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Augmented reality (AR) is a very promising display technology with many compelling

industrial applications. However, before it can be used in actual settings, its fdelity needs

to be investigated from a user-centric viewpoint. More specifcally, how distance to the

virtual objects is perceived in augmented reality is still an open question. To the best

of our knowledge, there are only four previous studies that specifcally studied distance

perception in AR within reaching distances. Therefore, distance perception in augmented

reality still remains a largely understudied phenomenon.

This document presents research in depth perception in augmented reality in the near

visual feld. The specifc goal of this research is to empirically study various measurement

techniques for depth perception, and to study various factors that affect depth perception

in augmented reality, specifcally, eye accommodation, brightness, and participant age.

This document discusses fve experiments that have already been conducted. Experi-

ment I aimed to determine if there are inherent difference between the perception of virtual



and real objects by comparing depth judgments using two complementary distance judg-

ment protocols: perceptual matching and blind reaching. This experiment found that real

objects are perceived more accurately than virtual objects and matching is a relatively

more accurate distance measure than reaching. Experiment II compared the two distance

judgment protocols in the real world and augmented reality environments, with improved

proprioceptive and visual feedback. This experiment found that reaching responses in the

AR environment became more accurate with improved feedback. Experiment III studied

the effect of different levels of accommodative demand (collimated, consistent, and mid-

point) on distance judgments. This experiment found nearly accurate distance responses

in the consistent and midpoint conditions, and a linear increase in error in the collimated

condition. Experiment IV studied the effect of brightness of the target object on depth

judgments. This experiment found that distance responses were shifted towards back-

ground for the dim AR target. Lastly, Experiment V studied the effect of participant age

on depth judgments and found that older participants judged distance more accurately than

younger participants.

Taken together, these fve experiments will help us understand how depth perception

operates in augmented reality.

Key words: augmented reality, mixed reality, perception, vision, proprioception
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CHAPTER 1

INTRODUCTION

“A picture is worth a thousand words” (Brisbane [15])

The above quote aptly refects the perceptual ability of human vision: very large and

complex ideas can be conveyed with just one picture. Out of the fve main senses, vision

processes the incoming information at a much faster rate and in larger amounts. Therefore,

it can be conclusively said that vision is the most important interface between humans and

their surroundings.

The need for information exchange has never been critical as it is today. The advent

of the internet and other media technologies has expanded the knowledge horizons of an

individual by providing exposure to global events. “Every two days now we create as

much information as we did from the dawn of civilization up until 2003” (Eric Schimdt

[80]). This enormous amount of data requires sophisticated machines and methodologies

to effciently access specifc information. The felds of computer visualization and human-

computer interaction are driven by this need of effcient information fux between man and

machine. The techniques and technologies in these domains strive to present data to a user

in ways that are concise, complete, and intuitive.

A technology that has an enormous potential to act as on intuitive interface between

man and machine is augmented reality. Augmented Reality (AR) is a display technology
1



that enhances an individual’s perception of their surroundings by adding additional infor-

mation to their existing senses. In general, AR can refer to enhancement of any of the

senses; however, for the purpose of this document, AR refers specifcally to augmenting

vision. AR augments vision by adding in-situ computer-generated imagery (virtual ob-

jects) in the view of the real world. The correct placement of a virtual object at its intended

position requires knowledge of the location of the user as well as the location of the vir-

tual object. Equipped with this information, a machine can present the virtual object with

similar positional characteristics as a real object.

AR has numerous applications in a variety of areas, such as AR-assisted surgery, x-ray

vision1, manufacturing, maintenance, entertainment, and many more. The applicability of

AR in these domains requires accurate presentation and perception of the virtual objects.

However, the concept of accuracy is subjective. Different applications have different error

tolerances and the required accuracy is relative to each functional context. For example,

some accuracy requirements for surgical procedures are likely much more stringent than

entertainment applications. To bring AR technology to a level where it can satisfy the re-

quirements of a variety of applications requires answering the question: “how well can the

virtual objects can be incorporated in an augmented environment?” This question encom-

passes two sub-questions; one each from the machine and user perspectives: First, how

capable is current AR technology in creating and presenting virtual objects, as compared

to the behavioral characteristics of a real object? And second, how well can a user perceive

1X-ray vision is ability to see through opaque objects by means of projecting or rendering the occluded
infrastructure within or behind the occluding object.

2



the presented virtual objects and understand the intended spatial relationship among them

and other real objects in the scene?

To date, most advancement in the AR domain has been made on the technical side,

and it can be argued that AR technology has reached a level at which a virtual object can

be rendered with a positional accuracy that is identical to a real object. However, even

though technology has become advanced enough to solve the technical issues of AR, the

human visual system is still imperfect in understanding key features of AR; such as the

relationship between multiple layers of virtual objects and the relationship between virtual

and real objects. So the question can be rephrased in part to ask how accurately can users

perceive the depth and layout of the virtual objects in an augmented environment?

3



CHAPTER 2

BACKGROUND

2.1 Augmented Reality 

Augmented reality (AR) is a display technology that enhances the perceptual expe-

rience of an observer by providing additional visual information. The term “Augmented

Reality” was frst used by Caudell and Mizell [17] of Boeing Inc. They used this term

for a display technique that was developed to support an airplane manufacturing task;

they superimposed virtual images and instructions over a peg board to simplify the task

of bundling cables.

Mixed Reality (MR)

Real 

Environment

(RE)

Augmented

Reality 

(AR)

Augmented

Virtuality

(AV)

Virtual

Reality

(VR)

Milgram’s Mixed Reality Continuum

Figure 2.1

Mixed reality continuum (Milgram et al. [58]).

Based on various levels of augmentation, there are different levels of mixed reality

such as virtual reality (VR), augmented virtuality (AV), augmented reality (AR), and the

4



real environment, as categorized by Milgram et al. [58] as the mixed reality continuum

(see Figure 2.1). In VR and AV, the environment around an observer is mostly virtual,

consisting of none or a few real objects. In AR, the surrounding environment is primarily

real with some virtual objects.

Azuma [5] gives a formal defnition of an augmented reality system as one that satisfes

the following three conditions:

• Combines real and virtual: The virtual information is seamlessly mixed with the
real world.

• Interactive in real time: As the user moves, the virtual information updates in real
time.

• Registered in 3-D: The virtual objects stay stationary with respect to the real world.

AR can be divided into two broad categories based on its implementation: optical

see-through and video see-through. In optical see-through AR (see Figure 2.2), virtual

objects are added to the view of an observer using partially transmissive optical combiners

that retain a direct view of the real world while simultaneously showing the virtual objects

superimposed on top of it. In video see-though AR (see Figure 2.3), virtual objects are

added to a video feed of the real world scene captured using cameras, and the combined

scene is presented either on a stereoscopic head-mounted display or on a monitor.

2.2 Depth Perception 

Depth perception is an aspect of conscious experience when the human visual system

(HVS) estimates the distance to an object. Depth perception is essential for the control of

everyday spatially-related behaviors such as reaching, grasping, throwing, and intercepting

5
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Figure 2.2

Optical see-through AR system (Azuma [5]).
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Figure 2.3

Video see-through AR system (Azuma [5]).
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(Bingham [9], Mazyn et al. [54]). The seemingly simple process of reaching for an object

with one’s hand involves a number of complicated subprocesses. First, a perceptual mech-

anism uses vision to determine the distance to the object. After ascertaining the distance,

the muscle control mechanism initiates a reach. Then, continuous feedback guides the

hand to the object until the object is grasped. From this we can see that, when interacting

with objects in the world, depth perception is the very frst step. Depth perception is of

two types:

• Egocentric: The distance of an object from an observer. The frame-of-reference that
is used by the observer to ascertain distance lies at some point inside the observer.

• Exocentric: The distance between two objects as perceived by an observer. The
frame-of-reference lies at some imagined point in space outside of the observer.

Even though the perception of depth is experienced only by the observer, the underlying

perceptual mechanism that estimates egocentric distance is similar for all humans. First,

the visual system captures a pair of two-dimensional retinal images of the scene, one from

each eye. Afterwards, it identifes several visual stimulus variables in the scene, known

as depth cues, which are then used to ascertain the distance relationship among various

objects in the scene. As a result, a three-dimensional perceptual representation of the

physical world is extracted from the fat and ambiguous retinal images.

2.2.1 Depth Cues 

At least nine or more sources of depth information hve been identifed, which allow

an observer to understand the depth layout of the world (Cutting and Vishton [21], Cutting

[20]).
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Figure 2.4

Occlusion: The closer trees occlude the view of the farther mountains (Paul Gauguin’s
Tahitian Landscape).

Occlusion (Figure 2.4) is a depth cue that is acquired from a scene when a closer object

partially or completely occludes farther objects. It is a monocular depth cue, and can

provide only ordinal information; it is not possible to measure any quantitative distance

values on the basis of occlusion alone. However, it is a very strong ordinal depth cue and

is effective at all distances without any attenuation; it works as well at far distances as it

does at closer distances.

Height in the visual feld (Figure 2.5) is the inverse relationship between an object’s

vertical position relative to the horizon as seen by the observer and its distance from the

observer; objects closer to the horizon in the visual feld are farther from the observer, and

the objects farther from the horizon in the visual feld are closer to the observer.
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Figure 2.5

Height in the visual feld: The closer objects are lower in the visual feld (Jacob van
Ruysdael’s Haarlem).

Relative size (Figure 2.6) establishes depth relationships among objects of the same

size. The more distant an object is, the smaller retinal extent it requires as compared to a

similar-sized near object. By calculating the angular extent of similar objects it is possible

to calculate distance ratio information. For example, if an observer sees two similarly-sized

objects, with one object subtending half of the visual angle of the other object, the smaller

object will be twice the distance of the larger one.

Relative density (Figure 2.6) compares the number of similar-sized objects or textures

per solid visual angle. More objects will be seen per solid angle when they are at a farther

distance than when they are closer. Therefore, the more objects per solid angle, the more

distant they are. Similarly, a farther texture will appear more dense than a closer texture.
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Figure 2.6

Relative Size and Density: The closer fowers look larger and sparser than the farther
fowers (Claude Monet’s Water-Lily Pond).

This cue can provide ratio information and it is possible to calculate the distance ratio

between objects by counting the number of objects per solid visual angle. Essentially,

relative size and relative density are two ways of understanding the same cue.

Aerial perspective (Figure 2.7) is the effect of atmospheric conditions on the appear-

ance of objects. The atmosphere has suspended particles such as moisture, vapors, pol-

lutants, dust, etc. Because of the presence of these particles, the contrast of an object

decreases with distance and its color desaturates and shifts towards the atmospheric color.

Based on this contrast calculations, this cue can provide quantitative depth information of

the scene; however, it is effective only at large distances of 100 meters or more.
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Figure 2.7

Aerial Perspective: The distant mountains are desaturated into atmospheric color
(William Louis Sonntag’s Houseboat on a River).

Fixated Object

Near Object 
Perceived Movement

Farther Object 
Perceived Movement

Self Motion Parallax

Observer Movement

Figure 2.8

Motion Perspective: The change in the direction of apparent movement of objects with
distance.
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Motion perspective is the difference in the apparent motion of objects located at dif-

ferent distances from the observer. Motion perspective can be divided into two categories

based on the movement of the observer. In the frst category, the objects are fxed at certain

distances and the observer is moving (see Figure 2.8). When an observer fxates on an

object and moves sideways, the fxated object does not seem to move. However, objects

closer than the fxated object appear to move quickly in the opposite direction of the ob-

server, while farther objects appear to move slowly in the observer’s direction of motion. In

the second category, the observer is stationary while the objects are moving. For example,

in a rain storm, the rain drops near the observer appear to fall more quickly than the drops

farther from the observer.

Motion perspective is a special case of motion parallax, which is defned as the change

in the rate of change of the line of sight with change in the position either of the observer

or of the viewed object. The motion parallax is greater when the distance between the

observer and the viewed object is smaller than when it is larger.

Accommodation (Figure 2.9) is the change in the shape of the crystalline lens in the eye

to focus the light coming from an object onto the retina, and thus bring the viewed object in

sharp focus. Objects which are in focus will look clear and sharp with well defned edges,

while other objects which are closer or farther than the focused object will look blurred.

The lens converges the light from the focused object exactly on the retina, while the light

coming from the unfocused objects converges either in front of or behind the retina.

Convergence (Figure 2.10) is the rotation of the eyes to bring the visual axes to intersect

at the viewed object. Our eyes are situated at different positions, and have different view
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Figure 2.9

Accommodation: The orange is in focus (René Magritte’s Son of Man).

Converged

Near

Converged 

Far

Convergence

α

β

Figure 2.10

Convergence: The convergence angle is larger when converging at near objects than for
far objects.
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of the world from each other. To fxate on an object at a given depth, the eyes need to

rotate inwards or outwards. Therefore, the angle between the lines of sight of two eyes is

different for the fxations at different distances.

Figure 2.11

Binocular Disparity: Left and right eyes perspectives (Leonardo da Vinci’s Mona Lisa).

Binocular disparity (Figure 2.11) is the difference between the relative position of an

object on the retinal images in the two eyes (Wheatstone [97]). An object projects different

images on each retina because the eyes are located at slightly different positions on the

skull. This difference is called disparity. An object which is closer to the eyes will produce

projections with more disparity than a more distant object. This disparity yields stereopsis,

the impression of a solid space; this effect is very prominent for closer objects.
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2.2.2 Depth Cues Categorizations 

Depth cues have been categorized along different dimensions as shown in Table 2.1.

Depth cues can be binocular or monocular; binocular cues use visual information from

both eyes, while monocular cues require only one eye. Monocular cues are also known

as pictorial cues, as they are used by artists to convey depth information in paintings and

photographs.

