and Fr ∈ R
H×W×dem for the render crop. Each pixel location of the embedding is a

dem-dimensional vector that represents the appearance information of the input image at the cor-

responding location. Simultaneously, the flow estimation network, based on the FlowNetSimple

architecture [48], produces the optical flow between the rendered image and the observed image.

Subsequently, the visual feature map Fr, extracted from the render crop, is warped toward the

visual feature map of the image crop Fim, guided by the flow information. Specifically, the warping

function W , extracted from the Flow estimation network, computes a new warped feature map Fw

from the input Fr following the flow vectors flowr−→im ∈ R
H×W×2:

Fw = W(Fr, flowr−→im) (3.2)

Following [88], the warping operation is a bilinear function applied on all locations for each chan-

nel in the feature map. The warping in one channel l is performed as:

F l
w(xw) =

∑

xr

I(xr,xw + δxw)F
l
r(xr) (3.3)

where I is the bilinear interpolation kernel, xr = (xr, yr)
T is the 2D coordinates in the visual

feature embedding Fr, and xw = (xw, yw)
T is the 2D coordinates in the visual feature embedding

Fw. For backpropagation, gradients to the input CNN and flow features are computed as in [88].

Furthermore, the estimated optical flow flowr−→im is concatenated with the feature map extracted

from the image crop Fim to produce F+
im ∈ R

H×W×(dem+2).

3.2.3 Spatial Multi-Attention Block

Estimating an object’s relative transformation between two images first requires successful

localization of the target object within the two inputs. MARN handles this in the spatial multi-
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attention block by localizing discriminative parts of the target object with spatial multi-attention

maps, which robustly localize discriminative parts of the target. Therefore when the target is par-

tially occluded, the multiple attention module can adaptively detect the visible parts while ignoring

the occluded parts. Attention maps A = {a1, a2, . . . , aN}, where ai ∈ R
H×W for i ∈ {1, . . . , N}

and N is the number of attention maps, are extracted by generating summarized feature maps

si ∈ R
H×W for i ∈ {1, . . . , N} by applying two 1× 1 convolutional operations to feature map Fw,

extracted by the feature extraction block. Each attention map ai ∈ A, corresponding to a discrimi-

native object part, is obtained by normalizing the summarized feature map si using softmax:

ai =
exp (si)

∑H

h=1

∑W

w=1 exp (si,h,w)
, i = 1, . . . , N (3.4)

Finally, the attention map ai and the feature map F+
im are element-wisely multiplied to extract

the attentional feature map F̄i:

F̄i = Ai · F
+
im, i = 1, . . . , N (3.5)

where Ai ∈ R
H×W×(dem+2) is the replication of the attention map ai, (dem + 2) times to match

the dimensions of F+
im. F̄ ∈ R

H×W×(dem+2)N is the final extracted multi-attentional feature repre-

sentation obtained by concatenating the attentional feature maps {F̄i}i=1,...,N . Inspired by [89], a

regularization term is added to the total loss function to discourage multiple attention maps locat-

ing the same discriminative object part. The regularization emphasizes orthogonality among the

attention maps:

Lorth =
∥

∥

∥
ÃT Ã− I

∥

∥

∥

2
(3.6)

where Ã = [ã1, . . . , ãN ] ∈ R
HW×N and ãi ∈ R

HW is the vectorized attention map of ai. By

minimizing the orthogonal loss, the attention maps are constrained to focus on diverse object parts.
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3.2.4 Residual Pose Estimation Block

This block processes the residual pose estimation. First, the embedding space of the extracted

feature map F̄ is reduced the from (dem +2)N to 8 with three 3× 3 convolutional operations. The

resulting feature map is then fed into one fully connected layer, whose output is then fed into two

separate fully connected and final output layers, one corresponding to the regressed rotation and

the other corresponding to the translation. As explained in §3.2.1, MARN outputs an estimated

relative rotation quaternion ∆q ∈ R
4 and a relative translation [∆cx,∆cy,∆tz]

T . The refined

pose prediction is then computed with regard to the the initial pose prediction p̂ = [R̂|t̂] using

cx,new = cx + ∆cx, cy,new = cy + ∆cy, t̂z,new = t̂z + ∆tz, and R̂new = ∆R ∗ R̂, where (cx, cy)

is the center of the object in the image space using p̂, ∗ is the matrix multiplication and ∆R is the

relative rotation matrix obtained from ∆q. t̂x,new and t̂y,new are then computed using (3.1).

3.3 Losses

In order to achieve accurate pose estimation, it is crucial to provide a criterion which quantifies

the quality of the predicted pose. The different components of the proposed approach are trained

jointly in an end-to-end fashion with a multi-task learning objective:

Ltotal = LPPN + LMARN

= αLpose + βLconf + γLref + κLorth

(3.7)

where α, β, γ and κ are weight factors. The proposed multi-task learning objective is composed

of four loss functions. First, a composite L2 loss function to optimize the PPN pose and center

detection parameters:
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LPPN = αLpose + βLconf

where Lpose = avg
x∈Ms

∥

∥

∥
(Rx+ t)− (R̂x+ t̂)

∥

∥

∥

2

and Lconf = ∥confgt − confpr∥2

(3.8)

where ∥·∥2 is the L2 norm. Lconf is the loss term used to train the confidence block. Lpose is the

loss term used to train the pose regression. Lpose is similar to the average distance (ADD) measure

(further discussed in § 3.4.2). p = [R|t] is the ground truth pose and p̂ = [R̂|t̂] is the estimated pose.

R̂ and R are the rotation matrices computed from the predicted quaternion q̂ and the ground truth

quaternion q, respectively. confgt and confpr are the ground-truth and the predicted confidence

matrix, respectively. Ms ∈ R
M×3 is a set of points sampled from the CAD model. Lpose is only

used for asymmetric objects. To handle symmetric objects, a modified loss function is instead

used:

Lpose,sym = avg
x1∈M

min
x2∈M

∥

∥

∥
(Rx1 + t)− (R̂x2 + t̂)

∥

∥

∥

2
(3.9)

Second, MARN’s loss function is defined as:

LMARN = γLref + κLorth

where Lref = avg
x∈Ms

∥

∥

∥
(Rx+ t)− (R̂newx+ t̂new)

∥

∥

∥

2

(3.10)

Lref is the same loss term used in PPN. Symmetric objects are handled similarly to PPN. R̂new

and t̂new are the refined rotation and translation estimates.

Lorth is a regularization term used to discourage multiple attention maps locating the same

discriminative object part. The regularization emphasizes orthogonality among the attention maps

as proposed by [89]:
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Lorth =
∥

∥

∥
ÃT Ã− I

∥

∥

∥

2
(3.11)

where Ã = [ã1, . . . , ãN ] ∈ R
HW×N and ãi ∈ R

HW is the vectorized attention map of ai.

3.4 Experiments and Results

In this section, the introduced pose estimation approach (§ 3) is compared against state-of-the-

art RGB-based methods across three datasets: YCB-Video, LINEMOD, and LINEMOD Occlu-

sion. Results indicate that the proposed method outperformed other state-of-the-art methods on

all datasets, with competitive runtimes. The remainder of this section will first briefly cover the

benchmarks used to compare the proposed approach with state-of-the-art methods (in § 3.4.1) as

well as the evaluation metrics (in § 3.4.2). Then, § 3.4.3 will provide details about the proposed

architecture as well as the training process. Finally, § 3.4.4 will depict and analyse the obtained

experimental results.

3.4.1 Datasets

This section will cover the different benchmarks that were used to run the experiments in order

to objectively compare the performance of the different methods.

YCB-Video Dataset: [39] has 21 objects [90] across 92 video sequences. CAD models for

all the objects are provided. YCB objects have varying shapes, sizes, and symmetries, levels of

occlusion and lighting conditions of the scenes. In the conducted experiments, the data is divided

as in [39], using 80 sequences for training and 20 sequences for testing. The training is augmented

with 80k synthetically rendered images released by [39]. Pose predictions on the test set was

refined with four MARN iterations.

LINEMOD Dataset: [20] contains 15,783 images of 13 objects, and includes CAD models

of the different objects. Each image is associated with a ground truth pose for a single object

of interest. The objects of interest are considered as texture-less objects, which makes the task
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Figure 3.4: Popular public datasets for 6D pose estimation task that will be used in the experiments of

this dissertation: (A) the LINEMOD dataset [20]. (B) the Occlusion dataset [49]. And (C) the YCB-Video

dataset [39].

of pose estimation challenging. The train/test split is chosen following [91] — 200 images per

object are used in the training set and 1, 000 images per object in the testing set. When using

the LINEMOD dataset, online data augmentation is applied during training, to avoid over-fitting.

Using this method, random in-plane translations and rotations are applied to the image along with

random hues, saturations, and exposures. Finally, the images are modified by replacing the back-

ground with random images from the PASCAL VOC dataset [3]. Note that for testing on the

LINEMOD dataset, two MARN iterations were used for refinement.

Occlusion Dataset: [49] is an extension of the LINEMOD dataset. Unlike LINEMOD, the

dataset is multi-object — 8 different objects are annotated in each single image, with objects oc-

cluded by each other. The models are trained with the same online data augmentation procedure

described in the LINEMOD dataset, further augmented by adding in image objects extracted from

the LINEMOD dataset. Four MARN iterations were used for refinement on the Occlusion dataset.

The Occlusion Dataset is particularly important because it tests the robustness of the pipeline to
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occlusion, something the spatial multi-attentional block of MARN was explicitly designed to be

robust to.

3.4.2 Evaluation Metrics

Two standard performance metrics are used for evaluating pose estimation models. First, the

2D-projection error, analogously to [32], measures the average distance between the 2D projec-

tions in the image space of the 3D model points, transformed using the ground-truth pose and the

predicted pose. The pose estimate is considered to be correct if it is within a selected threshold. 2D-

Proj denotes the percentage of correctly estimated poses using a 2D Projection Error threshold set

to 5 pixels. For symmetric objects, the 2D projection error is computed against all possible ground

truth poses, and the lowest value is used. The second metric, Average 3D distance (ADD) [20],

measures the average distance between the 3D model points transformed using the ground-truth

pose and the predicted pose. For symmetric objects, the closet point distance is used, referred to

as ADD-S in [39]. In the conducted experiments, ADD(-S) is, following [39], the metric that mea-

sures the percentage of correctly estimated poses using a ADD(-S) threshold. Unless specified, in

the experiments the threshold is set to 10% of the 3D model diameter. When evaluating on the

YCB-Video dataset, the ADD(-S) AUC is also reported as proposed in [39].

3.4.3 Architectural and Training Details:

Below details about both the training procedures and system architecture are presented. These

details specifically pertain to experiments which follow. The model was optimized with Adam

optimizer with weight factors (α, β , γ, κ) set to (0.1, 0.05, 0.1, 0.01). These weights, as well as

the other hyper-parameters of the model, were selected during the hyper-parameter selection step

where a set of hyper-parameters were experimented with and the values yielding the best results

in terms of the 2D-projection error metric were selected based on a 3-fold cross-validation. Given

a 480 × 640 input image, PPN alone runs at 50 fps and the full model runs at 10 fps, with two

refinement iterations, which is efficient for real-time pose estimation.
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PPN:

The backbone encoder in PPN consisted of 23 convolution layers and 5 max-pooling layers,

following the YOLOv2 architecture [35]. Additionally, a pass-through layer was added to transfer

fine-grained features to higher layers. The model was initialized with pre-trained weights from

YOLOv2, with the remaining weights being randomly initialized. Input images were resized to

416 × 416 and split into 13 × 13 grids (S = 13). The feature embedding size of the backbone

network, d, was set to be equal to 1024.

The main architecture components were experimentally manipulated in order to test multiple

architectural designs. Across all variations, the encoder remained unchanged. In the decoders,

the number of layers and the number of channels were varied. We varied the number of layers

for the translation and rotation decoders (block A and block B in Figure 3.2) with 4 layers (with

decreasing number of channels from 1024 to the number of output channels), 8 (selected archi-

tecture) and 10 layers (with increasing number of channels from 128 to 2048 and then decreasing

to the number of output channels). We also experimented with adding and removing the residual

connections. Similarly, for the class confidence decoder (block C in Figure 3.2), we varied the

number of layers with 4 (with decreasing number of channels from 1024 to the number of output

channels), 7 (selected architecture) and 9 layers (with increasing number of channels from 128 to

2048 and then decreasing to the number of output channels C).

