959 research outputs found

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    IMPROVING DAILY CLINICAL PRACTICE WITH ABDOMINAL PATIENT SPECIFIC 3D MODELS

    Get PDF
    This thesis proposes methods and procedures to proficiently introduce patient 3D models in the daily clinical practice for diagnosis and treatment of abdominal diseases. The objective of the work consists in providing and visualizing quantitative geometrical and topological information on the anatomy of interest, and to develop systems that allow to improve radiology and surgery. The 3D visualization drastically simplifies the interpretation process of medical images and provides benefits both in diagnosing and in surgical planning phases. Further advantages can be introduced registering virtual pre-operative information (3D models) with real intra-operative information (patient and surgical instruments). The surgeon can use mixed-reality systems that allow him/her to see covered structures before reaching them, surgical navigators for see the scene (anatomy and instruments) from different point of view and smart mechatronics devices, which, knowing the anatomy, assist him/her in an active way. All these aspects are useful in terms of safety, efficiency and financial resources for the physicians, for the patient and for the sanitary system too. The entire process, from volumetric radiological images acquisition up to the use of 3D anatomical models inside the surgical room, has been studied and specific applications have been developed. A segmentation procedure has been designed taking into account acquisition protocols commonly used in radiological departments, and a software tool, that allows to obtain efficient 3D models, have been implemented and tested. The alignment problem has been investigated examining the various sources of errors during the image acquisition, in the radiological department, and during to the execution of the intervention. A rigid body registration procedure compatible with the surgical environment has been defined and implemented. The procedure has been integrated in a surgical navigation system and is useful as starting initial registration for more accurate alignment methods based on deformable approaches. Monoscopic and stereoscopic 3D localization machine vision routines, using the laparoscopic and/or generic cameras images, have been implemented to obtain intra-operative information that can be used to model abdominal deformations. Further, the use of this information for fusion and registration purposes allows to enhance the potentialities of computer assisted surgery. In particular a precise alignment between virtual and real anatomies for mixed-reality purposes, and the development of tracker-free navigation systems, has been obtained elaborating video images and providing an analytical adaptation of the virtual camera to the real camera. Clinical tests, demonstrating the usability of the proposed solutions, are reported. Test results and appreciation of radiologists and surgeons, to the proposed prototypes, encourage their integration in the daily clinical practice and future developments

    A Microsoft HoloLens Mixed Reality Surgical Simulator for Patient-Specific Hip Arthroplasty Training

    Get PDF
    Surgical simulation can offer novice surgeons an opportunity to practice skills outside the operating theatre in a safe controlled environment. According to literature evidence, nowadays there are very few training simulators available for Hip Arthroplasty (HA). In a previous study we have presented a physical simulator based on a lower torso phantom including a patient-specific hemi-pelvis replica embedded in a soft synthetic foam. This work explores the use of Microsoft HoloLens technology to enrich the physical patient-specific simulation with the implementation of wearable mixed reality functionalities. Our HA multimodal simulator based on mixed reality using the HoloLens is described by illustrating the overall system, and by summarizing the main phases of the design and development. Finally, we present a preliminary qualitative study with seven subjects (5 medical students, and 2 orthopedic surgeons) showing encouraging results that suggest the suitability of the HoloLens for the proposed application. However, further studies need to be conducted to perform a quantitative test of the registration accuracy of the virtual content, and to confirm qualitative results in a larger cohort of subjects

    An easy-to-use 2D-3D registration process

    Get PDF
    This report describes the work carried out during the project representing the final part of the Professional Doctorate in Engineering (PDEng) degree pro-gram in Software Technology provided by the Eindhoven University of Technology and Stan Ackermans Institute. The project name is "An Easy-to-use 2D-3D Registration Process". This project consists of the design and development of an easy-to-use inter-face for image registration for the VesselNavigator prototype developed in Philips Healthcare. The report is addressed to a technical audience that has a general knowledge about software design and medical imaging. Readers that are interested in the clinical background and the goals of the project should refer to Chapters 2-5. Details about the software architecture design and implementation are provid-ed in Chapters 6-8. For the result of the project and the software process used readers must address Chapters 9 and 10

    Imaging : making the invisible visible : proceedings of the symposium, 18 May 2000, Technische Universiteit Eindhoven