Table 2.1

Depth Cues (Cutting and Vishton [21])

Depth cue Information Ocularity Type Saliency 
(w.r.t. Distance)

Occlusion
Height in Visual feld
Relative Size
Relative Density
Aerial Perspective
Accommodation
Convergence
Binocular Disparity
Motion Perspective

Ordinal
Quantitative
Quantitative
Quantitative
Quantitative
Ordinal
Quantitative
Quantitative
Quantitative

Monocular
Monocular
Monocular
Monocular
Monocular
Monocular
Binocular
Binocular
Monocular

Retinal
Retinal
Retinal
Retinal
Retinal

Extra-retinal
Extra-retinal

Retinal
Retinal

Constant
Decreases
Constant
Constant
Increases
Decreases
Decreases
Decreases
Decreases

Depth cues are also categorized as extra-retinal or retinal based on their physiological

linkage (see Table 2.1). Extra-retinal cues, such as eye vergence and accommodation, arise

from human body sensors other than the retina, and are physiologically integrated in the

human visual system. In principle, these cues can provide absolute distance information

because of the physiological linkage. The visual system can interpret visual scenes binoc-

ularly by processing the relative changes of the projections of an object onto two retinal
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images with respect to the observer’s stable inter-ocular distance. From this information, it

is possible to triangulate the absolute position of the object. This absolute distance infor-

mation is important to guide motor behavior while interacting with objects (Gillam [34]).

Retinal cues do not have any physiological linkage with the visual system. These cues

rely solely on the visual information from the retinal images to provide distance informa-

tion. Because there is no physiological linkage and therefore no internal scale to compare

to, retinal cues require some additional information or some external reference to ascer-

tain the overall scale of the visual sense. This additional information can be recalled from

memory; e.g., the familiar size cue can provide distance information about previously seen

objects. This information can also be provided by the existing objects in the environment

itself, by triangulating the position of one object relative to the other objects in the scene.

Retinal cues can only provide relative distance information of one object with respect to

another object, and therefore covey no absolute distance information. However when com-

bined with extra-retinal cues, retinal cues can provide defnite distance information (Gogel

and Tietz [36], Bingham and Pagano [11], Mon-Williams and Tresilian [61] ).

Depth cues differ in their effectiveness based on the physical characteristics of the en-

vironment such as the scene content and the distance from the observer. Nagata [67] com-

pared the effectiveness of various depth cues on a common scale called “depth sensitivity”,

which is the ratio of the viewing distance D to the detection threshold ΔD. They found

that binocular disparity, accommodation, and convergence are mostly effective at closer

distances, while relative size, brightness, and texture remain highly sensitive for more than

100 meters.
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Later, Cutting and Vishton [21] compared different depth cues on a common scale of

“saliency”, which is the reciprocal of Nagata’s [67] depth sensitivity. Depth saliency is the

ratio of just noticeable distance ΔD to the viewing distance D. Figure 2.12 shows saliency

of various cues relative to distance. Based on the saliency of different depth cues, Cutting

and Vishton [21] divided the three-dimensional space around an observer into three differ-

ent zones: personal space, action space, and vista space (see Figure 2.12). In near-feld

personal space, which extends up-to 2 meters, manipulation tasks such as reaching, touch-

ing, and grasping of objects can be performed. Here, convergence, accommodation, and

binocular disparity are the most effective depth cues. In medium-feld action space, which

ranges from 2-30 meters, actions like throwing, navigation, and walking towards a target

can be performed. Within this space, height in the visual-feld and motion perspective are

the most salient depth cues. Against both of these spaces, far-feld vista space of more

than 100 meters provides a general context and background. Here, the depth cue of aerial

perspective is the most effective. Cutting also fnds that the saliency of some cues such as

occlusion, relative size, and density remain constant at all distances.

Later, Previc [75] categorized the space around an observer into four regions based on

perceptual-motor operations. Apart from the three regions defned by Cutting and Vishton

[21], he proposed one more region in between personal and action space called focal-

extrapersonal space. This region is farther than personal space as the objects in this region

can not be manipulated directly by reaching; however, the near-feld cues such as conver-

gence and accommodation can still be used to perform actions such as visual search and

object identifcation.
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Figure 2.12

Saliency of various depth cues with distance.

2.2.3 The Near Triad 

The work in this dissertation focuses on depth perception at near-feld distances. When

viewing an object in the near-feld, the eyes converge (vergence), the lenses in the eyes

become thicker (accommodation), and the pupils constrict (miosis). These three actions

are interlinked physiologically and the mechanism of these three simultaneous refexes is

called the near triad. Classically, research on the near triad has followed two theories, fa-

voring either accommodation or vergence as the primary stimulus or the driving factor for

the other two refexes (Maddox [52], Fincham and Walton [28]). Maddox [52] proposed

that accommodation is the primary stimulus for vergence and pupil constriction. Later,

Fincham and Walton [28] proposed the exact opposite, that vergence is the dominant stim-
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ulus for the near triad refexes, and a single neuro-center controls both accommodation and

vergence responses.

More recently, Semmlow and Hung [81] proposed a near triad model with separate

accommodation and vergence control centers along with a cross-link interaction. This

model suggests that near-feld viewing involves accommodation and vergence affecting

each other because of the cross-linking, and then the pupil constriction follows. Apart

from the infuence of accommodation and vergence, the changes in the pupil diameter also

depend upon the scene illumination. These changes in pupil aperture should theoretically

affect accommodation by changing the optical depth-of-feld, however very little effect of

change in pupil diameter on accommodation has been observed (Ripps et al. [76]).

In the near triad, convergence and accommodation are the main oculomotor cues and

the link between them is known as the convergence-accommodation refex. Because of

this refex, accommodation and convergence operate in unison; when attention changes

from a distant object to a closer object, the eyes converge inwards to fuse the two retinal

images of the fxated object, and simultaneously the lenses in the eyes change their shape

to bring the fused image into focus. Furthermore, because of the cross-linking of the

neural control centers for these refexes, any changes in accommodation evoke changes

in vergence (accommodative vergence) and any changes in vergence evoke changes in

accommodation (vergence accommodation) (Fry [33], Fincham and Walton [28], Kersten

and Legge [45]).

The refexes in the near triad are affected by various factors. The rotation of the eyes

(vergence) is stimulated by two factors: fusional vergence and accommodative vergence.
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Fusional vergence (also known as disparity vergence) is stimulated by the need to avoid

double vision (diplopia) by bringing two images of the viewed object to the center of

the fovea so that they can be fused. Accommodative vergence is caused by the indirect

infuence of accommodation due to the convergence-accommodation refex (Muller [65],

Owens and Leibowitz [69], Mon-Williams and Tresilian [62]). The accommodation refex

is mainly stimulated by the need to converge the light coming from the viewed object onto

the retina (the defocus blur), although, eye convergence also contributes to some of the

accommodation (vergence-accommodation).

Convergence-Accommodation

6 cm

1D

3∆

3 cm

Figure 2.13

Convergence-accommodation relationship.
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The accommodative demand or the focusing of the eyes is typically measured in diopters

(D), which is the reciprocal of the distance of the target object from observer’s eyes in me-

ters (D = 1/m). Therefore, a target at 0.5 meters would yield an accommodative demand

of 2D. The convergence demand or the rotation of eyes is measured in prism diopters (Δ),

and it is determined by the target distance as well as the inter-pupillary distance (IPD) of

the observer. One prism diopter is defned as the deviation of 1 cm at the distance of 1

m. Therefore, as shown in Figure 2.13, an observer with an IPD of 6 cm would yield a

total convergence demand of 6Δ (3 cm deviation, or 3Δ for each eye), while converging

on a target at 1 m in front of their eyes. Due to the convergence accommodation refex, the

convergence demand and the accommodative demand are connected and can be calculated

as (Peli [73]):

Convergence Demand (Δ) = Accommodation Demand (D) × IPD (cm) (2.1)

The convergence demand can also be measured in degrees as:� � 
Δ

Convergence Demand (degrees) = tan−1 (2.2)
100 

Another unit that measures ocular convergence is the meter-angle, which is defned as

the amount of convergence required to binocularly view an object at 1 m while exerting 1

D of accommodation. As shown in Figure 2.14, the value of a meter-angle depends upon

one’s inter-pupillary distance (IPD), and therefore is unique for every individual. The

meter-angle is defned as: � � 
IPD 

1 meter-angle (θ) = 2 ∗ tan−1 (2.3)
2 
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Figure 2.14

Meter-angle (θ).

2.2.4 Depth Cues Integration 

The process of distance estimation involves combining the distance information from

all of the available cues to defne a single percept of distance. Anderson [3] describes

distance perception as a three-step process: (1) a psychophysical transform, which trans-

forms the information from different depth cues into their respective distance signals, (2) a

psychological integration process, which combines all the distance signals into a fnal dis-

tance signal, and (3) a psychomotor transform, which converts the fnal distance signal into

a response-indicating distance. Mathematically, this defnition of depth perception can be

explained by the theory of information integration (Anderson [2], Bruno and Cutting [16]),
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where information from various depth cues c1, c2, ...., cn can be combined in an integration

model described as:

d = f ( c [w1 ∗ c1, w2 ∗ c2, ....., wn ∗ cn]) (2.4)

where d is the distance to be determined, w1, w2, ...., wn are the weights assigned to each

depth cue, c is the combination or integration rule, and f maps the combined information

to a response.

Even though many depth cues have conclusively been identifed, it has not been fully

understood how different depth cues are integrated by the human visual system to pro-

vide a single estimate of egocentric distance. Previous empirical depth perception studies

suggest that during distance estimation, adding additional depth cues generally increases

the amount of depth seen and the consistency and accuracy of the distance judgments

(Künnapas [48]).

Many depth cue integration models have been proposed. Bruno and Cutting [16] pro-

posed that information from various depth cues is gathered by separate visual minimodules

and processing systems, and then this data is combined together in the simplest manner of

addition; one cue can substitute for another, and the more cues are present the more depth is

revealed. Massaro [53] proposed the fuzzy logic model of perception (FLMP) in contrast

to the integration model proposed by Bruno and Cutting [16]. This model suggests that

the cue integration process is non-additive and a cue with more certainty makes a bigger

contribution as compared to the other ambiguous cues.
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Landy et al. [49] proposed three different models for depth cue integration. The frst

one is the weak observer model, where depth cues are considered to provide independent

depth maps about various objects in a scene. The information from different depth cues

is combined by averaging the depth map values of all of the cues resulting in an overall

depth map of the scene. Even though this model is simple and modular, it is susceptible

to problems such as the lack of normalization among the depth maps, saliency, reliabil-

ity, and the availability of different depth cues. The second model is the strong observer

model, which promotes interactive and holistic processing of depth cues. It assumes that

the most-probable three-dimensional interpretation of a scene depends on the current reti-

nal data. In this model, what constitutes a distinct depth cue is not given in advance and it

evolves gradually and is tested as a part of the depth cue combination model. Various depth

cues “mysteriously” interact with each other and the combination rules are not necessarily

linear. One important issue with the strong observer model is that it cannot be falsifed

by an experiment and is therefore not experimentally testable. The third model, and what

Landy et al. [49] prefer, is the modifed weak fusion model, which uses the modular view

of depth calculations (a weak observer property) but puts restrictions on the interaction

(a strong observer property) by defning how various depth cues provide depth maps and

how various depth maps are combined. Every depth cue provides qualitatively different

information and this model combines information from multiple cues using weighted av-

eraging. At its core, the modifed weak fusion model is a weighted averaging of multiple

depth cues based on a cue’s reliability as defned by robustness of estimate, availability of

cue, and information provided by ancillary measures.
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2.3 Depth Cues in Augmented and Virtual Reality 

At near-feld distances, three depth cues that play major role in depth perception are:

binocular disparity, vergence (convergence), and accommodation. In AR/VR displays,

binocular disparity is achieved by rendering the virtual objects stereoscopically, from the

point of view of the left and right eyes. The stereoscopic rendering requires changes in

eye vergence to perceive the presented objects at various distances. However, stereoscopic

images are presented on screens that are at a fxed distance from the observer’s eyes, and

require a fxed accommodative demand at all times. This phenomenon interferes with the

way normal human binocular vision works.

a

b

c

yx

f

Focal plane of

VR / AR display

α

β

γ

focal plane of

VR / AR display

Converged Far

Converged Near

Convergence-Accommodation Mismatch

Figure 2.15

Convergence-accommodation mismatch.
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In real world, accommodation and convergence operate in unison and depend upon

viewing distance. Normally, when one switches attention across different distances, be-

cause of the convergence-accommodation refex, convergence and optical power of the

eyes changes to maintain binocular vision and a clear sharp image of the scene (Owens

and Leibowitz [69], Mon-williams and Tresilian [62]). For farther objects, the eyes di-

verge outwards and the lens in the eye thins to avoid double vision and a blurry image.

As shown in Figure 2.15, when the eyes switch attention from b to c, the vergence angle

changes from β to γ, and the accommodation changes from b to c. For closer objects, the

eyes converge inwards and the lens thickens to maintain a single sharp image of the object;

when the eyes switch attention from b to a, the vergence angle changes from β to α, and

the accommodation changes from b to a.

Normally, these changes in eye convergence and accommodation happen under uncon-

scious control. The human visual system developed the convergence-accommodation cou-

pling to view objects with correct vergence and accommodation demands. This coupling

remains in effect even without an external stimuli; when one eye is closed and the other

eye accommodates at a closer object, then under the effect of this coupling, the closed eye

rotates to converge at a closer distance (Muller [65], Peli [73]). Then, if the closed eye is

opened, only a small amount of correction is needed to fuse the retinal images, in addition

to the already present accommodative-vergence. Therefore, when the eyes accommodate,

they converge even without any external convergence stimuli (Gillam [34]).