Initially, an additional weight factor is used, λ, applied to the confidence block output. Specif-

ically, PPN was trained with λ set to 5 for the cells that contain target objects and 0.5 otherwise.

This circumvents convergence issues with the confidence values because otherwise the early stages

of training tend to converge on all zeros (since the number of cells that contain objects is likely to

be much smaller than the cells that do not). In later training stages, λ was updated to penalize false

negatives and false positives equally (λ = 1 for all cells). The number of points M , in the set of

3D model points Ms, was set to 10, 000 points.
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MARN:

For the visual feature embedding network, a Resnet18 encoder pre-trained on ImageNet is

used followed by 4 up-sampling layers as the decoder. During training, the two networks were

fine-tuned with shared weight parameters. The embedding size of the extracted features from the

visual feature embedding network, dem, is set to be equal to 32. The flow estimation network

was the FlowNetS architecture populated with pre-trained weights following [48]. The network

weights were frozen for the first two training epochs and unfrozen in later epochs. Once the

weights were unfrozen, the component was trained in an end-to-end manner along with the other

MARN components. The initial weight freeze increased training stability and ensured the output of

the flow estimation network was meaningful. FlowNet output was up-sampled to match the input

image crops. After a hyperparameter search, the padding offset for the mask ϵ was set to 10 pixels

and the cropping window size was set to H ×W = 256× 256 applied to the original input image.

Pose perturbations were used to create training data by adding angular perturbations (5 deg to

45 deg) and/or translational perturbations (0 to 1 relative to the object’s diameter) to obtain a new

noisy pose and rendering an image. The network was then trained to estimate the target output

which was the relative transformation between the perturbed pose and the ground-truth pose.

3.4.4 Results on YCB-Video Dataset

Figure 3.5: Pose estimation results using the proposed method on the YCB-Video Dataset. Cyan bounding

boxes correspond to predicted poses and red bounding boxes correspond to ground-truth poses
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Table 3.1: Comparison of the proposed approach with state-of-the-art RGB-based methods on YCB-Video

dataset in terms of 2D-Proj, ADD AUC and ADD(-S) metrics, averaged over all object classes for each

method. A threshold of 2 cm for the ADD(-S) metric is used.

Methods HMap [36] PVNet [32] DeepIM† [45] OURS†

2D-Proj 39.4 47.4 - 55.6

ADD AUC 72.8 73.4 81.9 83.1

ADD(-S) (< 2cm) - - 71.5 73.6

† denotes methods that deploy refinement steps.

Overall Results:

The results in Table 3.1 summarize the performance of existing RGB based methods compared

to the proposed approach. The results of our approach represent the average of the 3 performance

values reported from a 3-fold cross-validation. During cross-validation, we perform the train/test

split on the sequence level so that the evaluation is performed on newly previously unseen se-

quences. The results suggest that the proposed approach significantly outperforms state-of-the-

art RGB-based methods with an average 2D-Proj accuracy of 55.6% (average of the 3 values:

55.3%, 56.4%, 55.1%). The results in ADD AUC were averaged over the three values 82.8%,

83.4%, 83.1% and ADD(-S) averaged over the three values 73.1%, 74.2%, 73.5%. Compared to

DeepIM [45], which also deploys refinement steps, the proposed approach achieves better perfor-

mance by a margin of 1.2% and 2.1% in terms of ADD AUC and ADD(-S) respectively. Some

examples of pose estimation results using the proposed approach on the YCB-Video dataset are

provided in Figure 3.5.

Detailed Results on the YCB-Video Dataset:

Table 3.2 shows the detailed pose estimation results on the YCB-Video dataset [39] in terms

of ADD AUC. The proposed approach achieves the best results in 12 object classes out of 21

compared to other methods. DeepIM, surpasses other methods on 6 object classes out of 21, and

HMap outperforms other methods on 4 object classes.
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Table 3.2: Detailed results of the proposed approach and other existing RGB-based methods on the different

objects of the YCB-Video dataset in terms of ADD AUC

Methods HMap [36] PVNet [32] DeepIM† [45] OURS†

002-master-chef-can 81.6 - 71.2 72.1

003-cracker-box 83.6 - 83.6 81.7

004-sugar-box 82.0 - 94.1 95.7

005-tomato-soup-can 79.7 - 86.1 88.2

006-mustard-bottle 91.4 - 91.5 94.8

007-tuna-fish-can 49.2 - 87.7 88.2

008-pudding-box 90.1 - 82.7 80.2

009-gelatin-box 93.6 - 91.9 94.5

010-potted-meat-can 79.0 - 76.2 82.6

011-banana 51.9 - 81.2 78.7

019-pitcher-base 69.4 - 90.1 87.7

021-bleach-cleanser 76.1 - 81.2 78.1

024-bowl* 76.9 - 81.4 83.4

025-mug 53.7 - 81.4 81.7

035-power-drill 82.7 - 85.5 87.8

036-wood-block* 55.0 - 81.9 83.7

037-scissors 65.9 - 60.9 67.4

040-large-marker 56.4 - 75.6 71.1

051-large-clamp* 67.5 - 74.3 75.2

052-extra-large-clamp* 53.9 - 73.3 71.3

061-foam-brick* 89.0 - 81.9 82.2

MEAN 72.8 73.4 81.9 83.1

† denotes methods that deploy refinement steps.

* denotes symmetric objects.

50



Table 3.3: Results of the ablation study on different components of MARN on YCB-Video dataset. The

same 2cm threshold for ADD(-S) is used. AUC means ADD(-S) AUC. Each variant was refined with 4

iterations

Experiments flow vectors visual features Attention maps ADD(-S) AUC

Variant 1 None ✓ None 63.7 77.2

Variant 2 ✓ ✓ None 68.9 79.8

Variant 3 ✓ ✓ single 71.2 81.9

Variant 4 ✓ ✓ multiple 73.6 83.1

Ablation Study of The Refiner on YCB-Video Dataset:

This section covers an ablation study that was performed on MARN’s components (detailed in

§ 3.2) to measure the effect of each of its components. In all, four variants are tested: In variant 1,

MARN only uses visual features extracted from the two input crops. In variant 2, MARN uses the

flow estimation features but not the attention component, instead fusing the extracted feature map

F+
im and the warped feature map Fw with simple concatenation. In variant 3, spatial attention is

added, but only a single attention map is used. Variant 4 is the production variant of MARN. Each

variant refined the pose 4 times. The results of the ablation study are presented in Table 3.3. First,

these results demonstrate that variant 1 refinement, though the simplest, still improves the pipeline

performance significantly by a margin ADD(-S) of 5.2%. This finding proves that visual features

help in capturing the relative transformation between two inputs, and thus helps refine the pose.

Variant 2, which adds in optical flow estimation improves the performance of the refiner by 2.3%

over variant 1. This can be explained by the fact that the predicted flow ensures that the network

learns to exploit the relationship between both crops and thus capture the relative transformation

of the object between them. Variants 3 and 4 show that the addition of attention maps helps to

improve the performance of the refiner. The improvement of variant 4 over variant 3 demonstrates

that multiple attention maps help achieve better performance than a single attention map. Thus,

these results prove the ability of multiple attention maps to capture various salient parts of the

objects helps the model highlight important features, and makes the refinement process robust to

various degrees of occlusion in the dataset.

51



3.4.5 Results on LINEMOD Dataset

Figure 3.6: Pose estimation results using the proposed method on the LINEMOD Dataset. Cyan bounding

boxes correspond to predicted poses and red bounding boxes correspond to ground-truth poses

Overall Results:

As presented in Table 3.4, the proposed approach achieves better results than other RGB-based

methods in terms of ADD(-S), with an average accuracy of 93.87% accuracy compared to an

average accuracy of 88.6% for DeepIM, the second best performing method. The results of our

approach represent the average of the 3 performance values reported from a 3-fold cross-validation.

In terms of ADD(-S) the reported values of our approach are 93.2, 93.69 and, 94.72. For the 2D-

proj metric, the values are 99.32, 98.89 and, 99.36.

Some examples of pose estimation results using the proposed approach on the LINEMOD

dataset are provided in Figure 3.6.

Table 3.4: Results of the proposed approach compared with state-of-the-art RGB-based methods on the

LINEMOD dataset in terms of ADD(-S) and 2D-Proj metrics. Percentages of correctly estimated poses

averaged over all object classes are reported.

Method Tekin [31] PVNet [32] SSD6D† [27] DeepIM† [45] OURS†

ADD(-S) 55.95 86.27 79 88.6 93.87

2D-Proj 90.37 99.0 - 97.5 99.19

† denotes methods that deploy refinement steps.
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Table 3.5: Detailed Results of the proposed approach and other existing RGB-based methods on the differ-

ent objects of the LINEMOD dataset in terms of ADD metric

Method Tekin [31] PVNet [32] BB8† [34] SSD6D† [27] DeepIM† [45] OURS†

ape 21.62 43.62 40.4 65 77 84.47

benchvise 81.80 99.90 91.8 80 97.5 98.71

cam 36.57 86.86 55.7 78 93.5 93.73

can 68.80 95.47 64.1 86 96.5 97.84

cat 41.82 79.34 62.6 70 82.1 87.33

driller 63.51 96.43 74.4 73 95 96.91

duck 27.23 52.58 44.30 66 77.7 88.45

eggbox* 69.58 99.15 57.8 100 97.1 98.49

glue* 80.02 95.66 41.2 100 99.4 99.5

holepuncher 42.63 81.92 67.20 49 52.8 84.53

iron 74.97 98.88 84.7 78 98.3 99.10

lamp 71.11 99.33 76.5 73 97.5 98.74

phone 47.74 92.41 54.0 79 87.7 92.53

MEAN 55.95 86.27 62.7 79 88.6 93.87

† denotes methods that deploy refinement steps.

* denotes symmetric objects.

Detailed Results on the LINIEMOD Dataset:

In Table 3.5, the proposed approach is compared with existing state-of-the-art methods: Tekin

[31], PVNet [32], BB8 [34], SS6D [27] and DeepIM [45] on LINEMOD dataset [20]. Compared

with other methods, the proposed approach had the highest performance on 9 of the 13 object

classes, PVNet had the best performance on 2 object classes, and SSD6D had the best performance

on 2 object classes.

Ablation Study of the refiner on the LINEMOD Dataset

In Table 3.6, results of an ablation study on LINEMOD dataset are reported. The ablation study

is similar to the one conducted on YCB-Video dataset. The results in Table 3.6 suggest that each

component iteratively improves the refinement results, highlighting their effectiveness, but the full

importance of each method may be somewhat muted, compared to the results on the YCB-Video

dataset, since the experiment took place on the LINEMOD dataset, where accuracy is near the

dataset ceiling.
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Table 3.6: Results of the ablation study on different components of the refinement network MARN on the

LINEMOD dataset

Experiments flow features CNN features Attention maps ADD 2D-Reproj

Variant 1 None ✓ None 87.32 96.59

Variant 2 ✓ ✓ None 89.17 97.99

Variant 3 ✓ ✓ single 91.28 98.56

Variant 4 ✓ ✓ multiple 93.87 99.19

Table 3.7: Comparison of the proposed approach with state-of-the-art RGB-based algorithms on Occlusion

dataset in terms of ADD(-S) and 2D-Proj metrics. Percentages of correctly estimated poses averaged over

all object classes are reported.

Method HMap [36] PVNet [32] BB8† [34] DeepIM† [45] OURS†

ADD(-S) 30.4 40.77 33.88 55.5 58.37

2D-Proj 60.9 61.06 - 56.6 65.46

† denotes methods that deploy refinement steps.