    Get PDF

    Image guided robotic assistance for the diagnosis and treatment of tumor

    Get PDF
    The aim of this thesis is to demonstrate the feasibility and the potentiality of introduction of robotics and image guidance in the overall oncologic workflow, from the diagnosis to the treatment phase. The popularity of robotics in the operating room has grown in recent years. Currently the most popular systems is the da Vinci telemanipulator (Intuitive Surgical), it is based on a master-slave control, for minimally invasive surgery and it is used in several surgical fields such us urology, general, gynecology, cardiothoracic. An accurate study of this system, from a technological field of view, has been conducted addressing all drawbacks and advantages of this system. The da Vinci System creates an immersive operating environment for the surgeon by providing both high quality stereo visualization and a human-machine interface that directly connects the surgeon’s hands to the motion of the surgical tool tips inside the patient’s body. It has undoubted advantages for the surgeon work and for the patient health, at least for some interventions, while its very high costs leaves many doubts on its price benefit ratio. In the robotic surgery field many researchers are working on the optimization and miniaturization robots mechanic, while others are trying to obtain smart functionalities to realize robotic systems, that, “knowing” the patient anatomy from radiological images, can assists the surgeon in an active way. Regarding the second point, image guided systems can be useful to plan and to control medical robots motion and to provide the surgeon pre-operative and intra-operative images with augmented reality visualization to enhance his/her perceptual capacities and, as a consequence, to improve the quality of treatments. To demonstrate this thesis some prototypes has been designed, implemented and tested. The development of image guided medical devices, comprehensive of augmented reality, virtual navigation and robotic surgical features, requires to address several problems. The first ones are the choosing of the robotic platform and of the image source to employ. An industrial anthropomorphic arm has been used as testing platform. The idea of integrating industrial robot components in the clinical workflow has been supported by the da Vinci technical analysis. The algorithms and methods developed, regarding in particular robot calibration, based on literature theories and on an easily integration in the clinical scenario, can be adapted to each anthropomorphic arm. In this way this work can be integrated with light-weight robots, for industrial or clinical use, able to work in close contact to humans, which will become numerous in the early future. Regarding the medical image source, it has been decided to work with ultrasound imaging. Two-dimensional ultrasound imaging is widely used in clinical practice because is not dangerous for the patient, inexpensive, compact and it is a highly flexible imaging that allows users to study many anatomic structures. It is routinely used for diagnosis and as guidance in percutaneous treatments. However the use of 2D ultrasound imaging presents some disadvantages that require great ability of the user: it requires that the clinician mentally integrates many images to reconstruct a complete idea of the anatomy in 3D. Furthermore the freehand control of the probe make it difficult to individuate anatomic positions and orientations and probe repositioning to reach a particular location. To overcome these problems it has been developed an image guided system that fuse 2D US real time images with routinely CT or MRI 3D images, previously acquired from the patient, to enhance clinician orientation and probe guidance. The implemented algorithms for robot calibration and US image guidance has been used to realize two applications responding to specific clinical needs. The first one to speed up the execution of routinely and very recurrently procedures like percutaneous biopsy or ablation. The second one to improve a new completely non invasive type of treatment for solid tumors, the HIFU (High Intensity Focused Ultrasound). An ultrasound guided robotic system has been developed to assist the clinician to execute complicated biopsies, or percutaneous ablations, in particular for deep abdominal organs. It was developed an integrated system that provides the clinician two types of assistance: a mixed reality visualization allows accurate and easy planning of needle trajectory and target reaching verification; the robot arm equipped with a six-degree-of-freedom force sensor allows the precise positioning of the needle holder and allows the clinician to adjust, by means of a cooperative control, the planned trajectory to overcome needle deflection and target motion. The second application consists in an augmented reality navigation system for HIFU treatment. HIFU represents a completely non invasive method for treatment of solid tumors, hemostasis and other vascular features in human tissues. The technology for HIFU treatments is still evolving and the systems available on the market have some limitations and drawbacks. A disadvantage resulting from our experience with the machinery available in our hospital (JC200 therapeutic system Haifu (HIFU) by Tech Co., Ltd, Chongqing), which is similar to other analogous machines, is the long time required to perform the procedure due to the difficulty to find the target, using the remote motion of an ultrasound probe under the patient. This problem has been addressed developing an augmented reality navigation system to enhance US guidance during HIFU treatments allowing an easy target localization. The system was implemented using an additional free hand ultrasound probe coupled with a localizer and CT fused imaging. It offers a simple and an economic solution to an easy HIFU target localization. This thesis demonstrates the utility and usability of robots for diagnosis and treatment of the tumor, in particular the combination of automatic positioning and cooperative control allows the surgeon and the robot to work in synergy. Further the work demonstrates the feasibility and the potentiality of the use of a mixed reality navigation system to facilitate the target localization and consequently to reduce the times of sittings, to increase the number of possible diagnosis/treatments and to decrease the risk of potential errors. The proposed solutions for the integration of robotics and image guidance in the overall oncologic workflow, take into account current available technologies, traditional clinical procedures and cost minimization

    Patient Specific Systems for Computer Assisted Robotic Surgery Simulation, Planning, and Navigation