In stereoscopic displays, the normal coupling between accommodation and conver-

gence is disrupted (Wann et al. [96]). As shown in Figure 2.15, even though the virtual
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objects are at three different depth (a, b, and c), they are rendered on the screen at the

distance f from the eyes. Even though the convergence changes when looking at virtual

objects at different depths, the accommodation stay fxed at the distance f . Therefore, a

fxed-accommodation display forces the visual system to always focus at one distance even

if the eyes are converging at a different distance. This need of fxed accommodation while

changing eye vergence disrupts the normal accommodation-vergence coupling. This prob-

lem is known as convergence-accommodation mismatch (Drascic and Milgram [22]), and

is known to cause depth misjudgments, fatigue, and visual stress in virtual environments

(Bingham et al. [10], Hoffman et al. [40]).

2.4 Depth Judgment Techniques 

The human visual system perceives the external physical world by capturing two reti-

nal images; one from each eye. From these retinal images, the visual system extracts a

three-dimensional internal representation of the world called visual space. Therefore, vi-

sual space is that component of the physical world that is acquired by visual perception

(Loomis and Knapp[51]). The term “depth perception” usually refers to ascertaining depth

relationships among objects in perceived visual space.

The measurement of depth perception is a problem, as it is an invisible cognitive state

that is experienced only by the observer, and therefore cannot be measured directly by

an experimenter. To measure depth perception, another component of the physical world

called action space is defned, which is a component of the physical world in which actions

can be performed that result in some measurable behavior. Psychologists assume that
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visual space is the primary determinant of any spatial behavior in action space, and that

actions performed in action space will represent the properties of visual space. When

a distance judgment task is performed in action space that results in some measurable

response, it can quantitatively measure distance perception in visual space.

Scientists have used two types of techniques to measure distance perception: percep-

tion techniques and perception-action techniques (Bingham et al. [10]). Both of these

techniques involve visually perceiving an object and estimating its egocentric distance;

however, the way the perceived distance is measured is different. Perception-based tech-

niques require active cognition and involve object identifcation, recognition, and the abil-

ity to verbally describe the distance. An example of a perception-based technique is verbal

report. In verbal report, the distance to a stimulus object is visually estimated, and then

it is conveyed verbally in some familiar distance units (feets, meters, arm-lengths etc.).

Perception-action techniques involve motor actions to indicate the perceived distance. An

example of a perception-action technique is visually directed motor behavior, where an ob-

server performs a physical action to indicate the distance to a visually perceived stimulus

(Knapp [46]).

Like any control system, the techniques that are used to measure depth perception are

susceptible to errors. Depth perception errors consists of perceptual errors and motor pro-

gram errors (Woodworth [102]). Perceptual errors involve incorrect depth estimation, and

the scope of these errors is in visual space. Motor program errors result from incorrect

movement instructions to effectors (in context of our experiments, effectors refer to mus-

cles and joints). These errors affect task performance in action space.

28



Out of perception-based and perception-action based tasks, perception-based tasks are

less accurate. For example, the perception-based task of verbal report has been found to

be confounded by cognition with high response variability (Foley [30], Gogel [35], Mon-

Williams and Tresilian [60], Swan et al. [84]). Previous studies that compared verbal report

and visually directed reaching found no correlation between the two distance measures,

even though the two tasks were performed within the same trial (Pagano and Bingham

[71], Napieralski et al. [68]).

Compared to verbal report, perception-action tasks are more accurate. The difference

between the accuracy of these measures can be attributed to anatomical differences of

the control centers of the two tasks. Goodale and Milner [38] found that perception-based

judgments (object identifcation, recognition, and verbal description) and perception-action

based judgments (reaching and grasping) are physiologically dissociated and are mediated

by distinct neurological channels (A more recent survey about the relationship between

visual perception and action can be found in Goodale [37]). Bridgeman et al. [14] found

that the perception-action channel is more accurate at estimating distance, whereas the

perception channel is more prone to distorted perceptual judgments. Bingham et al. [10,

12] proposed that the high accuracy of visually directed motor tasks could be a result of

the regular calibration of the visio-motor system resulting from feedback from everyday

experiences of manipulating objects in the real world.

Perception-action tasks can further be divided into two categories based on available

feedback: closed-loop tasks and open-loop tasks. The terms “closed-loop” and “open-

loop” are from the feld of control theory, and they represent the behavior of a dynamic
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system under the effect of feedback. In a closed-loop system, input to a system is adjusted

based on a feedback signal. Therefore, the output is defned by the input signal as well

as the feedback. In an open-loop system, there is no feedback and the output is defned

solely by the input signal (Levine [50]). For our experiments, we used a closed-loop task

of perceptual matching and an open-loop task of blind-reaching (see Figure 2.16).

2.4.1 Perceptual Maching 

The perceptual matching task is based on our everyday experiences of real world

interactions. In the real world, people interact with objects using closed-loop perception;

for example, keeping one’s eyes on a cup while reaching for it. They execute the reaching

action under the direct perceptual guidance of the feedback information obtained from
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looking at the cup and their hand. Because of the natural perceptual-motor coupling in a

closed-loop task, the visual feedback serves as a perceptual basis for the matching action.

A perceptual matching task involves matching the distance to a target object by pointing

at it with a pointer object. An observer moves a pointer towards the target object until both

of the objects are at the same egocentric distance from the observer. Depending upon the

experimental context, the pointer object is moved either directly by the observer using

some mechanical equipment (Ellis and Menges [26], Singh et al. [83]) or indirectly by an

experimenter (Swan et al. [85], Wu et al. [103]). Depending upon the spatial constraints,

the pointer object can be a physical object or the hand of the observer.

A perceptual matching task involves two subprocesses: visual perception and a match-

ing action. The visual perception process involves visually eliciting the information about

the difference between the perceived locations of the pointer and the target object. The

matching action involves moving the pointer to reduce the difference in the perceived depth

of the pointer and the target object. The visual feedback from the objects directs the move-

ment of the pointer, and this movement in turn affects the current state of the objects.

Therefore, the perception of the objects and the movement action of the pointer affect each

other in a closed loop. Along with visual feedback, perceptual matching also involves

proprioceptive feedback, which is the sense of limb positions. Proprioceptive feedback

is available when an observer performs the perceptual matching task using their hand as

the pointer object. Even when a physical pointer is used, some amount of proprioceptive

feedback is still available.
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There are two variations of the perceptual matching task: normal matching and feed-

forward matching (see Figure 2.16). In a normal matching task, the target object as well

as the pointer object are visible to the observer at all times. In feedforward matching, the

target object is visible only at the start of the trial and is hidden during the matching task.

The former task has little or no memory requirements, while the later task requires the

observer to remember the perceived position of the target object during the matching task.

Perceptual matching techniques have been widely used for real world depth judgments

(Prablanc et al. [74], Bingham et al. [10]), as well as in augmented reality environments

(Ellis and Menges [26], MacCandless et al. [55, 56], Rolland et al. [77, 78], Singh et

al. [83]). In these studies, a real object was used as a pointer object to match either a

real object (in the real world) or a virtual object (in AR). It is important to note that this

defnition of perceptual matching does not hold in virtual reality (VR), because VR can not

provide the direct view of a real pointer.

Even though the perceptual matching tasks are more suitable for real world applica-

tions, some scientists do not consider them as appropriate measure of defnite depth per-

ception (Bingham and Pagano [11], Prablanc et al. [74]). The visual feedback available

during the matching task can render this task more of a disparity matching task, rather

than a perceptual matching task, where one object is matched relative to another object.

Therefore, this technique gives a relative measure of depth rather than an absolute measure

of egocentric depth (Bingham and Pagano [11]). It is not necessary to have an internal

representation of the depth or the absolute distance information to the target object to per-

form this task. Prablanc et al. [74] explains the perceptual matching task as a combination
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of three different types of controls that operate during optimal visual guidance of the arm

towards a target: (1) a central programming triggered by the retinal input (visual image of

the target), (2) a central processing of peripheral information to program initial hand-motor

coordination, and (3) a peripheral processing of the retinal information of the position of

the hand and the target during the movement. This explanation is in line with Bingham

et al. [11] about the perceptual matching task being more of a retinal disparity task rather

than a representation of the consciously experienced visual space.

Nonetheless, this task is important because of its real world applications and the fact

that it can serve as a ground truth or best possible performance for depth judgments, even if

the results only measure relative depth perception. For example, a perceptual matching task

is most appropriate in an image-guided surgery that includes using a scalpel for cutting to

the depth of an AR presented marker inside a patient’s body. Its suitability to act as ground

truth is supported by the fact that it uses both visual and proprioception feedback, which

when combined are found to give better depth judgment performance than if either of them

is used alone (Van Beers et al. [90]). Also, real-world perceptual matching is extremely

accurate at reaching distances.

2.4.2 Blind Reaching 

As discussed in the previous section, many do not consider perceptual matching to be

an appropriate measure of absolute distance perception. Another category of perception-

action tasks are open-loop, which are considered as a more valid measures of absolute
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distance perception. These tasks involve judging the distance to a target object with a

hidden pointer without any corrective mechanism of feedback.

At near feld distances, an open-loop task to measure depth perception is blind reach-

ing, where an observer reaches to a target object to indicate its distance with a hidden

pointer. Because there is no visual feedback available, observer has to rely on some in-

ternal sense of the perceived distance to perform this task. In blind-reaching, even though

there is no visual feedback present, the proprioceptive feedback is still available, and there-

fore this task is more precisely a visually open-loop task.

Blind-reaching tasks are of two types: normal reaching and feedforward reaching

(Bingham et al. [10]) (see Figure 2.16). In normal reaching, the target object is visible

to the observer both before and during the reach. In feedforward reaching, the target ob-

ject is viewed before the reach begins, and then it is hidden from the view of the observer.

Therefore, the reach is executed based on the remembered location of the target.

Blind-reaching technique has been widely used in the depth perception studies at near-

feld distances for both real and virtual environments (e.g., Bingham et al. [12]; Mon-

Williams and Bingham [59]; Mon-Williams and Tresilian [61, 62]; Tresilian et al. [88];

Naceri et al. [66]; Napieralski et al. [68]). While some studies have found very accurate

responses for reaching (Mon-Williams et al. [64], Mon-Williams and Tresilian [61], van

Beers et al. [90], von Hofsten and Rosblad [92], Wann [94]), other studies have found far

less accurate responses with median errors of up to 25 cm (Foley and Held [32], Foley

[30])
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Blind reaching does not involve visual feedback, and therefore the reaching judgments

represent some internal sense of depth. However, blind-reaching does utilizes propriocep-

tive feedback, which has been found to be pliable and easily susceptible to drift in the

absence of some explicit correction mechanism. Harris [39] studied adaptation to prism-

produced displacement of the visual feld and found that when visual and proprioceptive

senses provide discrepant information, it is the proprioceptive sense that changes. Wann

et al. [95] studied depth perception using a blind-reaching and found that the participants

had a tendency to underestimate the distance by bringing their judging fnger closer to

their body. Paillard and Brouchon [72] also found that when using only proprioception,

the perceived location of an unseen hand drifts as quickly as in 12 seconds. These fndings

suggest that in the absence of some corrective mechanism the proprioceptive sense drifts

and the response variability increases.

Because the proprioception is susceptible to drift over time, Bingham and Pagano [11]

advocate using perception-action tasks with feedback while evaluating defnite depth per-

ception. The availability of feedback provides a standard of accuracy, where one tends

to achieve an optimized response by minimizing the response errors over repeated trials.

The removal of the feedback renders the system unstable and results in decreased accu-

racy over time. Mon-Williams and Bingham [59] studied the effect of haptic feedback on

the perceived position of a virtual object by providing perturbed haptic feedback. They

found that the proprioceptive sense is indeed very fexible, and calibration resulting from

haptic feedback at one position transfers to the responses made at other positions in a

proprioception-only task. This intentional feedback can be used advantageously to correct
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any initial inconsistencies between the actual position and the perceived position of the

viewed objects.

2.5 Light Measurement 

The human visual system perceives the external world by capturing the visible light

portion of the electromagnetic spectrum. The electromagnetic spectrum extends from radio

waves (with wavelength >1 m) down to gamma rays (with wavelengths of < 0.01nm).

Visible light covers only a small portion of this spectrum (with wavelengths of 380−770

nm), and exhibit ray, wave, and quantum properties.

The feld of radiometry deals with the measurement of the energy of electromagnetic

waves, over the entire electromagnetic spectrum. This energy is called radiant energy

(Qe), and is measured in joules (J). The total amount of radiant energy produced by an

object per unit time is known as radiant fux or radiant power (φe), and is measured in

watts (W ). Assuming a point source, the radiant power is quantifed over solid angles

(steradians). This measure is called radiant intensity (le), and is measured in watt per

steradian (W · sr−1). Another measure that quantifes the electromagnetic energy over a

source area is radiance (Le), and is defned as radiant intensity per unit projected source

−2 −1area (le · m or W · sr · m−2).

A subset of radiometry is photometry, which deals with the measurement of visible

light as perceived by the human eye. The energy of the light waves in the visible spectrum

is called luminance energy (Qv), and is measured in lumen seconds (lm · s). The total

amount of luminance energy produced by an object per unit time is known as luminance
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fux or luminance power (φv), and is measured in lumens (lm). Therefore, luminous power

is the total perceived power emitted in all directions. Another unit that measures the lu-

minance fux in a particular direction is called luminance intensity (lv), and is defned as

the perceived power per unit solid angle (steradian). Luminance intensity is measured in

candela, and is defned as lumen per steradian (cd = lm ·sr−1). The luminous intensity per

unit area of light traveling in a given direction is known as luminance (Lv), and is measured

−2)in candela per unit area (cd · m 

Table 2.2 shows the corresponding radiometric and photometric measures.

Table 2.2

Radiometric and Photometric measures.