3.4.6 Results on Occlusion Dataset

Figure 3.7: Qualitative pose estimation results using the proposed method on the Occlusion Dataset. Cyan

bounding boxes correspond to predicted poses and red bounding boxes correspond to ground-truth poses

Overall Results:

Results in Table 3.7 indicate that, the proposed approach achieves significant improvements

over all state-of-the-art RGB-based methods. Specifically, the proposed approach surpasses DeepIM

by an ADD(-S) margin of 2.87% and PVNet by 17.6%. Furthermore, it significantly outperforms

HMap, which was explicitly designed to handle occlusion, by an ADD(-S) margin of 27.97%. The
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Table 3.8: Evaluation Results of PPN compared to other state-of-the-art RGB-based methods that do not

use refinement on three datasets: YCB-Video, LINEMOD and Occlusion using the 2D-Proj metric

Methods PoseCNN [39] HMap [36] PVNet [32] PPN(ours)

YCB-Video 3.72 39.4 47.4 49.3

LINEMOD 62.7 - 99.0 96.12

Occlusion 17.2 60.9 61.06 61.10

significant improvement in performance on the Occlusion dataset, shows the importance of the

different components of MARN, and mainly the spatial multi-attentional block, in robustly recov-

ering the poses of objects under severe occlusion. It is worth noting that the performance of our

approach is averaged over a 3-fold cross-validation process. In terms of ADD(-S) the reported

values of our approach are 58.22, 58.31 and, 58.58. For the 2D-proj metric, the values are 64.87,

65.71 and, 65.80.

In Figure 3.7, examples of pose estimation results using the proposed approach on Occlusion

dataset are given. Even when most objects are heavily occluded, the approach robustly recovers

their poses.

3.4.7 PPN Only: An Efficient Pose Estimator for Real Time Applications

In this experiment, the performance of PPN, the proposed pose estimation network without

refinement, is evaluated and compared with state-of-the-art methods that do not use refinement.

Results in Table 3.8 on three benchmarks suggest that PPN alone performs better than HMap and

PoseCNN on all three datasets, and performs comparably to PVNet.

Unlike these approaches, PPN has the highest speed (50 fps), is completely end-to-end, and

does not require any additional steps such as the PnP algorithm. Thus, this suggests that PPN

alone is fast and robust enough to be deployed in real-world applications.
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3.5 New Capabilities for the Embodied Agent Diana: Enhanced

Awareness of the Real World

This section aims to put the work on object detection and pose estimation described in the

previous sections of this chapter together in a practical experiment. While previous sections sum-

marize findings that are of general applicability, this section may be understood as an application

summary to validate and demonstrate the proposed approach. The proposed object pose estima-

tion approach has achieved great results and was able to beat the existing state-of-the-art methods

on three commonly used benchmarks while running in real-time. For application purposes, the

embodied agent Diana is used as a testbed where the new integrated features are expected to sig-

nificantly enhance its capabilities to interact with the real world. Specifically, the integration of

object detection and pose estimation component will allow Diana to be aware of the real world as

she will now be able to “see" her surroundings, recognize the real objects present in the table in

front of the user and estimate their poses. This capability can open up new areas of applications

for Diana that have not been possible before.

3.5.1 The Embodied Agent Diana

The embodied agent Diana is a multi-modal interactive agent who exists in a virtual world

built on the Unity game engine (see Figure 3.8). The agent can interpret multi-channel inputs

including language, gesture, and emotion in real-time, and engage in collaborative interactions

with a human. [6–8] Diana can recognize the gestures and audio she receives from the user and

follows the instructions to manipulate virtual objects by grasping, lifting, moving, and sliding

them in her virtual world. This world is accessible through a computer connected to a Kinect V2

camera providing both RGB and depth information and a microphone to allow audio inputs from

the user. The embodied agent can assimilate up to 34 individual human gestures translating the

user commands on manipulating the virtual objects and her ability to understand spoken language.

Diana integrates a multi-modal model of semantics on the software side, allowing her to iden-

tify human gestures through its real-time visual recognition system. In order to recognize the
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Figure 3.8: A screenshot of Diana’s world in Unity. Diana manipulates a set of virtual objects in front of

her following the instructions of the user. We also show a human inset in upper right. The user gives Diana

instructions whether through gestures or through vocal dialogue.

user’s gestures in real-time, a convolutional neural network-based machine vision system is used

to translate the sensors’ inputs (RGB + depth) into helpful cues networked to the simulation en-

vironment for joint activity and human-agent communication. For speech recognition, a Visual

Object Concept Modeling Language (VoxML [92]) is used as the platform for multi-modal seman-

tic simulations in the context of human-computer discourse. Overall, agent-human communication

involves integrating inputs from speech, gesture, and action, mediated through a dialogue manager

(DM) that tracks communication and situation-based context variables embodied in a shared sit-

uated simulation. Hence, the obtained human-computer interaction consists more of a dynamic

peer-to-peer conversation than giving and receiving orders.

A practical contribution of the work described in this dissertation is to experiment with inte-

grating the proposed object detection and pose estimation model into Diana’s system. With the

new feature, Diana will not only receive commands from the user, whether through gestures or

audio, but she will now be able to "see" the real-world, recognize the real objects present in the

table in front of the user and estimate their poses.
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3.5.2 Synthetic Dataset Generation

Motivation: A large dataset is a crucial component for training deep neural networks. Com-

puter vision-related networks, in particular, require millions if not billions of images to reach their

full potential. This constraint exists mainly because the learned features are automatically inferred

from the input data, and thus, using small datasets will most likely lead to over-fitting problems.

That being said, collecting and annotating enough data for generalization performance has always

been a tedious and impractical task.

On the one hand, collecting a large dataset may be prohibitively expensive. Nowadays, the

sizes of the available public datasets can give us clues on how challenging real dataset collection

can be. For instance, popular public datasets in image recognition such as ImageNet dataset [93],

where only a single label per image is needed, contains around 1.3 million images. Public datasets

are far smaller for other tasks requiring more complex annotation, such as semantic segmentation.

Microsoft COCO dataset [94] for instance, only contains 328 thousand annotated images. The

more complex the annotation process is, the more challenging the real dataset collection can be.

With tasks in specialized domains such as cancer segmentation in microscopic data, the number

of images per dataset can drop to the order of thousands (example: the CAMELYON dataset [95]

with 1,399 samples). All these examples can illustrate the difficulty in collecting enough valuable

datasets for deep neural networks and machine learning in general.

On the other hand, dataset collection with precise annotation can be challenging and sometimes

impossible for some tasks. Consider the object pose estimation problem, the main topic of this

chapter, where the goal is to annotate a precise 6D pose of objects in the real world. Collecting

real data for this task would require a particular setup such that the object position with respect to

the camera is very well determined. One possible way is to stick the object to the center of a planar

board with markers to provide the corresponding ground-truth poses. The camera moves within a

hemisphere with precise distance from the center of the object and regularly samples viewpoints

of the object. Such setup is challenging to establish and can also introduce inaccuracy to the data

annotation with errors coming from the camera’s movement or the ground-truth poses recovery.
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Figure 3.9: Two types of objects that we used to train our models. The first is a set of wooden dices that

are identical. Though the dices are fairly simple objects, the network is expected to differentiate among the

different faces of the cube given the number of dots they contain. The second set of objects consist of a

set of animal toys. We have twelve different animal including giraffe, elephant, lion, tiger and others. The

challenge with these objects is their relatively small size (the average height of these toys is 4 inches) and

the absence of texture in some of them (such as the rhino and elephant).

Fortunately, many problems in computer vision, such as 6D pose estimation, have well-understood

physical models. These physical models can be readily used to simulate the problem and generate

synthetic datasets for training a machine learning model. Generating synthetic data offers a much

safer and more efficient alternative to real data collection. Furthermore, with proper randomiza-

tion, synthetic data can be generated in large quantities to satisfy the data requirements of modern

machine learning algorithms. As a matter of fact, synthetic data has been used in many works

and various disciplines, including the work described in this dissertation. In Figure 3.9, we show

examples of objects that we have used to train our models.

Approach: Given an object of interest, a synthetic image can be generated by rendering its 3D

model following a pre-generated random 6D pose. For this purpose, Pytorch3D [96] is selected

as the tool to render the objects (this library has also been used in the pose refinement process in

§ 3.2). Pytorch3d is a python-scripted library that is fast and practical to use and can be easily

integrated into the training pipeline. The integration of Pytorch3d allows us to have an online data

generation that can be processed in real-time and online with the training process. As a result,

training the model can consume as many training samples as it requires to converge as the training

process allows an infinite number of training samples.
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For the random pose generation, a set of conditions has to be satisfied. First, the poses are

generated such that the objects are visible to the camera. In order to achieve that, the translation

space has to be limited to the spatial area visible to the camera, which can be defined using the

following conditions given a pose p=[R|t] = [R|(x,y,z)]:

dzmin ≤ z ≤ dzmax where dzmin > 0 and dzmax > 0,

−dx ≤ x ≤ dx where dx ≥ 0, and

−dy ≤ y ≤ dy where dy ≥ 0

(3.12)

where dzmin is the minimum positive distance from the center of the camera on the z-direction at

which the object is fully visible (in the field of view) to the camera. dzmax is the maximum positive

distance from the center of the camera in the z-direction. dx (dy respectively) is the maximum

distance from the center of the camera on the x-axis (y-axis respectively) at which 80% of the object

is visible in the field of view of the camera. We note that we did not restrain the rotation space as

this allows the model to learn more details about the objects of interest and recover accurate 6D

poses from any point of view.

In addition, the obtained rendered images are augmented with random shifting, flipping, and

lighting (contrast, hue, saturation) variations, all while making sure the conditions in equations

(3.12) are met. Furthermore, the background of the rendered images, which are initially dark

backgrounds, are replaced with random real images from the PASCAL VOC dataset [3]. This

augmentation technique will boost the robustness of the network to the noisy background and help

it focus only on the objects of interest and ignore the background. In Figure 3.10 we give examples

of training images where the objects of interest are wooden dices.

Despite the usefulness of synthetic datasets, making sure that the generated data is represen-

tative of the real world remains challenging. For example, if the generated training images are

pixelated, the machine learning model will not generalize well to real world images. Hence, build-

ing high-quality and detailed 3D models of objects is a sensitive and crucial step in data generation.
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Figure 3.10: Examples of training images using the Dice objects. A random pose is first generated such that

the object lies within the field of view of the camera. The object is then rendered using the genrated pose.

The process is repeated for each object. Finally the background is replaced with a random image from the

the PASCAL VOC dataset [3]. Furthrmore, an image augmentation is applied where a variation of spatial

offset, lighting, contrast and saturation is applied. The number of objects per image can vary from 1 up to 5

objects.

The higher quality the 3D models are, the more realistic the training images can be, and the less

domain gap between natural (inference) and synthetic (training) images the model has to handle.

Different modeling tools have been used depending on the complexity of the 3D reconstruction of

the objects of interest.

To build the 3D models of objects with relatively simple geometries (such as dices in Fig-

ure 3.9.A.), Blender [97] was used as the modelling tool. First, the 3D model geometry is con-

structed by specifying the parameters and dimensions of the object. Then, real objects’ textures

are applied by painting the 3D models using texture images obtained from the real objects. For

more complex objects (such as animal toys in Figure 3.9.B.), manual reconstruction can be diffi-

cult and sometimes impossible. In order to build realistic high definition 3D models, it is important

to capture even the small details of the object of interest. Thus manual reconstruction may prove

impractical for complex objects. Consequently, we opted for Qlone [98], which is an online 3D re-

construction tool that builds 3D models by scanning the actual object from different angles. Qlone

is an all-in-one 3D-scanning application that provides a functional interface that allows the user to

scan real objects using a phone’s camera, modify them, and export the result to 3D file formats.

Ultimately, the goal is to run the new pose recovery capability in real-time alongside the other

capabilities of the embodied agent. Thus, additional work has been conducted on integrating the

pose estimation script into Diana’s system. First, the pose estimation models receive image streams
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from the agent’s RGB sensor (Kinect V2) of size 1920×1080 and process them to output the classes

and estimated poses of the objects present in the scene. Then the output is transferred to Diana’s

interactive module.

3.5.3 Experiments and Results

The generated dataset is used to train the network to estimate real object poses. The data

generation process is integrated and runs online within the training scheme, and thus we have

unlimited training data. Additional 5000 samples are also generated for the validation process.

As for the testing phase, the models are tested on real images where a user manipulates a set of

objects. If trained properly, the network is expected to recognize the actual objects and accurately

recover their poses.

