224,315 research outputs found

    A demonstration of 'broken' visual space

    Get PDF
    It has long been assumed that there is a distorted mapping between real and ‘perceived’ space, based on demonstrations of systematic errors in judgements of slant, curvature, direction and separation. Here, we have applied a direct test to the notion of a coherent visual space. In an immersive virtual environment, participants judged the relative distance of two squares displayed in separate intervals. On some trials, the virtual scene expanded by a factor of four between intervals although, in line with recent results, participants did not report any noticeable change in the scene. We found that there was no consistent depth ordering of objects that can explain the distance matches participants made in this environment (e.g. A > B > D yet also A < C < D) and hence no single one-to-one mapping between participants’ perceived space and any real 3D environment. Instead, factors that affect pairwise comparisons of distances dictate participants’ performance. These data contradict, more directly than previous experiments, the idea that the visual system builds and uses a coherent 3D internal representation of a scene

    Near-Field Depth Perception in See-Through Augmented Reality

    Get PDF
    This research studied egocentric depth perception in an augmented reality (AR) environment. Specifically, it involved measuring depth perception in the near visual field by using quantitative methods to measure the depth relationships between real and virtual objects. This research involved two goals; first, engineering a depth perception measurement apparatus and related calibration andmeasuring techniques for collecting depth judgments, and second, testing its effectiveness by conducting an experiment. The experiment compared two complimentary depth judgment protocols: perceptual matching (a closed-loop task) and blind reaching (an open-loop task). It also studied the effect of a highly salient occluding surface; this surface appeared behind, coincident with, and in front of virtual objects. Finally, the experiment studied the relationship between dark vergence and depth perception

    Perceptual issues of visual attention and depth perception in augmented reality

    Get PDF
    There has been a recent development and growth of augmented reality devices across the world. The technology has the potential to enhance a user’s perception and experience of the environment which surrounds them. For designers and engineers of 3D displays (e.g. vehicle HUDs) the technology offers an opportunity to form a more enriched and exciting experience for drivers. A key anticipation of AR is the capability to present virtual information at depth, as well as on displays with a wide field of view. Applying psychological theories and models of visual attention (e.g. perceptual load theory) and depth perception (e.g. modified weak fusion), the aim of the study was to establish human abilities with AR advancements in depth and useful field of view (UFOV). Conclusions were applied to the development of psychological theory and helpful design guidelines for AR designers and engineers. This has been done by creating two sets of experimental paradigms. The first set of experiments presented peripheral Landolt C target stimuli on a large display (120o), simultaneously whilst participants controlled a central tracking task (CTT). Over two experiments workload was manipulated on both central and peripheral tasks, including presentation time, contrast, tracking speed, and size. Results indicated that peripheral performance did not decrease as a function eccentricity. Conclusions suggested a demonstration of attentional selection dependent on stimulus parameters, with performance potentially dependent on more temporal characteristics than eccentricity. ‘Best-practice’ design guidelines are presented for AR HUDs with large display size. The second design paradigm implemented a two-alternative forced-choice psychophysical depth judgment task, assessing thresholds for correctly determining the depth of a virtual diamond in reference to a real-world object. Over a series of experiments a number of parameters were assessed including virtual image height in the visual field, virtual image cue properties (relative size and brightness), and background scene manipulations. Depth thresholds for the AR image were tested with the pedestrian target at 5m, 10m, 20m and 25m. Results demonstrated that depth resolution is poor in augmented reality compared to real-world environments, with conclusions indicating a potential difference in how relative cues of depth interact with each other in AR environments, i.e. in AR cues from virtual imagery and real-world background may not be effectively combined together. Design guidelines regarding where in depth a virtual image needs to be placed to ‘match’ that of a specific real-world object, and how relative cues to influence depth perception are presented

    Investigating Embodied Interaction in Near-Field Perception-Action Re-Calibration on Performance in Immersive Virtual Environments