Radiometric Photometric 
Radiant Energy (Qe)

joule (J)
Luminous Energy (Qv)

lumen second (lm.s)
Radiant Flux or 

Radiant Power (φe)
watt (W )

Luminous Flux or 
Luminous Power (φv)

lumen (lm)
Radiant Intensity (le)

watt per steradian (W · st−1)
Luminous Intensity (lv)

lumen per steradian (lm · st−1)
candela (cd)

Radiance (Le)
radiant intensity per unit area

−2)(le · m
watt per steradian per unit area

−2)(W · st−1 · m

Luminance (Lv)
luminous intensity per unit area

−2)(lv · m
candela per unit area

−2)(cd · m
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2.5.1 Radiometric to Photometric Conversion 

The human eye’s sensitivity varies over the different wavelengths in the visible spec-

trum. Photometry takes this sensitivity change into account by weights that represent the

sensitivity of the human eye for different wavelengths. In 1924, the CIE (Commission

Internationale de l’Eclairage) defned a photopic luminosity function that provides a stan-

dardized model of the eye’s response to light as a function of wavelength. The measure-

ment quantities in photometry are wavelength-weighted based on this model.

The relationship between the photometric measure of luminance and the radiometric

measure of radiance is defned as (Ryer [79]):

Z λ=830nm 
L = 683 ∗ R(λ)P (λ)dλ. (2.5)

λ=360nm 

Here L is luminance of the target object measured in candela per sq. meter (cd · m−2),

R(λ) is the radiance energy measured in watts per steradian per sq. meter (W ·sr−1 ·m−2),

P is the photopic luminous effciency function, and λ is the wavelength of visible light

measured in nanometers.
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CHAPTER 3

PREVIOUS WORK

3.1 Depth Perception in the Real World 

Depth perception has been an important area of psychological research for over 100

years. A large amount of literature is available on how depth perception works in the real

environment. The overall focus of depth perception studies has been on three main fronts:

identifying various depth cues in a scene and their effectiveness based on scene properties,

depth cue integration, and psychophysical measurement of depth perception.

The focus of this dissertation is on depth perception at near-feld distances. Within this

range of distances the main depth cues are eye vergence, accommodation, and binocular

disparity (Cutting [20]).

3.1.1 The Role of vergence in depth perception 

At near-feld distances, vergence has been conclusively found to provide egocentric

depth information (Fincham and Walton [28], Foley and Held [32], Owens and Liebowitz

[70], Brenner and Van Damme [13], Viguier et al. [91]). However, the contribution of ver-

gence to depth estimation depends upon the scene properties. In reduced-cue-conditions,

vergence is an important depth cue for depth perception (see Foley [31] for a comprehen-

sive review). However, its role in depth perception becomes complex when other retinal

39



cues are available. In low cue conditions, vergence-specifed distance is relative to a resting

vergence (Owens and Liebowitz [70]) i.e., participants tend to judge distance towards their

resting vergence; an object closer than the participants’ resting vergence is overestimated

and an object farther than the participants’ resting vergence is underestimated.

Depth perception is also affected by the remembered position of a previously judged

target (Brenner and Van Damme [13]). If the viewed target is closer than the previously

judged target, the participants tend to overestimate its distance, and if the viewed target is

farther than the previously judged target, the participants tend to underestimate its distance.

Vergence has been found to be most effective up to a distance of 2 meters; as the distance

to the target increases, vergence becomes unreliable for judging distance (Tresilian et al.

[88]). When other depth cues are available in the scene, the amount of contribution that

vergence makes towards depth estimation reduces signifcantly. Turvey and Solomon [89]

found that even at near-feld distances, vergence does not contribute to distance perception

when other retinal information is suffcient for determining distance.

3.1.2 The Role of accommodation in depth perception 

The role of accommodation as a source of depth information has been thoroughly

studied. Classically, accommodation itself was not considered a strong source of depth

information (Künnapas [48], Kenyon et al. [44], Mon-Williams et al. [63]). However,

it has been found that accommodation infuences depth perception indirectly by affecting

vergence through the convergence-accommodation refex (Semmlow and Hung [81], Mon-

Williams and Tresilian [62]).
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Even though the role of accommodation as a sole source of depth information remains

inconclusive, some studies suggest that accommodation in itself can act as a source of depth

information, at least for some observers (Wallach and Floor [93], Fisher and Ciuffreda [29],

Mon-Williams and Tresilian [61]). Fisher and Ciuffreda [29] found a correlation between

accommodation and distance responses for some individuals. Mon-Williams and Tresil-

ian [61] also found similar results; the pointing responses of two out of six participants

showed a strong relationship of accommodation to target distance, two showed a weaker

relationship, and two did not show any relationship. Together, these studies suggest that

accommodation affects depth perception indirectly by infuencing vergence.

3.1.3 Age and depth perception 

As a person ages, the accommodation ability of their eyes diminishes. This condition

is called presbyopia (Duane [23], Beers and Heijde [6], Kasthurirangan and Glasser [43]).

Because of this condition, people typically need reading glasses at some point in their

40s. A number of factors has been found to cause presbyopia, such as hardening of the

crystalline lens, increase in the lens thickness and diameter with age, changes in the angle

of the zonular attachments to the lens, age-related decrease in ciliary body movement, and

reduced elasticity of the choroid (Kasthurirangan and Glasser [43]). Presbyopia normally

starts at the age of 20, and by age 60 the lens is completely incapable of accommodating

to an object at near-feld distances (Duane [23], Bell et al. [7], Whitbourne [98]). Since

accommodation is a source of distance information, any changes in normal functioning of

accommodation is bound to change the way distance is estimated by older people.
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Bian and Anderson [8] studied the effect of age on the perception of egocentric dis-

tance for medium-feld distances of 4-12 meters. They found that the older participants

judged the egocentric distance more accurately as compared to the younger participants,

who underestimated and showed distance foreshortening. They also found that this age-

related difference was not due to the difference in distance scaling, difference in output

calibration, or use of eye-height or texture gradient information. They suggested that the

accurate distance perception in older participant might have resulted from their experience

over life-time, difference in the perceived slant of the ground surface, or a greater reliance

on pictorial cues with increased age.

3.1.4 Brightness and depth perception 

Brightness has been used to convey depth in art and paintings for a long time. Leonardo

Da Vinci explains the relationship between brightness and depth as:

“Among bodies equal in size and distance, that which shines the more brightly
seems to the eye nearer and larger”– Leonardo Da Vinci (McCurdy [57])

The effect of brightness on depth perception has been studied thoroughly in the real

environments (Ashley [4], Coules [18], Farne [27], Egusa [24, 25]). In all of these studies,

the general fnding was that among objects situated at the same fronto-parallel plane, the

brighter object appears closer to the observer. This effect was present for both monocu-

lar and binocular conditions, as well as for both near-feld (Ashley [4], Farne [27]) and

medium feld (Coules [18]) distances.

Ashley [4] suggested that a brighter object stimulates a larger tract of retina, resulting

in an increase in the perceived size of the object, and thus the object appears closer because
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of the relative size cue. Another explanation of this phenomenon is based on the near-triad

refexes, which causes contraction of the pupil while looking at near objects due to changes

in convergence and accommodation. Since the increased brightness also causes the pupil

to contract, a brighter object is perceived to be closer. Tayler and Sumner [86] suggested

that brighter objects stimulate the retina more intensely, and hence give more vivid images.

Usually closer objects are more vivid, and therefore the brighter objects are perceived to

be closer.

Brightness contrast of an object with respect to the background also affects depth per-

ception. If there is a difference between brightness contrasts, the object with the largest

brightness contrast is perceived to be the nearest; when the background is darker the

brighter object is perceived as the nearest, and when the background is brighter the darker

object is perceived to be the nearest (Egusa [24], Farne [27]). Egusa [24] studied the effect

of object presentation on depth perception by presenting a target either as a foreground

or as a background. They found that the target with the greatest brightness contrast was

judged closer when it appeared as a foreground image, and it was judged farther when it

appeared as a background.

3.2 Depth Perception in Virtual Reality 

Over the past 15 years, more than 40 studies have examined egocentric depth percep-

tion in virtual reality environments at medium-feld distances (Loomis and Knapp [51],

Swan et al. [84]). Both of these references contain extensive literature surveys about depth

perception in virtual reality. Almost every study has concluded that egocentric depth is un-
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derestimated in virtual environments for medium-feld distances. A number of reasons for

this have been proposed and tested such as the mechanical properties of the HMD (Willem-

sen et al. [99]), the feld-of-view of the display (Knapp and Loomis [47], Creem-Regehr

et al. [19]), a mismatch between the real world experiment site and its virtual representa-

tion, and the quality of the scene graphics (Willemsen et al. [101], Interrante et al. [41]).

In summery, the exact cause of the depth underestimation in virtual environment is still

unclear.

There are relatively very few depth perception studies for near-feld distances in virtual

reality. The VR depth perception studies have focused primarily on the effects of various

depth cues and judgment techniques. Naceri et al. [66] studied the effects of environment

fdelity (rich, reduced cues, poor) and apparent size (constant, co-varied) of virtual objects

on depth judgments in near-feld virtual reality. They used a collimated HMD, and a visu-

ally open-loop pointing task to judge egocentric distance to the target objects. Observers

were more accurate for the rich cue condition as compared to the reduced cue and poor

cue conditions. The manipulation in the target’s size, however, led to individual differ-

ences among subjects. Napieralski et al. [68] studied near-feld depth perception in real

and virtual environments using both verbal and physical reach responses. Observers saw

a virtual environment through a collimated head-mounted display. They found distance

underestimation in both real and virtual conditions; the underestimation was less in the

virtual environment as compared to the real environment.

The studies discussed above used collimated head-mounted displays, with a focus re-

quirement of infnity. For near-feld distances, a collimated display dissociates eye conver-
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gence and accommodation, which is usually coupled for normal real world viewing (see

Figure 2.15). Bingham et al. [10] used blind reaching to study the effect of accommoda-

tion on egocentric distance estimation in a virtual reality environment. For the collimated

condition, they found overestimation in the virtual environment relative to actual environ-

ment. They attributed this difference to accommodation being entailed farther than the

virtual image in the collimated display. Interestingly, when a -2D lens was used to reduce

the focal distance, the overestimation reduced by half.

Anderson et al. [1] studied the effect of collimation on depth perception for near-

feld distances of 3−195 cm by judging exocentric distance between two virtual objects.

They found that judged depth was greater for the collimated condition than for the non-

collimated condition. Also, as the simulated distance between the observer and the depth

interval increased, the perceived extent of the depth interval decreased. They also found

that there was a constant increase in depth with collimation for all of the studied depth

intervals. This suggests that the space rescaling was uniform in the case of collimation.

3.3 Depth Perception in Augmented Reality 

Very few depth perception studies have been conducted in augmented reality at

medium feld distances (e.g., Jones et al. [42], Swan et al. [84]). These studies found

that egocentric depth is underestimated in augmented environments for medium-feld dis-

tances. The exact cause of the depth underestimation in augmented environment is still

unclear.

45



To the best of our knowledge, to date the published work examining near-feld AR

depth judgments can be found in only fve papers (Rolland et al. [77, 78], Ellis and Menges

[26], McCandless et al. [56], Singh et al. [83]). Rolland et al. [77] examined depth judg-

ments of real and virtual objects at distances of 80 to 120 cm, using a forced-choice task.

They found that the depth of virtual objects was overestimated at the tested distances. They

attributed this overestimation to a number of factors: the fxed inter-pupillary distance of

the display, optical distortion, illumination, and collimated display. Rolland et al. [78] then

ran additional subjects with an improved display with a focal depth of 80 cm. They exam-

ined depth judgments of virtual objects at the focal depth distance of 80 cm, and compared

forced-choice and perceptual matching tasks. They found improved depth accuracy and no

consistent depth judgment biases.

Ellis1 and Menges [26] studied depth perception at near-feld distances, in order to de-

velop design guidelines for augmented reality display systems. Their experiment involved

measuring the effects of convergence, accommodation, observer age, viewing condition

(monocular, biocular2 stereo, binocular3 stereo), and the presence of an occluding surface

(the x-ray vision condition) on depth judgments of a virtual object using a closed-loop

perceptual matching technique. The task was to match the depth of a small light on an

adjustable arm to the depth of a virtual pyramid. They found that monocular viewing de-

graded the observer performance for depth judgments, and that most of the localization

1Stephen R. Ellis, NASA Ames, is a member of author’s graduate committee, and has been a collaborator
in the development of the experiments discussed in this dissertation.

2Biocular stereo: In this two identical images are presented to the eyes, but offset to indicate constant
disparity.

3Binocular stereo: In this two stereoscopic images, which are generated from the perspective of each eye,
are presented to the eyes.
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errors occurred when the physical surface was closer than the virtual object. They at-

tributed these errors to the phenomenon of proximal vergence: they found that introducing

a physical surface in front of the virtual object caused a relative forward movement in the

localization of the virtual object. They measured the eye convergence before and after in-

troducing the physical surface using nonius lines, and found a small relative convergence

of the eyes caused by proximal vergence. Then, they cut a hole in the occluding surface so

that the virtual object was visible through the occluder. In this condition, the depth judg-

ment bias towards the observer was reduced by a signifcant amount. This phenomenon

appears to strengthen the proximal vergence explanation.

McCandless et al. [56] used the same experimental setup and task as Ellis and Menges

[26] to additionally study motion parallax and AR system latency in monocular viewing

conditions; they found that depth judgment errors increased systematically with increasing

distance and latency.

3.4 Master Thesis 

The work in this dissertation stems from the author’s Master Thesis, titled “Near-Field

Depth Perception in See-Through Augmented Reality” [82]. The goal of that work was

to study depth perception in near-feld augmented reality. As part of the thesis, a depth

perception measurement apparatus was engineered and related calibration and measur-

ing techniques were developed for collecting depth judgments (see Figure 3.1). To test

this apparatus, a depth perception experiment was conducted, which compared matching,

a closed-loop task for measuring depth judgments, with reaching task, a visually open-
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loop task for measuring depth judgments. The experiment also studied the x-ray vision

condition by measuring the effect of a highly salient occluding surface appearing behind,

coincident with, and in front of a virtual object. Additionally, this experiment also studied

the relationship between dark vergence and depth perception. The major fndings from this

experiment were published in Singh et al. [83].