Experimental Details

Similar to the initial pose estimation experiments, the models were optimized with Adam op-

timizer with weight factors (α, β , γ, κ) set to (0.1, 0.05, 0.1, 0.01). The model takes as input

image resized to 416× 416 and then split it into 13× 13 grids. The original image size of the input

stream is 1920× 1080, and resizing it to 416× 416 might lead to the loss of important appearance

information. Thus, we crop the input image by removing the border pixels which do not contain

useful information for our task. The cropping step reduces the input size to 1400 × 925, then fur-

ther resized to 416 × 416. An additional weight factor is used, λ, applied to the confidence block

output. Specifically, PPN was trained with λ set to 5 for the cells that contain target objects and

0.5 otherwise. This setting circumvents convergence issues with the confidence values because

otherwise, the early stages of training tend to converge on all zeros (since the number of cells that

contain objects is likely to be much smaller than the cells that do not). In later training stages,

λ was updated to equally penalize false negatives and false positives (λ = 1 for all cells). The

number of points M , in the set of 3D model points Ms, was set to 10, 000 points.

Similar to our previous experiments, three standard performance metrics are used for evalu-

ating pose estimation models: the 2D-projection error, which denotes the percentage of correctly
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Table 3.9: Overall performance of the pose estimation approach on the validation set of the two synthetic

datasets: Dice dataset and Animal toys dataset. We report the same evaluation metrics as in previous exper-

iments (ADD(-S), ADD AUC, and 2D-Proj). We also report the classification accuracy on the Animal toys

dataset to assess the model’s capacity to differentiate among different object classes.

Dataset ADD(-S) ADD AUC 2D-Proj Accuracy

Dice Dataset 95.6 87.2 99.3 -

Animal Toys Dataset 89.36 85.18 90.01 81.2

estimated poses using a 2D Projection Error threshold set to 5 pixels, the Average 3D distance

(ADD), which measures the percentage of correctly estimated poses using the average distance

threshold between the 3D model points transformed using the ground-truth pose and the predicted

pose (set to 10% of the 3D model diameter), and the ADD(-S) AUC. Further details about the

different metrics were treated in § 3.4.2.

Synthetic Datasets Results

The results in Table 3.9 suggest that the proposed approach accurately predicts the 6D poses

of objects in both experiments. The model performance is higher in the first experiment since it

includes only a single type of objects (Dices), achieving an ADD(-S) of 95.6% and a 2D-Proj of

99.3%. Furthermore, though the dices have similar looking faces, the network was able to extract

discriminative patterns (e.g. dots, wood pattern) and accurately estimate the 6 degrees of freedom

related to the dice’s pose.

In the second experiment, the network is expected to differentiate among the different ob-

jects (i.e., animal toys) and extract helpful appearance information for each of the dataset’s object

classes to recover the poses of the different objects. Hence, we see a decrease in performance

of 9.29% in 2D-Proj compared to the first experiment. Additionally, we report the classification

accuracy to evaluate the ability of the network to differentiate among the different classes. We

obtain an accuracy of 81.2%, which proves the effectiveness of the network in the task of object

classification.

We give some qualitative examples of pose estimation results using the proposed approach

on real images in Figure 3.11. Examples 3-B and 3-C show the effectiveness of the model in
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Figure 3.11: Qualitative pose estimation results using the proposed method on the Dice Dataset and the

Animal Toys Dataset. First row shows qualitative results on the validation synthetic set. Cyan bounding

boxes correspond to predicted poses. Row 2 and 3 show results on the test set of the Dice Dataset which

contains images with real dices. Red bounding boxes correspond to predicted poses. Row 2 show images

with only one dice while row 3 shows images with 2 dices. Row4 shows results on the Animal Toys Dataset

with 2 objects. The color in row 4 designs a different object class and predicted class labels are annotated

on the red squares. Row 3 and 4 show the effectiveness of our model in handling multiple objects detection

and pose estimation.
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accurately estimating the poses of objects with partial occlusion caused by the neighboring objects.

Examples 2-A, 2-B and 4-A show the effectiveness of the model in handling partial occlusions

caused by the user holding the objects.

It is also essential to highlight the decrease in the model’s performance when qualitatively

comparing the synthetic images to the real world images. Though the proposed simulation process

can provide an infinite amount of data samples, it does not perfectly represent the natural world in

both visual and physical properties, which causes this gap between both environments known as the

"reality gap". Domain randomization techniques are popular solutions used in this work to bridge

the gap between simulation and reality, such as lightning variations, background randomization,

pose randomization. Though such techniques have helped decrease the gap, the qualitative results

suggest that further efforts to improve our simulation process are needed to reduce this gap. Thus,

future work can include experimenting with gap reduction techniques to improve our simulation

process.

Detailed Results on the Animal Toys Dataset:

In Table 3.10, we summarize the detailed pose estimation results on the Animal toys dataset

dissected by object class in terms of ADD(-S), ADD AUC, and 2D-Proj. Results are collected on

the validation set. The proposed approach achieves the best results on the Parent Giraffe class with

an ADD of 97.5%, followed by the Parent zebra class with 97.3%. The performance increase on

these two classes can be explained by the rich textures of both the Giraffe and Zebra objects. The

long neck and orange dotted skin of the giraffe class, or the zebra pattern of the zebra class are

powerful appearance features the network relies on to detect and estimate the object’s pose.

We note that objects in this dataset are relatively small in size, which explains the challenge

in this dataset. This challenge is further highlighted when comparing the parents classes to the

children classes, where the objects are even smaller. We can see a considerable decrease in perfor-

mance of 10% on average. Thus we conclude that the network can have a decreased performance

with small-sized objects as the object might not cover enough pixels in the input image. Hence,

the network fails to extract useful appearance features for the pose estimation task.
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Table 3.10: Detailed results of the proposed pose estimation approach on the validation set of the generated

synthetic dataset Animal toys in terms of ADD, ADD AUC and 2D-Proj. The results are dissected by object

class. Overall we have 12 different object classes

Objects ADD(-S) ADD AUC 2D-Proj

Parent Giraffe 97.5 96.4 98.3

Child Giraffe 95.2 93.8 95.8

Parent Zebra 97.3 95.9 98.7

Child Zebra 95.2 92.1 95.5

Parent Lion 92.7 87.9 93.4

Child Lion 78.5 69.2 78.2

Parent Elephant 93.5 88.7 94.1

Child Elephant 81.0 79.3 81.6

Parent Tiger 96.0 95.2 97.1

Child Tiger 79.9 72.6 80.7

Parent Rhino 89.4 83.8 89.9

Child Rhino 76.1 67.2 76.8

MEAN 89.36 85.18 90.01
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3.6 Conclusion

In this chapter, we covered a novel end-to-end method for RGB-based 6D pose estimation.

Specifically, the proposed end-to-end approach was mainly composed of two modules. First, PPN

was a fully-CNN-based architecture that produced one-pass pose estimates. Second, MARN was

a pose refinement network that combined visual and optical flow features to estimate accurate

transformations between the predicted and actual object pose. Further, MARN utilized a spatial

multi-attentional block to emphasize important feature parts, making the method more robust. The

proposed full end-to-end model achieved state-of-the-art results on three popular benchmarks.

This chapter also included a practical application of the approach described in this dissertation,

consisted of integrating the proposed object detection and pose estimation model into Diana’s

system. Diana is a multi-modal interactive agent who can conduct a realistic conversation with

users thanks to her capabilities, including gestures and audio recognition, and the ability to reason

and intelligently react. With the new feature, Diana not only receives commands from the user,

whether through gestures or audio, but she is now able to "see" the real world, recognize the natural

objects present in the table in front of the user and estimate their poses.

The model was trained on a synthetic dataset generated by randomly rendering 3D models of

objects reconstructed with adequate 3D modeling tools. Results demonstrated the effectiveness

of our model on accurately recovering the detection and pose estimation of objects in the real

world in front of Diana. They also suggested a slight decrease in performance when switching

from synthetic to real-world images, explained by the reality gap existing between simulation

and reality. Thus, future work can improve our simulation process and experiment with multiple

techniques to reduce this gap.
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Chapter 4

Future Motion Prediction of Moving Actors for

Autonomous Navigation Systems

Intelligent navigation agents depend upon a mixture of perception modules to achieve safe

motion planning. Perception must unfold in highly uncertain, rapidly changing, and interactive

environments shared with other dynamic agents. Planning focuses on the real-time, safe navigation

of such an environment. In this chapter, the focus is on the two perceptive tasks of agent tracking

and motion prediction. Typically, these two tasks are cascaded; agent tracking output feeds into

motion prediction. Such cascaded approaches are usually highly affected by errors propagating

from noisy components. For instance, errors propagated from a noisy tracking module can hinder

the performance of the motion prediction and planning modules. Such problems can result in

catastrophic failures as the system fails to recover from errors accumulated through the pipeline.

Despite the complexities of cascaded interactions, most works on these topics do not examine

how errors propagate and affect downstream modules. This chapter will cover a study that asks

a novel question: does the tracking system, a sub-component of the motion prediction, contribute

to overall accuracy improvements in real-world settings. The goal of this study is to focus on

the tracking module due to the propensity of noise in real-world environments, a reality of sev-

eral common autonomous driving issues like heavy occlusion, crowded scenes, high inter-frame

motion, and camera motion. Thus, this study sheds light on the effectiveness of three motion pre-

diction modules under challenging conditions and evaluates the importance of tracking. Results

prove that, tracking noise can have considerable impact on the performance of motion prediction

models. In real world settings, we might face tracking noise due challenging conditions that is

significant enough to hinder tracking-dependent motion prediction models. In that case, tracking-

free motion prediction methods can achieve better performance than the models that use tracking

information.
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Motion prediction is an indispensable task for planning safe and comfortable maneuvers [99].

Recent works [70, 71] have highlighted two main factors that directly affect the agents future mo-

tion: The short term history of the agents movements and their interactions, and the scene context

including road and crosswalk polygons, lane directions and boundaries, traffic lights, and other

relevant map information. This task is specifically challenging due to the uncertainty of the fu-

ture decisions of the agents, and it is seemingly intuitive predicting the future trajectories said

agents is important. However under certain circumstances, the agent tracking can overly compli-

cates the motion prediction task, and actually decreases performance in the substantial presence of

real-world noise.

Three models are described in this work (in Figure 4.1) that utilize a Bird’s Eye View (BEV)

multi-channel input image representation that integrates both scene context, from a high definition

map, and agents’ motion history, obtained from a working object pose estimation module. All

three models produce both multi-agent trajectory predictions and spatial uncertainty estimations.

The baseline model is the tracking free model (§ 4.2). In order to evaluate the effect of the tracking

module, the tracking information is integrated into two of the models. In one model, an LSTM em-

bedding is integrated to represent the agent’s past states based on its tracking information (§ 4.3).

In the second model (further explained in § 4.4), the identity information obtained from a tracking

module in the BEV input image is integrated using displacement fields (to the best of my knowl-

edge, this input representation is novel in the task of motion prediction). The performance of the

three models is evaluated by using a real-world tracker and conclude that (see § 4.6), in real-world

settings, it is important to study the effect of tracking module on the motion prediction performance

to avoid situations where the tracking module is a hindrance to the system’s performance.

For the following experiments, a few assumptions were made. First, for all models, a high

definition map M of an operating area, comprising road and crosswalk polygons, lane directions

and boundaries and other relevant map information is provided. Second, all models also have

a functioning pose estimation system ingesting the sensor data to detect and pose traffic actors.
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Figure 4.1: Overview of the three described architectures. The input representation is shown as rasterized

into color-coded RGB image for visualization purposes. Each historical agent polygon is rasterized with

the same color as the current polygon but with reduced level of brightness, resulting in the fading effect.

A. represents the Track-free CNN method that relies on the tracking free input to predict the agents future

trajectories. B. is the Track-based CNN method that integrates the tracking information in the input repre-

sentation using displacement vector fields. C. shows the Hybrid method that extends A. by adding an LSTM

encoding to represent each agent history. All agents in A. and C. inputs are represented with the same green

color to show that no identity information was used to differentiate among agents. In B., each agent is rep-

resented with different color to infer their identity information. The actual size of the input representation

is w × h × (nP + 3) where P is the number of past frames and n is equal to 1 or 2 depending on the

architecture.
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Lastly, unless specified differently, a perfect tracking system is available for the tracking-based

models, providing ground-truth tracking of the detected traffic actors.