    Get PDF
    The evolving scenario of surgery: starting from modern surgery, to the birth of medical imaging and the introduction of minimally invasive techniques, has seen in these last years the advent of surgical robotics. These systems, making possible to get through the difficulties of endoscopic surgery, allow an improved surgical performance and a better quality of the intervention. Information technology contributed to this evolution since the beginning of the digital revolution: providing innovative medical imaging devices and computer assisted surgical systems. Afterwards, the progresses in computer graphics brought innovative visualization modalities for medical datasets, and later the birth virtual reality has paved the way for virtual surgery. Although many surgical simulators already exist, there are no patient specific solutions. This thesis presents the development of patient specific software systems for preoperative planning, simulation and intraoperative assistance, designed for robotic surgery: in particular for bimanual robots that are becoming the future of single port interventions. The first software application is a virtual reality simulator for this kind of surgical robots. The system has been designed to validate the initial port placement and the operative workspace for the potential application of this surgical device. Given a bimanual robot with its own geometry and kinematics, and a patient specific 3D virtual anatomy, the surgical simulator allows the surgeon to choose the optimal positioning of the robot and the access port in the abdominal wall. Additionally, it makes possible to evaluate in a virtual environment if a dexterous movability of the robot is achievable, avoiding unwanted collisions with the surrounding anatomy to prevent potential damages in the real surgical procedure. Even if the software has been designed for a specific bimanual surgical robot, it supports any open kinematic chain structure: as far as it can be described in our custom format. The robot capabilities to accomplish specific tasks can be virtually tested using the deformable models: interacting directly with the target virtual organs, trying to avoid unwanted collisions with the surrounding anatomy not involved in the intervention. Moreover, the surgical simulator has been enhanced with algorithms and data structures to integrate biomechanical parameters into virtual deformable models (based on mass-spring-damper network) of target solid organs, in order to properly reproduce the physical behaviour of the patient anatomy during the interactions. The main biomechanical parameters (Young's modulus and density) have been integrated, allowing the automatic tuning of some model network elements, such as: the node mass and the spring stiffness. The spring damping coefficient has been modeled using the Rayleigh approach. Furthermore, the developed method automatically detect the external layer, allowing the usage of both the surface and internal Young's moduli, in order to model the main parts of dense organs: the stroma and the parenchyma. Finally the model can be manually tuned to represent lesion with specific biomechanical properties. Additionally, some software modules of the simulator have been properly extended to be integrated in a patient specific computer guidance system for intraoperative navigation and assistance in robotic single port interventions. This application provides guidance functionalities working in three different modalities: passive as a surgical navigator, assistive as a guide for the single port placement and active as a tutor preventing unwanted collision during the intervention. The simulation system has beed tested by five surgeons: simulating the robot access port placemen, and evaluating the robot movability and workspace inside the patient abdomen. The tested functionalities, rated by expert surgeons, have shown good quality and performance of the simulation. Moreover, the integration of biomechanical parameters into deformable models has beed tested with various material samples. The results have shown a good visual realism ensuring the performance required by an interactive simulation. Finally, the intraoperative navigator has been tested performing a cholecystectomy on a synthetic patient mannequin, in order to evaluate: the intraoperative navigation accuracy, the network communications latency and the overall usability of the system. The tests performed demonstrated the effectiveness and the usability of the software systems developed: encouraging the introduction of the proposed solution in the clinical practice, and the implementation of further improvements. Surgical robotics will be enhanced by an advanced integration of medical images into software systems: allowing the detailed planning of surgical interventions by means of virtual surgery simulation based on patient specific biomechanical parameters. Furthermore, the advanced functionalities offered by these systems, enable surgical robots to improve the intraoperative surgical assistance: benefitting of the knowledge of the virtual patient anatomy

    Augmented reality in open surgery

    Get PDF
    Augmented reality (AR) has been successfully providing surgeons an extensive visual information of surgical anatomy to assist them throughout the procedure. AR allows surgeons to view surgical field through the superimposed 3D virtual model of anatomical details. However, open surgery presents new challenges. This study provides a comprehensive overview of the available literature regarding the use of AR in open surgery, both in clinical and simulated settings. In this way, we aim to analyze the current trends and solutions to help developers and end/users discuss and understand benefits and shortcomings of these systems in open surgery. We performed a PubMed search of the available literature updated to January 2018 using the terms (1) “augmented reality” AND “open surgery”, (2) “augmented reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”, (3) “mixed reality” AND “open surgery”, (4) “mixed reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”. The aspects evaluated were the following: real data source, virtual data source, visualization processing modality, tracking modality, registration technique, and AR display type. The initial search yielded 502 studies. After removing the duplicates and by reading abstracts, a total of 13 relevant studies were chosen. In 1 out of 13 studies, in vitro experiments were performed, while the rest of the studies were carried out in a clinical setting including pancreatic, hepatobiliary, and urogenital surgeries. AR system in open surgery appears as a versatile and reliable tool in the operating room. However, some technological limitations need to be addressed before implementing it into the routine practice

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00
    • …
    corecore