The experiment described in Singh et al. [83] was the frst experiment of its kind to

directly compare matching with reaching as a depth judgment protocol in augmented re-

ality. This experiment replicated the apparatus and closed-loop task described in Ellis and

Menges [26], along with the additional condition of reaching. These two depth judgment

protocols were nested with two occluder conditions: absent and present. This nesting

resulted into four main conditions. The scene was presented through a collimated NVIS

nVisor ST60 optical see-through display. The virtual stimulus target was an inverted white,

wireframe pyramid, with a base of 10 cm and height of 5 cm rotating at 4 revolutions per

minute. It was randomly scaled from 70% to 130% of its actual size to avoid presenting

relative size as a depth cue.

The main results from this experiment are shown in Figure 3.2. A major fnding was

that there was a general trend of a linear increase in error with increasing stimulus distance

for all conditions. This trend was more notable when the occluder was not present, i.e. in

conditions 1 and 3. This effect suggests that the convergence-accommodation mismatch

present in the HMD might have biased the observer to converge farther away for father

distances. When observers had the occluder (a real object) in view, i.e. in conditions 2 and
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Tabletop Apparatus

curtain (covers

calibration cross)

open-loop slider (under the table)

closed-loop 

slider 

display

occluder

tracker emitter

Figure 3.1

Table-top based experimental apparatus.
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4, it disrupted the linear pattern, probably by biasing convergence towards the occluding

distance of 42 cm.
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Figure 3.2

The mean error for the depth judgments.

The effect of the occluder was more prominent in the blind-reaching condition, espe-

cially for the distance of 46 cm. This result is consistent with an observation made by

both us and Ellis and Menges [26]: when a virtual object is initially located in front of a

physical object, and the physical object is slowly moved towards the observer, at frst the

virtual object appears to be “pushed” closer to the observer by the physical object; this is

likely happening for the object at 46 cm in condition 4. At some point, however, the virtual

object suddenly appears to “fall back” behind the physical object; this is likely happening

for the object at 50 cm. This imparts a strong sense of transparency to the physical object.

This effect is easy to see in an AR system using one’s hand.
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Finally, we found a general trend of greater underestimation for the reaching judgments

relative to the matching judgments. This effect was expected, as there were fewer depth

cues available in case of reaching than matching.
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CHAPTER 4

EQUIPMENT & EXPERIMENTAL SETUP

4.1 A.R.T. GmbH ART TrackPack position tracking system 

The ART TrackPack is a position tracking system (see Figure 4.1) with 6 degrees of

freedom tracking capability. It is a passive outside-in tracker that uses a combination of

retro-refective spheres and tracking cameras to track the position and orientation of the

target object. The tracking cameras consist of an infra-red light emitter and receiver, and

are attached at a fxed location in space.

Figure 4.1

A.R.T. GmbH ARTtrack position tracking system.
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A rigid confguration of the retro-refective spheres is attached to the target to be

tracked. During tracking, the cameras emit infra-red light, which is refected off the spheres

towards the same direction it came from. This refected light is captured by the cameras and

from this data the position and orientation of the target object is calculated by triangulation.

Multiple target objects can be tracked at the same time by attaching different confgura-

tions of spheres to the objects. During preliminary testing, the accuracy and precision of

the tracker was found to be better than 1 mm in the tracked volume.

4.2 Display Technologies 

4.2.1 NVIS nVisor ST60 Optical See-Through HMD 

Figure 4.2

NVIS nVisor ST60.

53



The frst two experiments discussed in this document were conducted using an NVIS

nVisor ST60, which is an Optical See-Through Display (see Figure 4.2) . This HMD

is capable of displaying 3D stereo scenes at a resolution of 1280 × 1024 per eye. Its

display area has 100% overlap with a 60◦ diagonal feld-of-view. It supports variable inter-

pupillary distance (IPD) within the range of 53 mm to 73 mm, by adjusting the left and right

eye-pieces independently. The optical elements of the HMD are collimated and present the

scene at the eye accommodation of ∞.

4.2.2 Haploscope 

Historically, head-mounted displays (HMDs) and heads-up displays (HUDs) were

mainly used for pilot training and other medium and large feld applications, which pri-

marily used pictorial cues for depth estimation. These displays, which are usually located

a few centimeters in front of the eyes to a few meters away, can inadvertently provide ac-

commodation information for medium and far-feld applications. When looking through

a display at closer distances, the eyes focus at the distance to the display due to the ac-

commodation sensitivity. If the display is suffciently close it gives the illusion of fatness,

where all objects can appear fat, even though they are intended to be rendered at differ-

ent depths with correct pictorial depth cues. This happens because at closer distances, the

visual system starts incorporating depth information from the accommodation cue. As a

result, all parts of the scene appear to be at the same distance. This lack of differential

accommodation implies that the scene is fat and close rather than extended to medium or

far feld distances.
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To solve this problem, the images are presented with collimated light in some displays

that sets the accommodative demand at infnity and thus removes accommodation as a fat-

ness cue (Nagata [67], Anderson et al. [1]). Because accommodation is mostly effective

at closer distances and differential accommodation does not occur at farther distances, dis-

plays that are focused at infnity do not use accommodation information while estimating

depth. This technique works well for medium to far-feld distances; however, for near-feld

distances it causes the problem of convergence-accommodation mismatch that affects the

way a scene is perceived.

At near-feld distances, accommodation changes to bring an object in focus are very

large (1 diopter to 10 diopters to switch focus from 1 meter to 10 cm in front of the eyes).

Ideally, HMDs should provide these changes in accommodative demand while presenting

objects at different distances. However, most of the current commercially available dis-

plays can not present virtual objects at their correct accommodative demand due to fxed

optical properties. In these displays, the focal distance is fxed at a particular distance,

and their inability to present virtual objects at correct accommodative demand is a ma-

jor design issue in VR/AR displays. A major design limitation of the NVIS nVisor ST60

HMD (which is used in Experiments I and II of this dissertation) is that it is a collimated

display and graphics can only be presented at the accommodation demand of infnity.

As previously discussed in the related work section (see section 3.2), the convergence-

accommodation mismatch causes perceptual problems when judging distance at closer

distances.
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For Experiments III, IV, and V, we needed to present AR objects with equal conver-

gence and accommodation demands. We designed a haploscope, which is a display with

switchable focus that can change accommodative demand based on the distance to target

objects. The design of our haploscope was loosely based on the one explained in Rolland

et al. [77]. Our major requirement was that the haploscope should provide optical see-

through augmented reality functionality by enabling a direct view of real world along with

virtual objects.

The haploscope (see Figure 4.3) consists of two image-generator assemblies, one each

for left and right eye, along with a mechanism to mount these assemblies on. A critical

requirement for the haploscope was that it should be rigid enough to keep the equipment

stable and provide immunity to accidental bumps and environmental factors. At the same

time, it should be fexible enough to incorporate variations in the inter-pupillary distance

(IPD) of different subjects as well as the changes in the accommodative demand for differ-

ent target distances.

To accomplish this, we used three Newport Precision optical rails to build the haplo-

scope. A 24 inch optical rail was used as a mounting base for the haploscope, and two 12

inch optical rails were used as bases for the image generator assemblies for the left and

right eyes. The longer optical rail was bolted frmly on to the optical bench of the table-top

apparatus described in Singh [82]. The two smaller optical rails were mounted on to this

rail by using two 3 inch rail carriers. These rail carriers could slide left and right on the

optical rail to change the distance between left and right assemblies to match the IPD of

various subjects.
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Augmented reality haploscope.
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Ray diagram of image-generator assembly.

A simple image-generator assembly consists of a display screen and a collimation lens.

For display screens, we used two off-the-shelf Accelevision 6 inches (15.2 cm) TFT color

LCD monitors (9.2 cm high and 12 cm wide). For image collimation, we used two plano-

convex lenses (Techspec PCX Lens, 50.0 mm Diameter × 100.0 mm FL, 1064 nm V-Coat

acquired from Edmund Optics Inc.). After experimenting with the optics, we found that

even though these lenses can collimate the incoming light, they were unable to capture the

entire display area of the monitors, and therefore the usable display area that was visible

through the collimation lens was very small. We decided to resize the image coming from

the monitors by introducing two minimization lenses in between the monitors and the col-

limation lenses (see Figure 4.4). Therefore, instead of collimating the monitor screen, the

collimation lenses were now collimating a minifed image of the monitor image as pre-

sented by the minimization lenses. We used two plano-concave Lenses (TechSpec PCV
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50 mm Diameter, -100 FL, VIS 0, Inked acquired from Edmund Optics Inc.) as mini-

mization lenses. All of these lenses were held in place by English bar-type holders also

acquired from Edmund Optics Inc. A ray diagram of the minimization and collimation in

image-generator assembly is shown in Figure 4.4

When we actually started building the haploscope, we found the problem of optical

distortion. It has been found that optical distortion can change the presented position of

virtual objects and therefore could result into erroneous depth judgments (Rolland et al.

[77], Wann et al. [96]). There were three different approaches to design the haploscope

based on the effect of optical distortion on the target presentation. Figure 4.5 shows the

frst approach, which is appropriate when the available lens has minor or no distortion.

In this case the entire structure of the haploscope is rigid (as in an HMD) and the eye

convergence is provided using binocular disparity by generating a stereoscopic scene on

the screens based on the position of the left and right eyes. With no lens distortion, this

confguration can show the scene at the correct distance from the observer. However in

our case, the lens distortion caused the virtual objects to appear at a distance closer than

the intended distance as shown in Figure 4.5. The dotted-purple lines show the intended

fxation point for the virtual object, and the dotted-black lines show the actually displayed

fxation point.

The second approach (see Figure 4.6) is based on the relationship between distortion

and the distance from the center of the lens. The distortion is smaller near the center of the

lens as compared to the edge of the lens. If an object is projected near the center of the lens

system, an acceptable amount of distortion can be achieved. To accomplish this, the left
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Eyes converging at infnity.

and right assemblies are adjusted so that their center axes intersect at a particular distance

(point m in Figure 4.6). In this case, there is no distortion when an object is projected at

distance m. However, the lens distortion is still present for the objects projected closer or

farther than m; an object projected at distance f will appear father at distance f 0 , and an

object at distance n will appear closer at distance n0 .

Even though the distortion in second approach was very small, it was not acceptable for

our purpose. We needed a display that can present target objects with no optical distortion.

Because there is no distortion along the principal axis of the lens system, we decided to

render the target object at the center of the lens system. This technique would solve the

problem of optical distortion, and present the virtual objects with the correct accommoda-
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Eyes converging at midpoint.
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tion demand. However, the need to present target objects stereoscopically at the required

distances still persisted.

Image

generator

Optics

Eye positions as

pivot points

n

m

f

Figure 4.7

Eyes converging dynamically at selected distances.

In traditional stereoscopic systems (e.g. HMD), a scene is rendered stereoscopically

based on the eye positions of an observer to provide binocular disparity. Because of this

binocular disparity, viewing closer objects requires inward convergence of the eyes and

farther objects requires outward convergence. In our system, rendering the target object by

binocular disparity meant again running into the problem of optical distortion, as shown in

Figure 4.5. Instead, we decided to provide the required disparity in the same way as the

eyes provide during their normal operation; by rotating the entire left and right assemblies

so that the principal axes of both assemblies intersect at the target distance. As shown
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in Figure 4.7, we used the left and right eye positions of the observer as pivot points to

rotate the assemblies. In this way, the centers of the two eyes always stay in line with the

principal axis of the lens system for all convergence distances. Figure 4.7 shows how an

object can be presented at near n, medium m and far f distances by rotating the assemblies

inwards and outwards.
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Figure 4.8

Eye convergence by an angle α.

To display the target object at a specifc distance, the assemblies were rotated at the

convergence angle that matches the presented object. This angle was calculated based on

the inter-pupillary distance (IPD) of the current participant, and the distance to the object.
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As shown in Figure 4.8, if d is the distance to the presented object O, the convergence

angle α required by the left and right eye to look at the object is

� � 
α = tan−1 IPD

(4.1)
2d

It was essential to rotate the assemblies at a high precision and accuracy to present

target objects at their correct locations. We used the ART TrackPack position tracking

system to measure the rotation of the assemblies by attaching retro-refective markers to

the image generator screens as shown in Figure 4.3. This system has a rotation accuracy

of one-hundredth of a degree. While running subjects, the assemblies were rotated and

the accommodation lenses were changed for each trial to present the target object with the

desired accommodative and convergence demands.

4.2.3 ASD FieldSpec Pro Spectroradiometer 

A spectroradiometer is an instrument that measures the refection and transmission

properties of a surface by providing spectral power distributions over the entire elecromag-

netic spectrum originating from or refected off of that surface.

We used a FieldSpec Pro spectroradiometer by ASD (see Figure 4.9) to measure the

luminance of the target object. This device provided the spectral power distribution and

radiance of the target object over all wavelengths, including visible and non-visible wave-

lengths. To calculate the luminance (the part of the measured radiance perceived by the

human eye), we used the photopic luminosity function (Equation 2.5, Page 38), to calculate

the weighted integration of radiance over the visible spectrum.
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Figure 4.9

ASD FieldSpec Pro Spectroradiometer.
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CHAPTER 5

EXPERIMENTAL PROCEDURES

5.1 HMD Calibration 

Experiments I and II of this dissertation were conducted using the NVisor ST60 HMD.

To present the stimulus object in a way so that it is correctly observed by the participants,

it is necessary that the HMD is ftted correctly on their heads. We used the technique

described in Jones et al. [42] to ft the display on the participant’s head. This technique

was originally developed for medium-feld distances for a standing participant looking

down a hallway; the technique’s parameters are the participants eye height, inter-pupillary

distance, and the distance from the participant’s eyes to a calibration cross mounted at the

participant’s eye height at the end of the hallway. We modifed this technique to work with

our setup for near-feld distances, using an eye-height of 3.5 cm above the table surface for

Experiment I, and an eye-height of 24.5 cm for Experiment II. A white cross was drawn at

eye-height on a black cardboard surface that was mounted 100 cm from the participant.