4.1 Input representation

The static map elements from the high definition map M are encoded in a bird’s eye view

(BEV) image centered on the self-driving vehicle (SDV) where each element of the map, including

driving lanes, crosswalks and traffic lights, is encoded as a binary mask in its own separate channel.

These channels are then rasterized into an RGB image where each element is assigned a different

color, as described in [68]. Furthermore, P additional channels stacked with the map raster are

considered where each channel represents the agents locations at each timestep of the history and

present. Each of these channels is a binary mask encoding the agents top down positions in the

same BEV frame as introduced above. The final input is then formed of P+3 channels representing

map information and agent’s history and present locations. It is important to note here that no

identity information is inferred as all detections of agents at each timestep are treated similarly.

4.2 Tracking free CNN model

In this model, the input multi-channel image is processed, following [82], using a sequence of

2-D convolutions to produce a dense feature representation for each grid cell of the input. Three

1 × 1 convolutional layers are further added to finally output a 3-D tensor of size S × S × 4H

representing the predicted future movements of the agents present in the scene, where S×S is the

size of the grid and H is the number of future predictions. For each grid cell containing an agent

center at the present timestep, the 2-D centers offsets (∆cx,∆cy) are predicted in H future time

horizons. In addition to predicting the future trajectories, the spatial uncertainties of the predictions

are also estimated. Similarly to [82],the centers location uncertainty is decomposed in the along-

track (AT) and cross-track (CT) directions [100] and the uncertainty in each direction is assumed

to follow an increasing linear function with time where the function parameters are model hyper-
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parameters (see § 4.5 for more details). Note that this model utilizes no prior identity information

nor tracking step.

4.3 Hybrid Model

The hybrid model is an extension of the first model (§ 4.2) which further integrates an LSTM

sequence model [70]. The LSTM encodes each agent’s states across past and present timesteps

into a single embedding (Ei) for agent i. In the conducted experiments, an agent state st comprises

position displacements with respect to the present, relative position changes, and speed at each

timestep t where t ∈ 1, ..., P and s1 represents the present state. For each agent, the LSTM

embedding is concatenated with CNN features extracted from the CNN network (as in first model)

at the grid cell containing the agent’s center at the present timestep. The grid cells that do not

contain agent centers are padded with zeros. The obtained feature block is then processed, similarly

with the first model, with three 1× 1 convolutional layers and output a tensor of size S × S × 4H

representing the future trajectories and the corresponding uncertainties.

Note that the use of LSTM to encode an agent’s past trajectory relies on the assumption that

the identity of the agent is well known through time.

4.4 Tracking based CNN Model

This model follows the same architecture as the first model (§ 4.2). The main difference resides

in the input representation; in this model, the identity information is integrated in the input image.

Specifically, instead of representing each timestep from the past with a binary mask to indicate

the presence/absence of a detection at each pixel, a spatio-temporal displacement vector field D ∈

R
w×h×2 is considered at each timestep, where a 2-D vector at each pixel parallels the vector from

the agent center at that timestep, to the center of the agent at the present timestep. w and h are the

width and height of the input image. At the present timestep, a simple binary mask is used, similar

to the initial input representation. The final input image then has 2P + 3 channels.
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Like first model, this model relies on CNNs to operate on the spatial and the temporal dimen-

sion simultaneously and thus it is smaller in size compared to the hybrid model that uses both

CNNs and LSTMs (§ 4.3). Though displacement vector fields are a common representation in the

segmentation task [101, 102], to the best of my knowledge, the application of this technique in the

motion prediction task is novel.

4.5 Loss Function

For the three models, both trajectory prediction and uncertainty estimation are trained jointly.

The prediction errors are projected on the along-track (AT) and cross-track (CT) directions using

the ground-truth heading of agent, and each projected error in one of the two directions is assumed

to be independent from the other and follows a Laplace distribution Laplace(µ, b) with a PDF of a

random Laplacian variable v computed as:

1

2b
exp(−

|v − µ|

b
) (4.1)

where mean µ and diversity b are the Laplace parameters. Ideally the AT and CT errors would

follow a ground-truth distributions of mean µ = 0 and diversities bAT and bCT , respectively. Since,

the uncertainty is expected to increase with time, the diversity is defined as a linearly increasing

function:

bi = αit+ βi (4.2)

where αi and βi are model hyper-parameters defined separately for AT and CT. To train the model,

the Kullback-Leibler (KL) divergence between the ground-truth distribution Laplace(0, bi) and the

predicted distribution Laplace(êi, b̂i) is minimized as in [82] defined as:

KLi = log(
b̂i
bi
) +

bi exp(−
|êi|
bi
) + |êi|

b̂i
− 1 (4.3)

where i is whether AT or CT.
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4.6 Experiments and Results

It is a common practice in the field of motion prediction to rely on the agent’s past motion

information to predict their future trajectory. Such approach makes a major assumption on the

availability of a robust tracking system that provides little-to-no-noise identity information to the

agents in the scene. However, this assumption does not always hold true in real world settings as

the tracking system is always prone to noise. Numerous factors are directly related to the tracking

system and might considerably affect its performance namely occlusion, crowded scenes, high

inter-frame motion... In order to quantify the effect of such conditions on the performance of the

tracking and thus motion prediction components, we conducted a set of exhaustive experiments

on the three motion prediction models described in § 4.2, § 4.4, and § 4.3. These experiments

aim to measure the effect of noise in the tracking information on the motion prediction models

and compare their performances to tracking free methods under these settings. Ultimately, we aim

to explore the importance of the tracking component for the performance prediction module in

challenging scenarios.

For this purpose, this section describes the set of experiments conducted in the above-mentioned

analysis. First, a summary of the set of public datasets used in these experiments is given (see

§ 4.6.1). Then a brief overview of the evaluation metrics that were used to evaluate the perfor-

mance of the three described models is provided (see § 4.6.2). Further, the performance of the

motion prediction methods described in § 4 is evaluated on both datasets in § 4.6.3 and § 4.6.4

where an exhaustive comparison of the models that integrate the identity information of agents to

the models that do not is conducted. In § 4.6.3 (§ 4.6.4 respectively), an overall comparison of the

models is conducted on the Lyft Dataset (Nuscenes dataset respectively). Section § 4.6.3 (§ 4.6.4

respectively) will further depict these results by considering scenarios where the knowledge of

the agent identity may play a crucial role in the performance of the model prediction such as the

case of crowded scenes on the lyft dataset (Nuscenes dataset respectively). Furthermore, the effect

of noise in tracking on the performance of the models is evaluated by applying synthetic noise

(§ 4.6.3, § 4.6.4) as well as realistic noise coming from real-world tracker (§ 4.6.3, § 4.6.4).
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Figure 4.2: The Lyft Motion Prediction Dataset [51]

4.6.1 Datasets

It is important to note that the goal of the proposed work is to shed light on the different aspects

of motion prediction models and factors influencing their performance, rather than comparing the

performance of the proposed models with state-of-the-art methods. Two datasets are used in this

work, the Lyft Prediction Dataset [51] and the Nuscenes Dataset [2].

The Lyft Prediction Dataset (Figure 4.2) is the largest public self-driving dataset for motion

prediction to date, with 1,118 hours of recorded self-driving perception data. It was collected by

a fleet of 20 autonomous vehicles along a fixed route in Palo Alto, California over a four-month

period. It consists of 170,000 scenes, 25 seconds long each capturing the positions and motions of

the surrounding agents including vehicles, cyclists and pedestrians. The dataset also comprises a

high-definition semantic map with 15,242 labelled elements and a high-definition aerial view over

the area.

The nuScenes prediction dataset (Figure 4.3) is an autonomous driving large-scale dataset that

was collected within two distinct regions on different continents (Boston and Singapore), featuring

trajectories from both left-hand and right-hand drive locales. The dataset contains a collection of

around 40,000 scenarios that were extracted from 1,000 scenes in the two locations. Each scene

has a length of 20 seconds captured with a frequency of 2Hz (∆ t = 0.5s). The dataset provides

annotations of up to 23 semantic object classes, as well as high definition maps with 11 annotated

layers. We follow the official benchmark for the nuScenes prediction challenge to split the dataset.

The training set contains 32,186 prediction scenes and the validation set contains 8,560 scenes.
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Figure 4.3: The nuScenes Prediction Dataset [2]

Due to the inaccessible ground truth of the test set of the prediction challenge, we rely on the

validation set to evaluate the models for motion prediction.

4.6.2 Experimental Settings and Evaluation metrics

Throughout the conducted experiments in this chapter, we use a BEV image as the input rep-

resentation with spatial horizontal dimensions 512× 512, where each grid cell is 0.25m× 0.25m.

For the temporal information, we consider a history of h seconds resulting in an input of size of

w × h × nP + 3 where n is the number of channels per timestamp (n = 1 for both tracking-free

CNN model and hybrid model and n = 2 for tracking based CNN model) and P is the number of

frames considered in the input considering the historical frames as well as the present frame. The

output tensor is of size 128× 128× d where d = 4H channels.

For the backbone network, we use ResNet-50 [103] to extract deep features of size S×S×1024.

The models were implemented in PyTorch [104] and trained from scratch with a batch size of 4

with Adam optimizer [105], setting the initial learning rate to 10−4 that was further decreased by

a factor of 0.9 every 200 thousand iterations. We ran our experiments on a Ubuntu server with a

TITAN X GPU with 12 GB of memory.

In the case of the lyft prediction dataset, we consider h = 1s of history which is equivalent to

10 past frames (the scenes were collected at a frequency of 10Hz) and thus P = 11 (10 past frames

and 1 present frame). We chose to use 1s of history for real-time efficiency following [80, 82].

We aim to predict 5s into the future so we select a horizon H = 50. For the nuScenes prediction
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Table 4.1: Overall comparison of the three described methods on the Lyft Prediction Dataset using four

metrics in meters. Given a noise free tracking system, the Hybrid model performs the best in AT and FDE

metrics, while the Track-based model performs the best in CT and ADE metrics.

Method AT CT ADE FDE

Track-free CNN 1.241 0.571 1.379 2.577

Track-based CNN 1.232 0.549 1.328 2.556

Hybrid 1.229 0.567 1.345 2.552

dataset, we consider h = 3s of history which is equivalent to 6 past frames (the scenes were

collected at a frequency of 2Hz) and thus P = 7 (6 past frames and 1 present frame). We chose

to use 3s of history because the frames were collected at a low frequency and thus considering

less history (1s for instance) will provide us with very less information that is not sufficient to give

accurate predictions. Similar to the Lyft prediction dataset experiments, we predict 5s into the

future so we select a horizon H = 10.

For our experiments, we report the along-track (AT) error metric and cross-track (CT) error

metric [100] to measure the difference in the position of the predicted location and the actual

location of the agent, projected onto the actual course at the present time. We also report the

average displacement error (ADE) which is simply the mean l2 distance between the ground truth

and predicted trajectories, and the final displacement error (FDE) [59] which is defined as the l2

distance between the predicted final position and the ground truth final position at the prediction

horizon h. All metrics are reported on the validation dataset as specified in [51] and [2].

4.6.3 Experiments and Results on the Lyft Prediction Dataset

Overall Performance Evaluation

Results of the three models on the Lyft Prediction Dataset [51] are summarized in Table 4.1

with best prediction results highlighted in bold. The performance of the models is compared using

4 different metrics AT, CT, ADE and FDE (as introduced in § 4.6.2) averaged over a prediction

horizon of 5s. It is worth noting that even small metric improvements can make a significant

difference in the performance and safety of the real-world system.
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Using the tracking information in both the Track-based CNN and Hybrid models improves

the performance by 3% and 2.5% respectively, compared to the Track-free CNN model. Com-

paring the Track-based CNN and the Hybrid, the latter obtains better prediction accuracy on the

AT and FDE metrics. This is unsurprising, as LSTMs are efficient in learning long-term temporal

dependencies and thus can better capture the agent dynamics such as velocity and acceleration.