    Get PDF
    Immersive Virtual Environments (IVEs) are becoming more accessible and more widely utilized for training. Previous research has shown that the matching of visual and proprioceptive information is important for calibration. Many state-of-the art Virtual Reality (VR) systems, commonly known as Immersive Virtual Environments (IVE), are created for training users in tasks that require accurate manual dexterity. Unfortunately, these systems can suffer from technical limitations that may force de-coupling of visual and proprioceptive information due to interference, latency, and tracking error. It has also been suggested that closed-loop feedback of travel and locomotion in an IVE can overcome compression of visually perceived depth in medium field distances in the virtual world [33, 47]. Very few experiments have examined the carryover effects of multi-sensory feedback in IVEs during manual dexterous 3D user interaction in overcoming distortions in near-field or interaction space depth perception, and the relative importance of visual and proprioceptive information in calibrating users\u27 distance judgments. In the first part of this work, we examined the recalibration of movements when the visually reached distance is scaled differently than the physically reached distance. We present an empirical evaluation of how visually distorted movements affects users\u27 reach to near field targets in an IVE. In a between subjects design, participants provided manual reaching distance estimates during three sessions; a baseline measure without feedback (open-loop distance estimation), a calibration session with visual and proprioceptive feedback (closed-loop distance estimation), and a post-interaction session without feedback (open-loop distance estimation). Subjects were randomly assigned to one of three visual feedbacks in the closed-loop condition during which they reached to target while holding a tracked stylus: i) Minus condition (-20% gain condition) in which the visual stylus appeared at 80\% of the distance of the physical stylus, ii) Neutral condition (0% or no gain condition) in which the visual stylus was co-located with the physical stylus, and iii) Plus condition (+20% gain condition) in which the visual stylus appeared at 120% of the distance of the physical stylus. In all the conditions, there is evidence of visuo-motor calibration in that users\u27 accuracy in physically reaching to the target locations improved over trials. Scaled visual feedback was shown to calibrate distance judgments within an IVE, with estimates being farthest in the post-interaction session after calibrating to visual information appearing nearer (Minus condition), and nearest after calibrating to visual information appearing further (Plus condition). The same pattern was observed during closed-loop physical reach responses, participants generally tended to physically reach farther in Minus condition and closer in Plus condition to the perceived location of the targets, as compared to Neutral condition in which participants\u27 physical reach was more accurate to the perceived location of the target. We then characterized the properties of human reach motion in the presence or absence of visuo-haptic feedback in real and IVEs within a participant\u27s maximum arm reach. Our goal is to understand how physical reaching actions to the perceived location of targets in the presence or absence of visuo-haptic feedback are different between real and virtual viewing conditions. Typically, participants reach to the perceived location of objects in the 3D environment to perform selection and manipulation actions during 3D interaction in applications such as virtual assembly or rehabilitation. In these tasks, participants typically have distorted perceptual information in the IVE as compared to the real world, in part due to technological limitations such as minimal visual field of view, resolution, latency and jitter. In an empirical evaluation, we asked the following questions; i) how do the perceptual differences between virtual and real world affect our ability to accurately reach to the locations of 3D objects, and ii) how do the motor responses of participants differ between the presence or absence of visual and haptic feedback? We examined factors such as velocity and distance of physical reaching behavior between the real world and IVE, both in the presence or absence of visuo-haptic information. The results suggest that physical reach responses vary systematically between real and virtual environments especially in situations involving presence or absence of visuo-haptic feedback. The implications of our study provide a methodological framework for the analysis of reaching motions for selection and manipulation with novel 3D interaction metaphors and to successfully characterize visuo-haptic versus non-visuo-haptic physical reaches in virtual and real world situations. While research has demonstrated that self-avatars can enhance ones\u27 sense of presence and improve distance perception, the effects of self-avatar fidelity on near field distance estimations has yet to be investigated. Thus, we investigated the effect of visual fidelity of the self-avatar in enhancing the user\u27s depth judgments, reach boundary perception and properties of physical reach motion. Previous research has demonstrated that self-avatar representation of the user enhances the sense of presence [37] and even a static notion of an avatar can improve distance estimation in far distances [59, 48]. In this study, performance with a virtual avatar was also compared to real-world performance. Three levels of fidelity were tested; 1) an immersive self-avatar with realistic limbs, 2) a low-fidelity self-avatar showing only joint locations, and 3) end-effector only. There were four primary hypotheses; First, we hypothesize that just the existence of self-avatar or end-effector position would calibrate users\u27 interaction space depth perception in an IVE. Therefore, participants\u27 distance judgments would be improved after the calibration phase regardless of self-avatars\u27 visual fidelity. Second, the magnitude of the changes from pre-test to post-test would be significantly different based on the visual details of the self-avatar presented to the participants (self-avatar vs low-fidelity self-avatar and end-effector). Third, we predict distance estimation accuracy would be the highest in immersive self-avatar condition and the lowest in end-effector condition. Forth, we predict that the properties of physical reach responses vary systematically between different visual fidelity conditions. The results suggest that reach estimations become more accurate as the visual fidelity of the avatar increases, with accuracy for high fidelity avatars approaching real-world performance as compared to low-fidelity and end-effector conditions. There was also an effect of the phase where the reach estimate became more accurate after receiving feedback in calibration phase. Overall, in all conditions reach estimations became more accurate after receiving feedback during a calibration phase. Lastly, we examined factors such as path length, time to complete the task, average velocity and acceleration of physical reach motion and compared all the IVEs conditions with real-world. The results suggest that physical reach responses vary systematically between the VR viewing conditions and real-world