The original technique described in Jones et al. [42] was developed for medium-feld

distances. However, we discovered a problem with this technique when using it at near-

feld distances. This problem results in a lateral separation of up to 2 cm between the real

and virtual objects. At medium feld distances a 2 cm separation is relatively small and can

be ignored. However, 2 cm is a large error at near-feld distances.

66



Real and virtual 
objects overlap

Real and virtual Real and virtualReal and virtual 
calibration 

crosses overlap

Real and virtual 
calibration 

crosses overlap

No translational 
error

d d

No translational 
error

No translational 
error

No translational 
errorerror

No rotational 
error

Rotational error 
present

error

No rotational 
error

error

No rotational 
error

error

(a) (b) (c) (d)

Figure 5.1

HMD calibration problem.
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Figure 5.1 illustrates the problem. This problem arises when the HMD is shifted to

one side of the participant’s head. Figure 5.1(a) shows the ideal case, where the HMD

eyepieces are at equal distance from the center of the HMD. When the participant aligns

everything (the real and virtual calibration crosses, the translational crosshair, and the ro-

tational crosshair; see Jones et al. [42]) the system is calibrated, and therefore real and

virtual objects overlap. Figure 5.1(b) shows what happens when the HMD’s eyepieces are

not centered. At the start, when the translational and rotational crosshairs are aligned, there

can be a lateral separation of 2 cm between the real and virtual calibration crosses, because

the virtual calibration cross is generated with respect to the center point. This results in

shifting the whole scene towards the direction of misalignment. Figure 5.1(c) shows how

participants compensate for this: they rotate their head to eliminate the lateral separation

between the calibration crosses; this confguration does not result in any translation er-

ror, but it does generate rotational error that shows up as a misalignment in the rotational

crosshair. Figure 5.1(d) shows what happens when participants correct this rotational error.

Here both the translational crosshair and the rotational crosshair are properly aligned, but

the real and virtual objects, which should be collocated, do not overlap.

Therefore, the calibration technique described by Jones et al. [42] only works when

the eyepieces are centered in the display (Figure 5.1(a)). The problem described here was

diffcult to fnd because often the eyepieces are properly centered. However, Figure 5.2(a)

shows what happens when the HMD is worn while shifted to one side of the head. The

frst step of the calibration procedure described by Jones et al. [42] is to monocularly adjust

concentric circles so that equal amounts of the outermost circle are visible; this ensures that

68
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Figure 5.2

HMD calibration solution.

each of the participants eyes are looking down the middle of each monocles optical axis.

In Figure 5.2(a) the participant would adjust the left monocle more than the right, resulting

in the calibration problem described above.

Figure 5.2 describes the solution. First, both monocles are adjusted all the way in-

ward. If the situation of Figure 5.2(a) occurs, the participant shifts the entire HMD left

and right on the head until they have a symmetric view of each set of concentric circles

(Figure 5.2(b)). This ensures that the HMD is centered on the head. Then, as shown in

Figure 5.2(c), the participant adjusts each monocle until equal amounts of the concentric

circles are visible. This solves the calibration problem described here.

5.2 Luminance Calculation 

We used an ASD FieldSpec Pro spectroradiometer (Figure 4.9) to measure the radiance

of the real target, the bright virtual target, and the dim virtual target. To measure the
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radiance of the real target, we placed the ASD sensor against the real target. To measure

the radiance of the virtual target, we placed the sensor against the monitor screen that was

used to render the virtual target.

As shown in Figure 5.3 we measured the radiance values at 5 different positions on the

target object: top, middle, bottom, left, and right. At each position, we took 5 readings,

resulting in a total of 25 readings per target.

top

bottom

left rightmiddle

Figure 5.3

Luminance measurement locations for the virtual target.

The radiance values were then converted into luminance values according to equation

2.5 (Page 38). Figure 5.4 shows the luminance values for the three types of target object and

fve measurement positions. The flled circles show the median positions of the luminance

for each target object.
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CHAPTER 6

EXPERIMENTATION

The experiments in this dissertation studied depth perception in the near visual feld for

an augmented reality environment. The work stemmed from the author’s masters thesis

(Singh [82]) that studied the two complementary distance judgment protocols of percep-

tual matching and blind reaching, and found perceptual matching to be a more accurate

distance measure than blind reaching. In this dissertation we evaluated various techniques

to measure near-feld depth perception in AR, and used these techniques to empirically

study various factors that affect AR depth perception, specifcally learning effects, accom-

modation, brightness, and age.

• Experiment I: Matching vs. Reaching: This experiment compared the two com-
plementary distance judgment protocols of perceptual matching and blind-reaching,
using a physical pointer in a real, and in an AR environment. The primary result of
this experiment is that participants were more accurate when using the perceptual
matching technique than when using the blind reaching technique.

• Experiment II: Learning Effects: This experiment investigated learning effects us-
ing a pretest, intervention, posttest experimental design. We found an effect of per-
ceptual matching on the blind-reaching responses only in the real environment. This
experiment also compared perceptual matching and blind-reaching but using a differ-
ent setting with the observer’s fnger as the pointing object, to provide proprioceptive
feedback and to better match previous work (Tresilian and Mon-Williams [88]). The
results from this experiment also confrmed the validity of perceptual matching as an
accurate distance measure.

• Experiment III: Accommodation: This experiment used perceptual matching to
study the effect of three accommodative conditions: collimated, consistent, and mid-
point, on depth perception of younger participants. We found the distance responses
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in the consistent and midpoint conditions to be more accurate than in the collimated
condition.

• Experiment IV: Brightness: This experiment used perceptual matching to study
the effect of brightness on depth perception by comparing distance judgments in two
brightness conditions: bright, and dim. We found that the participants judged the
objects in the bright condition closer than the objects in the dim condition.

• Experiment V: Age: This experiment used perceptual matching to study the effect
of age by testing the three accommodation conditions (collimated, consistent, mid-
point) on older participants. We found that the older participants judged the distance
more accurately than the younger participants.

The following sections will describe these experiments in detail:

6.1 Experiment I - Matching vs. Reaching 

The main goal of Experiment I was to compare the two complementary distance judg-

ment protocols of perceptual matching and blind-reaching at near-feld distances in a real

and in an AR environment. At near-feld distances, most of the previous experiments have

used perceptual matching depth judgments, where the depth of a target object is matched

with a pointer object. For many imagined AR applications, perceptual matching has good

ecological validity; for example, many AR-assisted medical procedures involve placing a

medical instrument at a depth indicated by a virtual marker. However, many perceptual

scientists do not consider perceptual matching to be an appropriate measure of depth per-

ception, because it can only measure the depth of one object relative to that of another

object (e.g., Bingham and Pagano [11]). These scientists have suggested blind reaching,

where a participant indicates a distance by reaching with their unseen hand, as an alterna-

tive depth judgment measure that better refects the perception of depth.
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Motivated by these suggestions, we compared perceptual matching (called matching

hereafter) and blind reaching (called reaching hereafter) in an AR environment in our pre-

vious near-feld depth perception experiment (Singh et al. [83]). That experiment found

that matching is a more accurate distance measure than reaching. However, because that

experiment was conducted in an AR environment, a valid critique is that it only studied AR

targets, but these virtual targets do not have a ground-truth location that can be objectively

measured in the real world. Experiment I addressed this concern by comparing AR targets

with real targets. Since the location of real targets can be objectively measured and hence

can serve as ground truth, they will help ground the localization of AR targets.

We also found calibration effects over the frst 5 trials in Singh et al. [83]. A valid cri-

tique about these calibration effects is that the experiment used a within-subjects, repeated-

measures design, and such designs can have complicated asymmetric skill transfer or train-

ing effects across successive conditions. This suggests the possibility that experience in

the earlier conditions could affect performance in the later conditions. This concern be-

comes even more prominent considering that reaching is not always stable over time (e.g.,

Mon-Williams and Bingham [59]), and therefore the reaching protocol combined with

the within-subjects design complicates the interpretation of the calibration effects seen in

Singh et al. [83]. Experiment I addressed this concern by replicating the experiment in

Singh et al. [83] using a between-subjects design. Therefore, if additional calibration ef-

fects are found, the between-subjects design will confrm that they do not result from asym-

metric skill transfer. However, if no calibration effects are found, it will indicate that the
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calibration effects seen in Singh et al. [83] resulted from that experiment’s within-subjects

design. Experiment I tested the following hypotheses:

• Hypothesis 1.1: Matching more accurate than reaching: This hypothesis com-
pared matching and reaching tasks. We hypothesized that matching will give more
accurate results as compared to reaching, because the matching task uses more
depth cues (e.g., disparity) than blind reaching. Therefore, matching might serve
as a ground truth or best-possible depth judgment method, even if the results only
measure relative depth perception. The degree of divergence between reaching and
matching will serve as an important measure of the usefulness of reaching as a per-
ceptual measure of depth perception.

• Hypothesis 1.2: Real objects localized more accurately than AR objects: This
hypothesis compared localization of AR objects and real objects. Since all depth
cues are consistent for real objects, but not for AR objects, we hypothesized that
distance judgments for the real objects will be more accurate as compared to the AR
objects.

• Hypothesis 1.3: No calibration effects for between-subjects design: This hypoth-
esis tested if the calibration effects seen in Singh et al. [83] were present because
of the within-subject design of the experiment. We hypothesized that because of the
between-subject experimental design, Experiment I will not have any calibration due
to training effects.

6.1.1 Experimental Setup 

We used the same apparatus as described in Singh et al. [83], with modifcations to

support a real stimulus object. Figure 6.1 shows a side-view diagram of the table and

depicts the depth judgment tasks and environments, and Figure 6.2 shows an annotated

photograph of the apparatus.

We used closed-loop matching and open-loop blind reaching tasks as described in

Singh et al. [83], with modifcations to support similar arm movements for both of the

tasks. In that study, each task required a different motor action. The matching task in-

volved reaching to the right side of the table, while the reaching task involved reaching
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underneath the table-top. In the current experiment, we connected both pointers to a single

slider underneath the table-top using a connecting bracket (see Figure 6.2), thus facilitating

similar motor action for both tasks. We mounted a retro-refective sphere on the slider arm,

which allowed automatic encoding of each participant’s depth judgments using a tracker.

Experiment I (Fall 2010)

Environment = Real, AR

Task = match

Task = reach

Figure 6.1

Experiment I: Side view diagram of the experimental table.

In the real environment, participants saw a slowly rotating (4 rpm) white wireframe di-

amond shape with a 10 cm base and 10 cm height (See Figure 6.1). As shown in Figure 6.2,

we attached the target object to a PVC arm connected to a pipe that ran through two collars

mounted on the left-hand side of the table. With this mounting, the target object could be

positioned either in or out of the participant’s feld of view. In the real environment, we

positioned the physical target in the feld of view at a variety of distances in front of the

participant. In the augmented reality environment, we displayed a virtual rendering of the
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Figure 6.2

Experiment I: Annotated photograph of the experimental table.
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same target object. In both environments participants viewed the target object through our

AR head-mounted display, an nVisor ST model by NVIS, Inc. In the real environment

the HMD did not show any graphics. Participants viewed the target object against a black

curtain that hung 220 cm away (see Figure 6.2).

6.1.2 Experimental Variables and Design 

Table 6.1 shows the independent and dependent variables of Experiment I. In this

study, we recruited 41 participants from a population of university students, faculty, and

staff. The participants ranged in age from 18 to 27; the mean age was 20.1, and 23 were

female and 18 male. Seven participants were paid $12 an hour, and the rest received course

credit. We did not analyze data of one participant as they observed incorrect disparity

resulting from an accidental fip of the left and right eye. As indicated in Table 6.1, we

analyzed the data from the remaining 40 participants.

Table 6.1

Experiment I: Independent and Dependent Variables

INDEPENDENT VARIABLES 
Participant 40 (random variable)
Environment 2 between AR, Real
Judgment 2 between Match, Reach
Distance 5 within 34, 38, 42, 46, 50 cm
Repetition 6 within 1, 2, 3, 4, 5, 6

DEPENDENT VARIABLES 
Judged Distance in cm
Error Judged Distance − Actual Distance

78



The participants performed two kinds of the depth judgment tasks: matching and reach-

ing, in two kinds of environments: real and augmented reality (AR). For the matching task,

the participants used their dominant hand to manipulate the slider located underneath the

table; this slider adjusted a small LED mounted on the closed-loop pointer above the ta-

ble. The participants’ task was to align the bottom of the target object with the top of the

LED, which matched the depth of the bottom of the target object. For the reaching task,

we disconnected the closed-loop pointer arm (with LED) from the slider. The participants

adjusted the slider underneath the table until they believed that their thumb was located di-

rectly underneath the tip of the target object. Because the participants rested the front of the

AR display on the tabletop, they could not see their hand, and so this task was performed

blind.

We presented the target objects at 5 different distances from the participant: 34, 38,

42, 46, and 50 cm. At 34 cm distance, the target object subtended a maximum of 16.4◦ 

of visual angle, while at 50 cm distance, the target object subtended a minimum of 11.3◦ .

Participants saw 6 repetitions of each distance.

As shown in Table 6.1, the primary dependent variable was judged distance, which we

measured using either the matching or the reaching distance judgment. We also calcu-

lated error = judged distance − actual distance. An error ∼ 0 cm indicates an accurately

judged distance; an error > 0 cm indicates an overestimated distance; and an error < 0 cm

indicates an underestimated distance.

We used a mixed design with the most important independent variables (judgment,

environment) varying between the participants, resulting in four main conditions: (1) match-
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ing, real (2) matching, AR (3) reaching, real, and (4) reaching, AR. The presentation order

of these four main conditions varied in a round-robin fashion. For each main condition, our

control program generated a list of 5 (distance) × 6 (repetition) = 30 trials. The program

then randomly permuted the presentation order of the distances, with the restriction that

the same distance could not be presented twice in a row. We collected 1200 data points [40

participants × 5 distances × 6 repetitions].