Furthermore, the Track-based CNN model performs better than the Hybrid model in terms of CT

and FDE. Thus, such model would perform better in lane association or in passing scenarios. In

Figure 4.4 qualitative examples of 2 success cases and 2 failure cases for each of the three models

described in this work are given.

Model Performance Depends on Agent Velocity and Traffic Density

Since the dataset encloses a variety of scenarios with large amounts of behavioural observations

and interactions, it is hard to depict the effect of the tracking module by evaluating the full testing

data. Based on preliminary studies, all three models have shown to perform equally well in the

scenarios where agents are moving slowly or are stationary. The scenes are then categorized using

the agent’s velocity and the density of the scene and only scenes with agent velocities v larger

than 3m/s will be considered in the future comparisons. Furthermore, the selected agents are

categorized based on the density of their surrounding environment. The density is measured by

calculating the radius between the agent and their nearest neighbour. A scenario is considered

"dense" if the agent’s radius is less than 4 meters (r < 4) and a scenario "non dense" if the radius

is larger than 10 meters (r > 10).

The results are summarized in the Figure 4.5 which represents a bar plot with the performance

of each scenario in ADE metric for each model. For dense and non-dense scenarios the perfor-

mance change (in percentages) is specified with respect to all agents with v > 3m/s. First, as

expected, the performance decreased in all three models since the selected scenarios are relatively

challenging due to the high inter-frame motion and density of the scenes. Second, the track-free

model significantly decreased in the performance compared to the tracking based models. Compar-

ing to all moving agents (v > 3m/s), the performance of the track-free CNN model has decreased
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Figure 4.4: Examples of qualitative results of the described methods on the Lyft Prediction Dataset. The

target trajectories are plotted in Magenta and the predicted trajectories in Cyan. For clearer visualization,

The scenes are zoomed in and only the trajectories of a subset of the agents are shown. Columns (1),

(2), and (3) show examples using the Track-free CNN model, Hybrid model and Track-based CNN model

respectively. Rows (A) and (B) show success cases. In (A), the uncertainties of the predicted trajectories

are also plotted in light Cyan. Rows (C) and (D) show failure cases. Examples (1)-(C), (2)-(D), (3)-(C)

and (3)-(D) show failure in the estimation of the future direction of the agents. High error is reported in the

cross-track direction. (1)-(C), (1)-(D), (2)-(C) and (3)-(C) show failure in the estimation of the velocity of

the agents. Thus high error is reported in the along-track direction.
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by 12.6% on dense scenarios (r < 4) as compared to a more attenuated decrease of 8.8% and 8.5%

for track-based CNN and hybrid models, respectively. On non dense scenarios (r > 10), the three

models perform more comparably. These findings rightly demonstrate that the tracking informa-

tion plays a crucial role in overcoming challenging scenarios, such as a very crowded scene where

the input representation of the agents can become less effective. However, for other scenarios, such

as non dense scenarios, the three models seem to perform comparably well. This is the noise-free

condition — in the following sections, the three models are reevaluated in the context of tracking

noise.

Figure 4.5: Performance evaluation of the described methods in ADE (m) on agents moving with a velocity

larger than 3m/s on the Lyft Prediction Dataset [51]. The scene density factor was further considered. The

radius r between a given agent and their closest neighbor was calculated and those with r < 4m in one

experiment (dense scenarios) and r > 10m in a second experiment (non dense scenarios) were selected.

The performance of the three methods degrade in dense scenarios. The decrease is most pronounced with

Track-free model which shows the importance of tracking information under these conditions.

Performance Evaluation with Noisy Tracker

In these experiments, the effect of tracking noise on the performance of the three models is

evaluated. Being independent from the tracking information, the performance of the track-free

CNN model remains constant in these experiments. Synthetic noise was applied to the tracking

system and its effect was evaluated on the performance of the two tracking based models. In the

first set of experiments, summarized in Figure 4.6, random identity switches with varying chances

per track were performed. The probability of an identity switch was varied from 0% to 20%
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Figure 4.6: Performance Evaluation of the described methods in ADE (m) with synthetic noise applied

to the tracking information on the Lyft Prediction Dataset [51]. An increasing chance of 1 identity switch

per track was experimented with. The performance of the tracking based methods (track-based CNN and

Hybrid) decreases with increasing tracking noise. The track-free model is not affected by tracking noise.

Figure 4.7: Performance Evaluation of the described methods in ADE (m) with synthetic noise applied to

the tracking information on the Lyft Prediction Dataset [51]. Synthetic tracking noise of 1% chance and

an increasing number of identity switches per track were experimented with. 1 id switch represent identity

switch at only 1 timestamp. 2 id switches represent an identity switch for 2 consecutive timestamps and

N id switch represent 1 identity switch that started at a random timestamp and continued until the end of

the scene. The performance of the tracking based methods (track-based CNN and Hybrid) decrease with

increasing tracking noise. The track-free model is not affected by tracking noise.
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per track. The performance of both the track-based CNN and hybrid model has decreased with

increasing noise, degrading slightly around 1% chance and then drastically after 2% chance of

identity switch per track. Comparing the tracking based models to the track-free CNN model,

the latter obtains better performance on all experiments with noise larger than 0.8%. The drastic

decrease in performance of both the track-based CNN and Hybrid model reveals that they both rely

heavily on the tracking information to capture the agents’ past movements and thus at a certain level

(around 0.8% noise chance), the cascaded tracking noise starts to negatively affect the performance

of these models. With noise chance larger than 1%, the tracking noise has a significant negative

effect on the performance of these models. For experiments with noise chance larger than 2%,

the Hybrid model is clearly more robust than the Track-based CNN model. Though the Hybrid

model is highly dependent on the LSTM input enclosing the tracking information, it also relies

on the input 2D representation which is independent from the tracking module, which explains its

relative robustness to noise compared to track-based CNN model.

The second set of experiments presented in Figure 4.7, comprises common identity switch

scenarios. The identity switch chance was set to 1% per track throughout the experiments and

three scenarios were considered: an identity switch happening at a single random timestamp (1

id switch), an identity switch happening for two consecutive timestamps (2 id switches), and an

identity switch happening at a random timestamp and continuing until the end of the scene (N id

switches). Similarly to the first set of experiments, the performance of both the track-based CNN

and hybrid model declined in all three scenarios and fell behind the performance of the track-free

model. This drop proves their high dependency to tracking. The Hybrid model, for instance, has

decreased from 1.345 to 1.485 in ADE when applying 1 id switch with a 1% chance. It then

fell by 35.5% and 59.1% when applying 2 id switches and N id switches respectively. Similar to

the findings in the previous experiments, the Hybrid model is more robust to noise compared to

Track-based CNN model when dealing with 2 id switches and N id switches.
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Table 4.2: Overall comparison of the described methods using four metrics (m) using StanfordIPRL-TRI

tracker [1] on the Lyft Prediction Dataset [51]. Real-world trackers introduce noise to the tracking informa-

tion which affects the performance of track-based methods (Track-based CNN and Hybrid methods).

Method AT CT ADE FDE

Track-free CNN 1.241 0.571 1.379 2.577

Track-based CNN 1.268 0.607 1.478 3.013

Hybrid 1.263 0.611 1.485 2.987

Peformance Evaluation with Real-world Tracker:

In this section the performance of the tracking based models using a real-world tracker is

evaluated. To this end, the tracking information provided in the dataset was replaced with the

output of a real-world, popular tracker. The experiments conducted in the sections § 4.6.3 and

§ 4.6.3 on the tracking based models are then reproduced in this section. The StanfordIPRL-

TRI tracker introduced in Chiu et al. [1] was used to run the experiments based on their publicly

available code and parameters suggested in their work. The StanfordIPRL-TRI tracker won the

nuscenes challenge competition [2] by achieving state-of-the-art results on the nuscenes dataset.

The results of the Track-based CNN and Hybrid models using the StanfordIPRL-TRI tracker

are summarized in Table 4.2. The track-free CNN model does not depend on the tracking module

so its performance remains the same as in Table 4.1. The results suggest that there is a slight

drop in performance of the two tracking based models when using the StanfordIPRL-TRI tracker.

Compared to the track-free CNN model, the track-based CNN model fell behind by 7.17% in

ADE, 2.17% in AT and 6.3% in CT. Similarly, the Hybrid model dropped back by 7.68% in ADE,

1.77% in AT and 7% in CT with respect to the track-free CNN model. These findings suggest

that state-of-the-art trackers can introduce noise that will be cascaded to the motion prediction

module. If practitioners do not take preventive measures, the introduced noise can ultimately

affect the motion prediction performance. These results also indicate that, in the case of noisy

tracking information, the tracking free model performs better than the tracking based models which

makes it a potential option to avoid cascaded noise. Alternatively, the motion prediction model can
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be trained to overcome noisy inputs from the tracking step and thus robustly recovers accurate

predictions even under challenging conditions.

Figure 4.8: Performance evaluation of the described methods using StanfordIPRL-TRI tracker [1] in ADE

(m) on agents moving with a velocity larger than 3m/s on the Lyft Prediction Dataset [51]. The scene

density factor was further considered. The radius r between a given agent and their closest neighbor was

calculated and those with r < 4m in one experiment (dense scenarios) and r > 10m in a second experi-

ment (non dense scenarios) were selected. The performance decrease of the track-based methods is more

pronounced using the real-world tracker due to the noise introduced to the tracking information.

Further experiments are conducted to evaluate the performance of models using the StanfordIPRL-

TRI tracker on challenging scenarios, as described in § 4.6.3, where the agents that moved at a

speed higher than 3m/s were selected. The dense-versus-non-dense scenarios were also consid-

ered where the closest neighbor to the agent was located at a radius less than 4 meters and larger

than 10 meters, for dense and non dense respectively. Results of this experiment are outlined in

Figure 4.8.

Results reveal that, similarly to the track-free CNN model, the tracking based models perfor-

mance has dropped. The performance of the Track-based CNN model and Hybrid model dropped

by 4% and 3.6%, respectively, compared to track-free CNN model. For the dense scenarios, the

track-based CNN performance drops by 14.8% compared to the "all moving agents scenario"

(v > 3m/s) (§ 4.6.3), while the track-free model has dropped by 12.6%. These results sug-

gest that though the performance has decreased across the three models due to the complexity of

the scenarios, the track-free model performs the best among the three models. Furthermore, the
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Track-free ModelTrack-based Model
Track-based Model 

(with real tracker)

(A)

(B)

Figure 4.9: Qualitative evaluation on the Lyft Prediction Dataset [51] in the case of a crowded scene where

an identity switch happened. The performance of the track-based CNN model using ground-truth tracking

(1), the track-free CNN model (2), and the track-based CNN model using StanfordIPRL-TRI tracker (3), in

2 examples (A) and (B) is shown.
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Table 4.3: Overall performance comparison of the three described methods on the nuScenes Prediction

Dataset using four metrics in meters (AT, CT, ADE, and FDE). Best prediction results shown in bold. Given

a noise free tracking system, the Track-based model performs the best in all metrics, the Hybrid model

performs the second best and the Track-free model performs the worst. Thus, tracking information does

help improve the performance of the motion prediction module. The performance of the three models

decreased on the nuScenes prediction dataset compared to the Lyft Prediction Dataset (see Table 4.1) which

indicates that the scenes are more challenging in the nuScenes prediction dataset.

Method AT CT ADE FDE

Track-free CNN 2.879 1.684 3.798 6.377

Track-based CNN 2.215 1.114 3.187 5.219

Hybrid 2.435 1.283 3.316 5.447

decrease in performance is more highlighted in the more challenging scenarios (v > 3m/s and

r < 4) where the Track-based CNN model’s ADE decreases to 2.181m as opposed to 2.056m for

the track-free CNN model. This finding is unsurprising since the tracking based models are more

affected by the tracking noise in more challenging scenarios where they heavily rely on tracking

information.

In Figure 4.9, examples of challenging scenarios are highlighted, with crowded scenes where

identity switches happened, and the performance of the Track-based CNN model, using real-world

tracker [1], is compared with the Track-free CNN model and Track-based CNN model using the

ground-truth tracking information (no identity switch for this model). Comparing the first and third

row, the performance of the track-based model, using the real-world tracker, (third row) degrades

compared to the track-based model using the ground-truth tracker (first row) in the presence of

identity switches. Comparing the second and third row, both models do not perform well in the

two proposed scenarios. However, the track-free model is more robust to crowded scenes.