    Near-Field Depth Perception in Optical See-Though Augmented Reality

    Get PDF
    Augmented reality (AR) is a very promising display technology with many compelling industrial applications. However, before it can be used in actual settings, its fidelity needs to be investigated from a user-centric viewpoint. More specifically, how distance to the virtual objects is perceived in augmented reality is still an open question. To the best of our knowledge, there are only four previous studies that specifically studied distance perception in AR within reaching distances. Therefore, distance perception in augmented reality still remains a largely understudied phenomenon. This document presents research in depth perception in augmented reality in the near visual field. The specific goal of this research is to empirically study various measurement techniques for depth perception, and to study various factors that affect depth perception in augmented reality, specifically, eye accommodation, brightness, and participant age. This document discusses five experiments that have already been conducted. Experiment I aimed to determine if there are inherent difference between the perception of virtual and real objects by comparing depth judgments using two complementary distance judgment protocols: perceptual matching and blind reaching. This experiment found that real objects are perceived more accurately than virtual objects and matching is a relatively more accurate distance measure than reaching. Experiment II compared the two distance judgment protocols in the real world and augmented reality environments, with improved proprioceptive and visual feedback. This experiment found that reaching responses in the AR environment became more accurate with improved feedback. Experiment III studied the effect of different levels of accommodative demand (collimated, consistent, and midpoint) on distance judgments. This experiment found nearly accurate distance responses in the consistent and midpoint conditions, and a linear increase in error in the collimated condition. Experiment IV studied the effect of brightness of the target object on depth judgments. This experiment found that distance responses were shifted towards background for the dim AR target. Lastly, Experiment V studied the effect of participant age on depth judgments and found that older participants judged distance more accurately than younger participants. Taken together, these five experiments will help us understand how depth perception operates in augmented reality

    Near-Field Depth Perception in Optical See-Though Augmented Reality

    Get PDF
    Augmented reality (AR) is a very promising display technology with many compelling industrial applications. However, before it can be used in actual settings, its fidelity needs to be investigated from a user-centric viewpoint. More specifically, how distance to the virtual objects is perceived in augmented reality is still an open question. To the best of our knowledge, there are only four previous studies that specifically studied distance perception in AR within reaching distances. Therefore, distance perception in augmented reality still remains a largely understudied phenomenon. This document presents research in depth perception in augmented reality in the near visual field. The specific goal of this research is to empirically study various measurement techniques for depth perception, and to study various factors that affect depth perception in augmented reality, specifically, eye accommodation, brightness, and participant age. This document discusses five experiments that have already been conducted. Experiment I aimed to determine if there are inherent difference between the perception of virtual and real objects by comparing depth judgments using two complementary distance judgment protocols: perceptual matching and blind reaching. This experiment found that real objects are perceived more accurately than virtual objects and matching is a relatively more accurate distance measure than reaching. Experiment II compared the two distance judgment protocols in the real world and augmented reality environments, with improved proprioceptive and visual feedback. This experiment found that reaching responses in the AR environment became more accurate with improved feedback. Experiment III studied the effect of different levels of accommodative demand (collimated, consistent, and midpoint) on distance judgments. This experiment found nearly accurate distance responses in the consistent and midpoint conditions, and a linear increase in error in the collimated condition. Experiment IV studied the effect of brightness of the target object on depth judgments. This experiment found that distance responses were shifted towards background for the dim AR target. Lastly, Experiment V studied the effect of participant age on depth judgments and found that older participants judged distance more accurately than younger participants. Taken together, these five experiments will help us understand how depth perception operates in augmented reality

    Interactions between physical and virtual space

    Get PDF
    Taking an in-depth look into how graphic design is used to successfully open doors to and encourage the journey through conceptual environments can provide an enhanced understanding of visual communication and visual perception in virtual spaces. This may lead to the creation of improved strategies for navigating through virtual environments, helping to create a system that will more closely reflect wayfinding and navigation in the physical world. Aspects of the study will include the visual translation of time, space, motion, and emotion through conceptual, spatial, and color considerations. Furthermore, understanding visual coding and other navigational aspects will involve the study of information design, specifically wayfinding and mapping. Comparisons will be drawn between urban design and the planning of a real city environment, and that of an imaginary city or society. A survey and analysis of board and video game designs, as well as their influences and relationships, will be included in the discussion
    • …
    corecore