6.1.3 Procedure 

Each participant flled out a standard informed consent form, a simulator sickness

survey, and a demographic survey. Next, each participant performed a stereo acuity test,

which all participants passed. After this, we measured the participant’s inter-pupillary

distance (IPD) while they converged at a distance of 40 cm; and we entered this IPD value

into the scene generator software. Next, we described the depth judgment task to the

participant, and they practiced the task three times. During practice, the participant did

not wear the display and used the real target object for both the real and AR conditions.

Next, we ftted the display on the participant’s head, and calibrated it using the calibration

technique described in our previous study (Singh et al. [83]). In addition, while designing

this study we discovered a problem with the calibration tecnique; in section 5.1 we describe

the problem in detail, as well as the additional calibration step that we developed to solve

it.

After calibration, the participants looked through the approximate optical center of

each of the display eyepieces, without any translational or rotational errors. In addition,
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Figure 6.3

Experiment I: A participant after calibration.

the front of the HMD rested on the table, and any lateral movement was restricted by the

two ridges on either side of the display (see Figure 6.3). This was done because the feld

of view of the HMD is narrow, and restricting the movement of the HMD equalized the

feld-of-view between the AR and real conditions. This setting also allowed us to avoid

any depth information from motion parallax resulting from head movements. In addition,

most of the HMD weight was held on the table, which helped us eliminate the effect of

HMD weight on depth perception (Willemsen et al. [100]).

The participants next completed one of the four main judgment × environment con-

ditions of 30 trials. We allowed the participants to take a break at any point during the

experiment; if a participant took a break we re-calibrated the display. At the beginning of

the trials, we adjusted the slider so that it was as close to the participant as possible. For

the frst trial, the participant slid the pointer from this position to indicate the depth of the
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target object. At the beginning of every trial, the participant closed their eyes and we pre-

sented the target object. Then, we asked the participants to open their eyes and adjust the

pointer. When the participant completed the task, they placed their hand in their lap, and

closed their eyes. When we saw the participant do this, we blanked the display, recorded

the judgment, and then triggered the next trial. We ask the participants to be as accurate

as possible, and gave them no time limit for performing the trials. After completing the

experiment, participants flled out a simulator sickness exit survey, and then discussed the

experiment with us.

6.1.4 Results 

We analyzed the judged distance results from N = 1200 data values. All analysis

were conducted with Error = Judged Distance−Actual Distance. Figure 6.4 shows the

main results as judged distance versus actual distance and Figure 6.5 shows this same data

plotted as error. We conducted an ANOVA analysis of this main experimental design,

and found a signifcant 3-way interaction between judgment, environment, and distance

(F (4,144) = 2.7, p < .031). Included in this interaction are a main effect of judgment

(F (1,36) = 46.7, p < .001), and a main effect of distance (F (4,144) = 6.8, p < .001).

There is no effect of environment (F (1,36) = 0.01, p = .75). This is a complex interaction;

there is a different pattern of means by distance for each of the four main conditions.

For (1) the matching, real condition, the judged distance is extremely accurate, with a

mean error of +0.14 cm. For (2) the matching, AR condition, the judged distance shows

a linear increase with increasing distance, beginning with an error of +0.52 cm and pro-
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Experiment I: Mean judged distance versus the actual distance (N = 1200).

Judgment

Environment

Distance (cm)

re
ac
h

m
at
ch

ARre
alARre

al

5046423834504642383450464238345046423834

3

2

1

0

-1

-2

-3

-4

-5

-6

E
rr
o
r 
(c
m
)
, 
+
/
–
 1
 S
E
M

Experiment I

 

Figure 6.5

Experiment I: Mean error for the overall depth judgments (N = 1200).
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gressing to an error of +1.88 cm. In this condition, there is a strong effect of distance on

error (F (4,36) = 72.5, p < .001), and a Ryan REGWQ post-hoc homogeneous subset test

indicates that every mean is signifcantly different at p ≤ .05. The judged distance means

are well-described by a linear model with m = 1.09 and b = −2.49 (r2 = 97%); this model

indicates that at these near-feld distances, for every additional centimeter of distance, par-

ticipants localized the target an additional 0.9 mm farther away than its veridical location.

For (3) the reaching, real condition, the judged distance means are underestimated, with

a mean error of −3.94 cm. For (4) the reaching, AR condition, the judged distances are

underestimated, with a mean error of −4.62 cm.

We further analyzed the reaching judgments for the real and the AR environments,

and found no signifcant effect of environment on error (F (1,18) = .23, p = .64). The

reaching judgment responses did not differ between the real and the AR environments.

Additionally, we analyzed the data for effects of trials and repetition, but did not fnd any

signifcant effects in any condition.

6.1.5 Discussion 

In the real environment, the participants were extremely accurate at judging distance

in the matching task. These results are consistent with the real life experiences of adult

humans who can reach and grasp objects in the real world with high accuracy and preci-

sion (Mon-Williams and Bingham [59]). The visual and haptic feedback that is available in

everyday interactions with real objects calibrates our internal sense of depth, and thus in-

creases the accuracy of any future interactions with real objects (Bingham and Pagano [11],
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Bingham et al. [10]). Even though the real target object was viewed through the HMD, the

matching responses were extremely accurate, indicating that the reduced feld-of-view of

the HMD did not affect participants’ ability to judge distance in the real environment. One

potential reason of this accurate performance is that the participants might have primarily

used disparity cue to judge distance, which remained unaffected by any changes in the

feld-of-view. Overall, these results indicate that matching is indeed a very accurate and

precise measure of distance at near-feld distances.

The matching responses in AR were overestimated and the error increased linearly with

increasing distance. Despite matching being an accurate measure of distance judgments,

the matching responses in the AR environment are very different from the matching re-

sponses in the real environment. This divergence of the matching responses in the AR

environment from the best possible matching responses in the real environment indicates

perceptual differences in these two environments. A potential source of the differences in

matching responses is the way AR objects are rendered in the head mounted display. In

particular, we used a collimated HMD that rendered the target objects at an accommodative

demand of infnity, resulting in a dissociation between convergence and accommodation.

It has been well established that when convergence and accommodation are separated

to attend different distances, the normal coupling of the convergence-accommodation re-

fex pulls convergence in the direction of accommodation, and results in misjudgment of

distance towards the accommodation distance (Bingham et al. [10], Ellis and Menges [26],

Mon-Williams and Tresilian [61], Peli [73], Wann et al. [96]). In our experiment, when

matching AR targets, the participants increasingly overestimated distances, from ∼0.5 to
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∼2 cm (m =1.09), with increasing distance. This increase is consistent with the collimated

optics of the head-mounted display driving the participants’ vergence angle outward by a

constant amount (e.g., Mon-Williams and Tresilian [62]).
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Experiment I: The change in vergence angle with distance.

Figure 6.6 illustrates this hypothesis in terms of the change in vergence angle at each

distance for each of the 10 participants in the AR matching condition. The change in ver-

gence angle ΔV is calculated as ΔV = α − β (see Figure 6.7), where α is the angle of

binocular parallax at the presented distance, and β is the angle of binocular parallax at

the judged distance. Figure 6.6 shows that for 9 of the 10 participants ΔV changes less

than 0.2◦, and the median line seen in the underprinted boxplot changes less than 0.1◦ with
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Disparity Changes for AR Matching

α β

Δv = α – β Δv = α – β

α β

Figure 6.7

Disparity changes for AR matching.

changing distance. These angular changes are small, and indicate that the change in ver-

gence angle is relatively constant with increasing distance. This strongly suggests that the

collimated display optics are driving the vergence angle outwards by a constant amount,

which causes increasingly overestimated depth judgments with increasing depth. These

matching results suggest that, for near-feld distances, accommodative demand needs to

more closely match actual distances for accurate AR depth judgments; collimated optics

cause overestimated depth judgments at near-feld distances. Since the distance judgments

were accurate for the real objects but not for the AR objects, our Hypothesis 1.2 is con-

frmed; real and AR objects are perceived differently.

The reaching responses in the real, as well as, in the AR conditions were underesti-

mated, and were not signifcantly different. In the real environment, previous depth per-

ception studies using reaching tasks have found a variety of results; overestimation of the

egocentric distance (Foley [30], Foley and Held [32]), and very accurate distance judg-
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ments (Tresilian and Mon-Williams [87, 62], Von Hofsten and Rosblad [92], Van Beers et

al. [90]). For our reaching task, we aimed to replicate the fndings of Tresilian and Mon-

Williams [87, 62]. They studied egocentric depth perception in the near-feld and found

very accurate distance responses as shown in Figure 6.8. In our experiment, the reach-

ing responses were underestimated for both the real (error = −3.94 cm), as well as in the

AR environment (error = −4.62 cm) (see Figure 6.4). These results failed to match the

accuracy found by Tresilian and Mon-Williams [87, 62] (Figure 6.8).Tresilian and Mon-Williams

y  = 1.08 x – 2.36  r2 = 1.00
(Mon-Williams and Tresilian [2000])

y  = 1.08 x – 1.35  r2 = 0.99
(Tresilian and Mon-Williams [1999])

Figure 6.8

Experiment I: The results from Tresilian and Mon-Williams [88] (black) and
Mon-Williams and Tresilians [62] (grey).

One potential reason for our results being different than that of Mon-Williams and

Tresilian’s results is the different biomechanical actions of the participants for the reaching

tasks. In Mon-Williams and Tresilian [61, 62], the participants reached to the right side

88



of the target object, and used the unseen index fnger of their right hand to indicate the

distance. In our experiment, the participants reached underneath a table-top to match their

thumb to the distance of a target above the table. Also, the vertical distance between the

target object and the thumb was about 7 cm in our experiment, which was larger than

the one in Mon-Williams and Tresilian’s experiment (they did not quantitatively report

the distance between the target object and the index fnger but mentioned it as “in the

immediate vicinity”). We tested the hypothesis that these task differences explain why

we obtained such different results than Mon-Williams and Tresilian in our Experiment II

reported later in this document.

Another interesting fnding of our results is that we did not fnd any signifcant dif-

ference in the reaching responses of the real and the AR environment; both were under-

estimated. A possible explanation of the reaching results is that the perceived distance is

the same in the real and AR environments, and that the reaching response was similarly

miscalibrated in the two environments.

These result can be indicative of the instability that is inherent in reaching tasks. It

has been found that depth judgments using visually open-loop tasks (such as reaching) are

susceptible to drift in the absence of some corrective feedback (Bingham and Pagano [11],

Wann and Ibrahim [95]). The lack of feedback destabilizes the system, and therefore, the

effects of the studied visual perturbations become diffcult to resolve. Instead, Bingham

and Pagano [11] advocate using perception-action tasks with feedback to measure distance

perception. They argue that this approach would help understand the effects of perturbed

visual information independently from the instability problems associated with the motor
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control in visually guided tasks. In our reaching task, the difference between the mean

errors of the real and the AR environment was 0.68 cm. Considering the variability in

the reaching responses in both environments, this difference is trivial and non-signifcant.

The lack of signifcant difference between the reaching responses of the real and the AR

environment indicates the inability of the reaching task to detect the perceptual differences

between the real and AR environments. However, another interpretation is that real and AR

objects are perceived similarly, as demonstrated by reaching; but are not matched similarly

because of the collimated display.

Overall, these results confrm our Hypothesis 1.1 as the matching responses were more

accurate as compared to the reaching responses for both the real as well as the AR environ-

ment. These results also confrm our Hypothesis 1.2 that real objects are perceived more

accurately than AR objects.

Unlike Singh et al. [83], we did not fnd any calibration effects in any of the conditions.

The lack of calibration effects in Experiment I indicate the robustness of the between-

subjects experimental design against training effects. These results also indicate that the

calibration in Singh et al. [83] resulted from asymmetric skill transfer due to the within-

subjects design of that experiment. This fnding confrms Hypothesis 1.3 that the between-

subjects design did not result into calibration effects. We can sum up the results for the

hypotheses that we stated at the start:

• Hypothesis 1.1 was confrmed by the results of Experiment I. The perceptual match-
ing task was relatively more accurate than the blind reaching task for both real and
AR environments.
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• Hypothesis 1.2 was confrmed by the results of Experiment I. The real objects were
judged more accurately than the AR objects for the matching task, while not signif-
cantly different for the reaching task.

• Hypothesis 1.3 was confrmed by Experiment I. We did not fnd any signifcant
calibration or learning effects for any of the conditions. These results confrm that
the between-subjects design of Experiment I did not result in calibration effects.

6.2 Experiment II - Training Effects 

In Experiment I, we found matching to be a more accurate measure of depth perception

than reaching. Consistent with past research, the matching responses were very accurate

in the real environment (Bingham and Pagano [11], Bingham et al. [10]), while they were

overestimated with a linear increase in error with distance in the AR environment (Singh

et al. [83]). The reaching responses, on the other hand, did not show the accuracy seen

in previous studies (e.g., Tresilian and Mon-Williams [88], Mon-Williams and Tresilian

[61, 62]), and they were underestimated for both the AR and the real environment.

Because the accuracy of these previous results (see Figure 6.8) originally motivated us

to study reaching as a depth judgment technique, in Experiment II we more closely repli-

cated the apparatus and task of Tresilian and Mon-Williams [88]. Experiment II compared

matching and reaching with a bio-mechanical action similar to Tresilian and Mon-Williams

[88]. Instead of using a physical pointer, participants used the index fnger of their right

hand to judge distance; an action that provided consistent proprioceptive feedback.

Experiment I established that the calibration effects seen in Singh et al. [83] resulted

from asymmetric skill transfer due to the within-subjects design of the experiment. The

participants were calibrating or learning the task in one condition and using that knowl-
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edge in the other conditions. Experiment II studied this learning effect by employing a

pretest, intervention, posttest experimental design. The pretest and posttest measured the

depth judgments before and after an intervention, and any differences between pretest and

posttest judgments would show up as the training effect resulting from exposure to the

intervention.