4.6.4 Experiments and Results on the nuScenes Prediction Dataset

Overall Performance Evaluation

Results of the three models’ performance on the nuScenes prediction dataset are summarized

in Table 4.3 with best prediction results shown in bold. The models’ performances are compared

using four different metrics AT, CT, ADE, and FDE (as introduced in § 4.6.2) averaged over a
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prediction horizon of 5s. It is worth noting again that even minor metric improvements in these ex-

periments can make a significant difference in the performance and safety of the real-world system.

Based on these results, similar conclusions to those on the Lyft Prediction Dataset can be deduced.

Notably, both the Track-based CNN and Hybrid models outperform the Track-free CNN model on

the nuScenes Prediction Dataset by 0.664m and 0.444m, respectively. These results further prove

that accurate tracking is an essential factor for improving motion prediction performance. Com-

paring the models’ results on the two datasets, all three models have decreased in performance

on the nuScenes Prediction dataset compared to the Lyft Prediction dataset. This decrease can be

explained by the low inter-frame rate and the more challenging scenarios (crowdedness, occlusion,

variety of scenes) in the nuScenes dataset. Considering the tracking-based methods (Track-based

and Hybrid), the Track-based CNN obtains better predictions by considering all metrics. This

finding varies from the results on the Lyft Prediction Dataset. Though LSTMs are efficient in cap-

turing the long-term temporal dependencies of the agents’ motion, their integration in the Hybrid

model has indicated minor performance improvement compared to the model integrating displace-

ment fields (the Hybrid model improved the performance of the baseline by only 0.444m while the

track-based model improved by 0.664m). Thus, this latter would perform better in more challeng-

ing conditions like those presented in nuScenes dataset. In Figure 4.10 qualitative examples on the

nuScenes dataset of one success case and one failure case for each of the three models described

in this work are given.

Model Performance Depends on Agent Velocity and Traffic Density

NuScenes Prediction is an exhaustive dataset that encloses a variety of scenarios and situations.

Thus, further categorization of the different scenes is needed to thoroughly understand the effect

of the tracking module on the performance. This section describes similar experiments to those

detailed in § 4.6.3 on the Lyft Prediction Dataset where a categorization of the scenes is applied

based on the agents’ velocities and the crowdedness of the scene. First, all models have shown to

perform considerably well when agents are moving slowly or are stationary, based on preliminary

studies. Thus we will only focus on the cases where agents move faster than 3m/s. Furthermore,
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Figure 4.10: Results examples of the described methods on the nuScenes dataset. The target trajectories are

plotted in Magenta and the predicted trajectories in Cyan. For clearer visualization, The scenes are zoomed

in and only the trajectories of a subset of the agents are drawn. Rows (1), (2), and (3) are examples using

the Track-free CNN model, Hybrid model and Track-based CNN model respectively. Column (A) shows

success cases. The uncertainties of the predicted trajectories are also plotted in light Blue. Column (B)

shows failure cases. (1)-(B), and (3)-(B) show failure in the estimation of the velocity of the agents. Thus

high error is reported in the along-track direction. Example (2)-(B) shows failure in the estimation of the

future direction of the agents. High error is reported in the cross-track direction.

88



Figure 4.11: Performance evaluation of the described motion prediction methods on the nuScenes dataset

[2] using ground-truth tracking information on agents moving with a velocity larger than 3m/s. The scene

density factor was also considered to further categorize the scenarios. The radius r between a given agent

and their closest neighbor was calculated and those with r < 4m in one experiment (dense scenarios) and

r > 10m in a second experiment (non dense scenarios) were selected. The performance of the three methods

degrade in dense scenarios. The decrease is most pronounced with Track-free model which consolidates the

importance of tracking information under these conditions.

the selected agents are categorized based on the density of their surrounding environment. The

density is measured by calculating the radius between the agent and their nearest neighbor. A

scenario is considered "dense" if the agent’s radius is less than 4 meters (r < 4) and a scenario

"non dense" if the radius is larger than 10 meters (r > 10).

The results are summarized in Figure 4.11. The figure represents a bar plot with the models’

performances on each scenes category in ADE metric. For dense and non-dense scenarios, the

performance change (in percentages) is specified for all agents with v > 3m/s (red bars). First,

focusing on the set of moving agents with a velocity larger than 3m/s represented in red bars, the

performance decreased in all three models since the selected scenarios are relatively challenging

due to the high inter-frame motion and density of the scenes. The decrease in performance when

considering the moving agents only as opposed to the overall performance is more pronounced in

the nuScenes dataset (with a decrease of 0.517 m in ADE) than in the Lyft dataset (with a decrease

in ADE of 0.446 m). This drop can be explained by the relatively low frame rate of the nuScenes
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dataset that, overlapped with the high inter-frame motion, has led to an input with temporally more

distant states to represent the past motion of the agents compared to the Lyft dataset.

Second, the track-free model significantly decreased in performance compared to the tracking-

based models. Compared to all moving agents (v > 3m/s, red bar), the performance of the

track-free CNN model has decreased by 8.7% on dense scenarios (r < 4, green bar) as opposed to

a more attenuated decrease of 4% and 6.1% for track-based CNN and hybrid models, respectively.

On non-dense scenarios (r > 10, blue bar), the three models perform better than the average

performance of moving agents (red bars) with a more attenuated improvement for the track-free

CNN model (4.045 m compared to 3.507 m and 3.621 m for the track-based models). These

findings rightly demonstrate that the tracking information does improve the motion prediction

model’s performance in challenging scenarios, such as a very crowded scene where the input 2D

BEV representation of the detected agents can become less effective. However, for other scenarios,

such as non-dense scenarios, the 2D representation is solely a powerful input representation for

effective motion prediction models.

In the non-dense experiments (blue bars), the track-free model performs worse than both the

tracking-based models. This finding is different in the case of the Lyft Dataset, where all three

models performed comparably. We conclude that the non-dense scenarios with moving agents at

v > 3m/s in the nuScenes dataset are more challenging than those in the Lyft dataset and that the

importance of the tracking information is more highlighted in the case of the nuScenes dataset.

We note that the described experiments were carried out with the ground-truth tracking in-

formation provided in the dataset, which we assume is perfect and noise-free. In the following

experiments, the performance of the three models will be re-evaluated with noisy trackers.

Performance Evaluation with Noisy Tracker

These experiments aim to study the effect of synthetic tracking noise on the performance of

motion prediction models on the nuScenes dataset. First, as mentioned in the Lyft dataset experi-

ments, the track-free CNN model is not affected by the noise applied to the tracking information.

It treats each past frame as independent detections and assumes no direct correlation between
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Figure 4.12: Performance Evaluation of the described methods the nuScenes dataset with synthetic noise

applied to the tracking information. Results reported in ADE (m). An increasing chance of 1 identity switch

per track was experimented with. The performance of the tracking based methods (track-based CNN and

Hybrid) decreases with increasing tracking noise. The track-free model is not affected by tracking noise.

detections across frames. Thus, the performance of this model remains constant across these ex-

periments. Second, the effect of synthetic noise is evaluated on the two tracking-based models

(track-based CNN and Hybrid) by conducting two sets of experiments (described in § 4.6.3). The

first set of experiments varies the chances of random identity switches per track from 0% to 20%.

Results of these experiments are presented in Figure 4.12. A similar trend is observed to that on

the Lyft dataset (Figure 4.6). The performance of both the track-based CNN and hybrid model is

highly affected by the tracking noise. Around an identity switch chance of 1%, the performances

of the three models become comparable. Then the tracking-based models decrease in performance

with higher tracking noise chances, proving the track-based models’ high sensitivity to the tracking

noise. Furthermore, we compare the performance of the tracking-based models. Though the track-

based CNN model performs better than the hybrid model when no noise is applied to the tracking

information, its performance quickly falls behind the Hybrid model when we apply tracking noise.

Thus we conclude that the two tracking-based models are both sensitive to the tracking noise, with

the track-based CNN having a higher sensitivity to the tracking noise with chances higher than

2%. Though the Hybrid model is highly dependent on the LSTM input enclosing the tracking
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information, it also relies on the input image independent of the tracking module, which explains

its relative robustness to noise compared to the track-based CNN model.

Figure 4.13: Performance Evaluation of the described methods on the nuScenes dataset with synthetic noise

applied to the tracking information. Results reported in ADE (m). Synthetic tracking noise of 1% chance

and an increasing number of identity switches per track were experimented with. 1 id switch represent

identity switch at only 1 timestamp. 2 id switches represent an identity switch for 2 consecutive timestamps

and N id switch represent 1 identity switch that started at a random timestamp and continued until the end

of the scene. The performance of the tracking based methods (track-based CNN and Hybrid) decreases with

increasing tracking noise. The track-free model is not affected by tracking noise.

The second set of experiments reported in Figure 4.13 varies the number of identity switches

per track at a constant chance of 1%. Further details of these experiments are given on the Lyft

dataset tracking noise experiments in § 4.6.3. A similar trend to the first set of experiments is seen.

Both tracking-based models decrease with an increasing number of identity switches translating the

increasing level of noise in the tracking information. Similarly, the hybrid model indicates slightly

higher robustness to tracking noise, as highlighted in the first set of experiments. The track-based

CNN model falls behind the hybrid model with tracking noise higher or equal to 1 identity switch

per track. In the scenario of one identity switch continuing until the end of the scene (N id switch),

the hybrid model’s performance outperforms the track-based CNN model by 0.5 meters in ADE.
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Table 4.4: Overall comparison of the described methods using four metrics (m) using StanfordIPRL-TRI

tracker [1] on the nuScenes dataset [2]. Real-world trackers introduce noise to the tracking information

which affects the performance of track-based methods (Track-based CNN and Hybrid methods).

Method AT CT ADE FDE

Track-free CNN 2.879 1.684 3.798 6.377

Track-based CNN 3.343 1.927 4.292 6.834

Hybrid 3.047 1.858 3.997 6.739

In contrast, the track-free model maintains its higher performance of 3.6 meters gap in ADE with

the track-based CNN model.

Peformance Evaluation with Real-world Tracker:

In this section, we reproduce the experiments described in § 4.6.3 on the nuScenes prediction

dataset. Similarly, the ground-truth tracking information is replaced with the output of the real-

world tracker StanfordIPRL-TRI introduced in [1] and fed to the motion prediction tracking based

models. The StanfordIPRL-TRI tracker was used to run the experiments based on their publicly

available code, and parameters suggested in their work. We recall that The StanfordIPRL-TRI

tracker won the nuScenes challenge competition [2] by achieving state-of-the-art results in the task

of tracking on the nuscenes dataset.

The results of the Track-based CNN and Hybrid models using the StanfordIPRL-TRI tracker

on the nuScenes dataset are summarized in Table 4.4. Again, the track-free CNN model does not

depend on the tracking module, so its performance remains constant and equal to the results pre-

sented in Table 4.3. Results in Table 4.4 reveal a decrease in performance of the tracking-based

models using the StanfordIPRL-TRI tracker. Tracking-based models fell behind the track-free

model by a drop of 0.168m and 0.464m in AT for the hybrid model and the track-based CNN

model, respectively. These findings further consolidate the findings of the experiments on the

Lyft dataset. Even real-world trackers can introduce noise that affects the performance of motion

prediction models. Thus, a preliminary study on the tracking noise effect is recommended. Fur-

thermore, these results suggest that, in the case of tracking noise, tracking-free motion prediction
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models are preferred. Alternatively, the motion prediction model should be trained to ignore the

noise coming from upstream processes and thus be robust to noise propagation.

Figure 4.14: Performance evaluation of the described methods in ADE (m) on agents moving with a velocity

larger than 3m/s. The scene density factor was further considered. The radius r between a given agent and

their closest neighbor was calculated and those with r < 4m in one experiment (dense scenarios) and

r > 10m in a second experiment (non dense scenarios) were selected. The performance decrease of the

track-based methods is more pronounced using the real-world tracker due to the noise introduced to the

tracking information.

The experiments described in § 4.6.3 are reproduced with a real-world tracker on the nuScenes

dataset to analyze further the performance of the described models under different conditions and

scenarios. The different scenes are grouped by the density factor (dense with the closest distance

between any two actors is less than 4m vs. non-dense with the closest distance is larger than 10m)

and actors speed (considering only actors with speed higher than 3m/s). Results are summarized

in Figure 4.14.

Results demonstrate that, when considering all moving agents (red bars in Figure 4.14), the

tracking-based models have decreased in performance when using real-world tracker with an ADE

drop of 0.963 m and 0.911 m for the track-based CNN and hybrid models, respectively. The de-

crease in performance has led to the tracking-based models falling behind the track-free model with

an improvement of 0.272m in ADE compared to the track-based CNN model on all moving agents.

For the dense scenarios (green bars in Figure 4.14) where the tracker is more prone to mistakes,
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the decrease in performance compared to all moving agents was noticed on all models with a more

pronounced gap for the tracking-based models (19.9% and 20.7% for track-based CNN and hybrid

models, respectively). For the non-dense scenarios (blue bars in Figure 4.14), all models perform

comparably with a slight improvement for the track-based CNN model. In conclusion, these re-

sults suggest that the tracking noise has more effect on the models’ performances in challenging

scenarios where tracking is more important.

4.7 Conclusion

This chapter shed light on two major perception components of the autonomous navigation

systems known as tracking and motion prediction. The two components are typically cascaded

and are used to establish safe and reliable motion planning. However, such cascaded approaches

are typically highly sensitive to error propagation from one component to another. The study

described in this chapter aimed to analyze and highlight the effect of noise propagation in motion

prediction which can lead to catastrophic failures if not studied and addressed thoroughly.

To this end, this chapter described a comprehensive evaluation of three motion prediction mod-

els. These models were used as testbeds to evaluate the effect of tracking noise on the motion

prediction performance and to compare the tracking-based to the tracking-free alternatives. The

first, the Track-free CNN model, operated on a BEV input created based on a high definition map

and agent detections, with no tracking information included. The second, the Hybrid model, ex-

tended the first model by integrating the tracking information in LSTM embeddings of the agent’s

past states. The third, the Track-based CNN model, integrated the tracking information in the

BEV input using spatio-temporal displacement fields. The three models were experimentally com-

pared across different conditions: no-noise using the ground-truth tracking information provided

by the datasets, synthetic-noise introduced by applying random identity switches to the ground-

truth tracking information, and real-noise conditions using a real-world challenge winning tracker.

These experiments were conducted on the two largest motion prediction datasets: The Lyft predic-

tion dataset [51] and the nuScenes prediction dataset [2].
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Results indicated that, while the tracking-based models performed better than the track-free

model in the noise-free condition, their performance rapidly degraded when the tracking system

produced noise — resulting in them falling behind the tracking-free system performance. The

takeaway from this study is that practitioners should be aware of the effect of tracking noise on the

motion prediction performance and should consider it when selecting their approach. Furthermore,

the tracking-free models can be, in the case of an inevitable tracking noise, a potential option that

is more robust when creating real-world applications. As a matter of fact, preliminary experiments

could be conducted before deciding on the final approach. For instance, a comparative study on the

motion prediction models with and without tracking step can be done. Alternatively, an end-to-end

approach could be adopted with a thorough performance analysis to make sure that the motion

prediction model learns to ignore noisy inputs from the tracker and robustly recovers accurate

predictions under various conditions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

As the robots industry continues to grow considerably, so does the number of challenges the

companies face as clients have higher expectations for their products’ performance. One of these

challenges is the robot’s adaptability to the dynamic, continuously changing environment they are

operating in and their ability to handle the incredible amounts of noise and uncertainty. Thus, one

key component, towards which companies are putting more effort, is the perception module which

is responsible for translating the world’s percepts into useful cues understandable by the robot.

The work described in this dissertation shed light on this essential module and treated a subset of

its components.

As a first step, this work studied the robot’s ability to assimilate its surroundings by analyzing

and identifying its different components. In short, the first goal was to allow the robot to detect

objects, identify them and recover their 6D poses. For this purpose, a novel end-to-end method for

RGB-only 6D pose estimation was introduced. Specifically, the proposed approach was composed

of two modules: First, PPN, a fully-CNN-based architecture that produced initial pose estimates.

Second, MARN, a pose refinement network that combined visual and flow features to estimate

accurate transformations between the predicted and actual object pose. MARN utilized a spatial

multi-attentional block to emphasize important feature parts, making the method more robust. The

full end-to-end model achieved state-of-the-art results on three popular benchmarks. It is worth

noting that the reported results of our approach were based on a 3-fold cross-validation procedure

which can be different than the procedure adopted by the other existing methods.

This work also included a practical contribution, which integrated the proposed object detection

and pose estimation model into the multi-modal interactive agent Diana. The agent conducted

interactive conversations with users, made human-like reasoning and intelligently reacted with
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them. With the new feature, Diana not only received commands from the user, whether through

gestures or audio, but she could also "see" the real world, recognized the natural objects present in

the table in front of the user and estimated their poses. The model was trained on a synthetic dataset

generated by randomly rendering 3D models of objects reconstructed with adequate 3D modeling

tools. Results confirmed the effectiveness of the proposed model on accurately recovering the

detection and pose estimation of objects in the real world in front of Diana.

The second topic described in this dissertation revolved around the navigation capability of

robots. Specifically, it tackles two essential components known as tracking and motion predic-

tion. The study aimed to analyze the performance of navigation systems under various conditions

and highlight the effect of tracking noise propagation on motion prediction, which can lead to

catastrophic failures if not studied and addressed thoroughly. For this purpose, the study covered a

comprehensive evaluation of three motion prediction models. These models were used as test-beds

to evaluate the effect of tracking noise on the motion prediction performance and to compare the

tracking-based to the tracking-free alternatives. The first, the Track-free CNN model, operated on a

BEV input created based on a high definition map and agent detections, with no tracking informa-

tion included. The second, the Hybrid model, extended the first model by integrating the tracking

information in LSTM embeddings of the agent’s past states. The third, the Track-based CNN

model, integrated the tracking information in the BEV input using spatio-temporal displacement

fields. The three models were experimentally compared across different noise levels: no-noise

using ground-truth tracking information, synthetic noise by applying random identity switches to

the ground-truth tracking information, and real-noise condition using a real-world tracker. These

experiments were conducted on the two largest motion prediction datasets to date: The Lyft pre-

diction dataset [51] and the nuScenes prediction dataset [2].

The obtained results showed that tracking-based models performed better in our experiments

than the track-free model in noise-free conditions with higher performance gap in the more chal-

lenging conditions, proving that accurate tracking is an important factor for improving motion pre-

diction performance. With the introduction of tracking noise, the performance of the three models
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became comparable around an identity switch chance of 1%, then the performance of tracking-

based models degraded and fell behind that of the tracking-free model. The tracking-based mod-

els’ decrease in performance with higher tracking noise chances, proved the high sensitivity of

the track-based models to the tracking noise. Further results of the tracking-based models using

the StanfordIPRL-TRI tracker, the nuScenes challenge winner, revealed that even state-of-the-art

trackers could introduce tracking noise which affected the performance of motion prediction mod-

els.

Considering the tracking-based methods (Track-based CNN and Hybrid), the results indicated

that though LSTMs efficiently capture the long-term temporal dependencies of the agent’s motion,

the model integrating displacement fields would perform better in more challenging scenarios.

This conclusion quickly became invalid with the introduction of noise, where hybrid models re-

lying on both 2d representations inputs and LSTMs revealed higher robustness to tracking noise

compared to those integrating displacement fields. These results indicate that though the Hybrid

model is highly dependent on the LSTM input enclosing the tracking information, it also relies

on the input image, independent of the tracking module, which explains its relative robustness to

noise compared to the track-based CNN model.

In conclusion, the takeaway from this study is that effective and robust trackers introducing lit-

tle to no noise are essential for effective motion prediction models that use the tracking information.

Furthermore, practitioners should be aware of the effect of tracking noise on the motion prediction

performance and should consider that when selecting their approach. Finally, the tracking-free

models can be a potential alternative, in the case of an inevitable tracking noise, which can be

a more robust option when creating real-world applications. Potentially, it is recommended to

conduct preliminary experiments before deciding on the final system. For instance, a thorough

analysis on the noise level of the tracker in challenging conditions is encouraged. Furthermore, a

comparative study on the motion prediction models with and without tracking step can be done.

Alternatively, an end-to-end approach could be adopted with a thorough performance analysis to
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make sure that the motion prediction model learns to ignore noisy inputs from the tracker and

robustly recovers accurate predictions under various conditions.

5.2 Future Work

This dissertation aimed to tackle crucial aspects of the perception capability for intelligent mo-

bile robots. The first contribution consisted of an effective object detector and pose estimator that

achieved state-of-the-art results on three public benchmarks. The proposed approach had two main

components: PPN, a fast object detector and pose estimator that takes only a single RGB as input

and does not require any additional information such as the 3D models of objects, and MARN,

a pose refiner that improves the initial pose estimates by reducing the residual poses. In contrast

to PPN, MARN requires the knowledge of the 3D models of objects of interest to operate. This

constraint can affect the adaptability of MARN to different pose estimation tasks. For instance, if

the target objects had no 3D models due to the unavailability of the real object. Similarly, when

the goal is to estimate the pose of similar-looking objects that do not necessarily have the same

3D models, such as in the context of self-driving cars (including cars, buses and motorcycles).

Thus, future work can include ways to improve the refinement process by removing the need for

prior knowledge of 3D models while maintaining similar or better performance. Furthermore, the

iterative nature of the refiner can considerably increase time consumption if multiple iterations

are needed to reach the desired performance. Thus, time optimization is an important topic that

can be an extension to this work. Besides, the reported results of our approach were based on a

3-fold cross-validation procedure which can be different than the procedure adopted by the other

existing methods. Thus, future work can reproduce the same experiments for the existing methods

and perform an exhaustive comparison of the different performances. Finally, future work can also

include the experimentation with more variations in architecture and training parameters.

The second contribution of this work consisted in integrating the proposed detector and pose

estimator into the CwC interactive embodied agent Diana [7]. The new capability enhanced the

interactive power of Diana with the surrounding real world by allowing her to "see" the real world,
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recognize the natural objects present in the table in front of the user and estimate their poses. Such

capability can open up the door to many improvements in Diana’s system. One potential extension

to this work can include Diana interactively playing games with the user telling them if one object is

missing from the table and identifying it. Another potential improvement could be communication

through imitation with the user. Diana can imitate the user’s layout of real objects in the table in

front of them using her virtual objects without addressing verbal or gesture commands.

This dissertation’s third and final contribution consisted of a comprehensive analysis of noise

propagation in the context of motion prediction, where the effect of tracking noise on the per-

formance is thoroughly studied and evaluated. The experiments were conducted on three motion

prediction models where one model was used as a tracking-free baseline, and the two other models

used the tracking information. The Track-based CNN is one of the models that used the tracking

information encoded as displacement fields in the 2D input representation. Though displacement

fields are known in other tasks, we believe their application to motion prediction is novel. Thus,

future research can include ameliorating the performance of the Track-based CNN as a novel ap-

proach for motion prediction.

Finally, this dissertation focused on the study of subsets of an efficient and effective perception

module. For this purpose, this work included: An object recognition and pose estimation model

which allowed to detect objects of interest in the input frame and recover their poses. Second, three

motion prediction models which were used to conduct an analysis on the inter-dependency between

the tracking and the motion prediction task leads to the fact that we can achieve great results on the

motion prediction task directly from the detection and pose estimation results without the need for

an additional, time-consuming tracking module. Recently, many researchers have been interested

in Multi-task Learning (MTL) [106]. MTL has shown that learning multiple tasks jointly can

lead to greater performance improvement than learning them individually since the other tasks

can leverage the knowledge contained in one task. For example, leveraging motion prediction

information can help reduce the false negatives of the detection task when dealing with occluded

objects. Furthermore, MTL allows reducing system latency and memory by sharing computations
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across all tasks. Thus, future work points towards gathering the components mentioned above into

a single end-to-end detection and motion prediction model trained jointly and used in conjunction

with the motion planning module for autonomous navigation systems. The goal is to achieve

good performance compared to existing perception modules while efficiently managing time and

resources.
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