This experimental design was motivated by AR surgical applications, where surgeons

would be matching the depth of tools to virtual objects. We wanted to measure the effect

of this kind of matching task on reaching judgments. We tested RMR (reaching as the

pretest and posttest phases, and matching as the intervention phase) to measure the effect

of matching on reaching. We expected that the matching would improve the reaching. We

also tested MRM (matching as the pretest and posttest, and reaching as the intervention) so

that initial matches (M in MRM) could be compared to initial reaches (R in RMR) and to

complete the design. This experimental design also facilitated a direct comparison between

Experiment I and Experiment II, by comparing the Experiment I results with the pretest

results of Experiment II.

Experiment II also addressed individual differences among participants. In the near-

feld, the internal sense of depth is primarily established and calibrated by reaching and

grasping real objects in everyday activities (Bingham and Pagano [11]), and therefore a

normal individual’s internal representation of distance is based on their arm length. Since

every individual has a different arm length, a fxed set of distances may not be suitable

for measuring depth perception in a variety of subjects. To measure depth perception in
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a normalized manner, Experiment II used a set of distances that were calculated based on

the maximum reach of the participants.

Experiment II tested the following hypotheses:

• Hypothesis 2.1: Matching more accurate than reaching: This hypothesis com-
pared matching and reaching as distance measures. We hypothesized that matching
will be more accurate as compared to reaching, because the matching task uses rela-
tively more depth cues than reaching without visual feedback. We expected that the
results will replicate the fnding of Experiment I that matching is more accurate than
reaching.

• Hypothesis 2.2: Reaching in Experiment II more accurate than Experiment I:
This hypothesis compared the effect of biomechanical action between Experiment I
and II. We hypothesized that reaching responses will be more accurate in Experiment
II as compared to Experiment I, because the reaching task in Experiment II has more
intuitive proprioceptive feedback. However, we expected the matching responses of
Experiment II would be similar to Experiment I, as they use similar visual depth cues
despite different motor actions.

• Hypothesis 2.3: Calibration due to intervention: This hypothesis tested the pres-
ence of calibration effects resulting from exposure to the intervention condition. We
hypothesized that the intervention condition would affect the distance judgments by
skill transfer, and there will be a difference between the pretest and posttest judgment
responses for both matching and reaching.

6.2.1 Experimental Setup 

We used the same apparatus as in Experiment I, with modifcations to perform the judg-

ment tasks with right hand instead of the physical pointer. Figure 6.9 shows a side-view

diagram of the table and the distance judgment tasks and environments, and Figure 6.10

shows an annotated photograph of the apparatus.

In the real environment, the participants saw the same target object (a wireframe white

diamond shape) as Experiment I. The apex of the target object pointed right and the partic-

ipants could reach it with their right hand. The apex was at the eye level (25 cm above the
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Environment = Real, AR

Task = match, reach

Figure 6.9

Experiment II: Side view diagram of the experimental table.

tabletop) and in the line of sight of the right eye of the participants. Similar to Experiment I,

the target object could be positioned at variety of distances in front of the participants, and

was seen against black cardboard positioned 72 cm from the participants (see Figure 6.10).

For the matching task, we used an occluding surface (0.5 cm × 23.7 cm × 61 cm)

positioned 3 cm to the right of the target object. It stood upright by two supporting bars

(38 cm high each) positioned at 9.5 cm and 71.5 cm from the front end of the table (see

Figure 6.10). In the matching task (see Figure 6.11 (a)), participants judged the distance to

the apex of the target object by resting their index fnger on top of the occluding surface,

while binocularly viewing the apex of the diamond, as well as the tip of their fnger. Par-

ticipants’ responses were tracked by a sensor that they wore on their index fnger. They
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Figure 6.10

Experiment II: Annotated photograph of the experimental table.
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Figure 6.11

Experiment II: (a) Matching, and (b) reaching tasks.

were asked to match the tip of the nail of their index fnger with the apex of the diamond,

providing a specifc point to match to another specifc point, which facilitated fne-grain

judgments.

For the reaching task (see Figure 6.11 (b)), a second occluding surface (0.5 cm × 38

cm × 61 cm) was positioned 3 cm to the right of the target object. The occluder was

high enough to hide the right side view, and therefore participants could not see their hand

during the reaching task. A cardboard ridge was attached to the right face of the occluder

at 23.7 cm height (the same height as the matching task), and participants rested their index

fnger on the top edge of the strip while making reaching judgments. These two designs

result in exactly the same biomechanical movement for the two tasks.
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6.2.2 Experimental Variables and Design 

Table 6.2 describes the experimental variables of Experiment II. In this study 42 par-

ticipants were recruited from a population of university students. The participants ranged

in age from 19 to 28; the mean age was 20.7, and 27 were male and 15 female. The inter-

pupillary distance (IPD) ranged from 5.05 cm to 6.70 cm; the mean IPD was 5.90 cm. The

maximum reach of the participants ranged from 43.3 cm to 64 cm; the mean maximum

reach was 55.1 cm. Participants received course credit for their participation. We did not

analyze data from two participants: the frst participant had vision problems during the ex-

periment, and the second participant did not receive the correct stimulus as the left HMD

screen went blank in the middle of the experiment. As indicated in Table 6.2, we analyzed

the data from the remaining 40 participants.

Table 6.2

Experiment II: Independent and Dependent Variables

INDEPENDENT VARIABLES 
Participant 40 (random variable)
Environment 2 between AR, Real

Judgment 2 between
Match-Reach-Match (MRM)
Reach-Match-Reach (RMR)

Distance 5 within 55, 63, 71, 79, 87% of Maximum Reach
Repetition 6 within 1, 2, 3, 4

DEPENDENT VARIABLES 
Judged Distance in cm

Error Judged Distance − Distance
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The depth judgment tasks were arranged in two judgment conditions: MRM, and RMR.

In MRM, participants performed matching task, then reaching task, and then matching

task, while in RMR, participants performed reaching task, matching task and then reaching

task. Participants performed the tasks in two kinds of environments, real and augmented

reality (AR). In the real environment, a physical white diamond shape from Experiment I

was presented as the target object, while in the AR environment the virtual rendering of

the same object was presented. The target object was presented at 5 different distances

calculated as 55, 63, 71, 79, and 87% of the maximum reach of the participant. The

distances ranged from 23.8 cm to 55.7 cm for a maximum reach range of 43.3 to 64 cm.

The participants saw 4 repetitions of each distance.

As shown in Table 6.2, the primary dependent variable was judged distance, which we

measured using either the matching or the reaching depth judgment. We also calculated

error = judged distance − distance.

We used a mixed design with environment and judgment varying between the partici-

pants resulting in four main conditions: (1) real, RMR (2) AR, RMR (3) real, MRM, and

(4) AR, MRM. The presentation order of these four main conditions varied in a round-robin

fashion. The distance and repetition varied within each one of the three judgment protocols

per judgment condition per participant. For each judgment protocol, our control program

generated 5 (distance) × 4 (repetition) = 20 distances. The program then randomly per-

muted the presentation order of the distances, with the restriction that the same distance

could not be presented twice in a row. Therefore, every judgment condition consisted of
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3 (judgment protocol) × 5 (distance) × 4 (repetition) = 60 distances. We collected 2400

data points [40 participants × 3 judgment protocols × 5 distances × 4 repetitions].

6.2.3 Procedure 

At the start of the experiment, each participant flled out a standard informed con-

sent form, a simulator sickness survey, and a demographic survey. Next, each participant

performed a stereo acuity test, which all participants passed. Next, we measured the par-

ticipant’s inter-pupillary distance and entered this value in the control software. We then

measured the participant’s maximum reach. The participants wore a tracked sensor on the

index fnger of their right hand, and reached as far as they comfortably could while keep-

ing their torso still. We recorded the position of their index fnger. Based on the maximum

reach distance, the control software generated a set of target distances. We described the

judgment tasks to the participants and they practiced three times for each condition without

wearing the HMD.

Next, the participant put on the HMD, and we performed our calibration procedure.

The participants rested the front of the HMD on a platform, with an eye height of 23.7 cm

off the table. Any lateral movement of the HMD was restricted using two ridges on either

side of the display (see Figure 6.12) to prevent participants from seeing their fnger while

reaching, and to ensure that the target was in the feld of view at all distances.

The participants next completed one of the four main environment × judgment condi-

tions of 60 trials (20 trials each for pretest, intervention, and posttest). Participants were

allowed to take a break at any point during the experiment; we recalibrated the display if
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Figure 6.12

Experiment II: A participant after calibration.

participants took a break. At the beginning of every trial, the participants closed their eyes

and we presented the target object. The participants opened their eyes and made the depth

judgment with their index fnger; we recorded the judgment position. The participants then

closed their eyes and put their hand on the tabletop and the next trial began. We asked the

participants to be as accurate as possible, without any time limit for performing the trials.

After completing the experiment, participants flled out a simulation sickness exit survey,

and then discussed the experiment with us.

6.2.4 Results 

The analysis of Experiment II include two parts the pretest analysis (Section 6.2.4.1),

and the overall analysis (Section 6.2.4.2). The pretest part of the experiment included
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data from the ”M” part for MRM participants and the ”R” part for RMR participants, and

therefore provided between-subject data that was directly comparable to Experiment I.

6.2.4.1 Pretest Results 

Figure 6.13 shows the pretest results as judged distance versus actual distance and

Figure 6.14 shows this same data plotted as error. We conducted an ANOVA analysis on

error. There are strong main effects of judgment (F (1,36) = 17.75, p < .001), environment

(F (1,36) = 16.63, p < .001), and distance (F (4,144) = 13.67, p < .001). There is also

a signifcant 2-way interaction between environment and distance (F (4,144) = 3.41, p = 

.011).
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Experiment II: Mean judged distance versus the actual distance for the pretest condition.
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Figure 6.14

Experiment II: Mean error for the depth judgments for the pretest condition.

For (1) the matching, real condition, the judged distance is extremely accurate with a

mean error of +0.25 cm. For (2) the matching, AR condition, the judged distance shows a

linear increase with increasing distance, beginning with an error of +1.77 cm at 55% and

progressing to an error of +3.95 cm at 87% of the maximum reach distance. There is a

strong effect of distance on error (F (4,36) = 24.5, p < .001), and a Ryan REGWQ post-

hoc homogeneous subset test indicates that every mean is signifcantly different at p ≤ 

.05. The judgment distance means are well-described by a linear model with m =1.10 and

b = −1.09 (r2 = 96%); this model indicates that for every additional centimeter of distance,

participants localized the target an additional 1 mm farther away than its veridical location.

For (3) the reaching, real condition, the judged distance is underestimated, with a mean

error of −2.58 cm, with no main effect of distance on error. And, for (4) the reaching, AR

condition, the judged distance is slightly overestimated with a mean error of +0.16 cm,
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with no main effect of distance on error. Even though the mean error is really small, the

large slope (m =1.16) does not suggest accurate reaching for the AR targets.

6.2.4.2 Overall Results 

Figure 6.15 shows the distance judgment error for reach-match-reach (RMR) and

match-reach-match (MRM) judgments in the real and the AR environments. Figure 6.16

shows the same results as judged distance versus actual distance. For (1) Real-RMR con-

dition, match-2 affected the reaching responses; reach-1 (mean error = −2.58 cm) and

reach-3 (mean error = −0.77 cm) are signifcantly different (F (1,9) = 11.12, p = .009).

There is no effect of distance on error for any of the reach-1, match-2, and reach-3. For

(2) Real-MRM condition, there is no effect of reach-2 on the matching responses. The dis-

tance judgments in match-1 (mean error = +0.25 cm) and match-3 (mean error = +0.27

cm) are not signifcantly different (F (1,9) = 0.04, p = .839).

For (3) AR-RMR condition, there is no effect of match-2 on reaching judgments;

reach-1 (mean error = +0.16 cm) and reach-3 (mean error = +0.14) are not signifcantly

different (F (1,9) = 0.001, p = .973). There is a strong main effect of distance on error

for match-2 (F (4,36) = 37.17, p < .001), and a Ryan REGWQ post-hoc homogeneous

subset test indicates that every mean is signifcantly different at p ≤ .05. For (4) AR-MRM

condition, there is no effect of reach-2 on matching judgments; match-1 and match-3 are

not signifcantly different (F (1,9) = 0.07, p = .797). There are main effect of distance

present for both match-1 (F (4,36) = 24.49, p < .001) and match-3 (F (4,36) = 16.98, p < 
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Experiment II
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Figure 6.15

Experiment II: Mean error for the depth judgments.
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Experiment II: Mean judged distance versus the actual distance.
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.001), and Ryan REGWQ post-hoc homogeneous subset tests indicated that every mean is

signifcantly different at p ≤ .05 for both match-1, and match-3.

6.2.5 Discussion 

The pretest results are directly comparable to Experiment I. In the real environment,

the matching responses (match-1) were extremely accurate. These results validate the fnd-

ings of Experiment I, and confrms that participants are very accurate at judging distance to

real objects using perceptual matching. Similar to Experiment I, the restricted feld-of-view

of the HMD did not affect participants’ ability to judge distance in the real environment.

In the AR environment, the matching responses were overestimated, and the error in-

creased linearly with increasing distance. As in Experiment I, the data was analyzed to

test the hypothesis that the collimated optics of the head-mounted display was driving par-

ticipant’s vergence outwards by a constant angular amount. Figure 6.17 illustrates this

hypothesis in terms of the change in vergence angle at each distance for each of the 10

participants in the AR matching condition. For 9 of the 10 participants, ΔV changes less

than 0.2◦ , and the median line seen in the underprinted boxplot changes less than 0.1◦ 

with changing distance. The angular changes are small, and indicate that the change in

vergence angle is relatively constant with increasing distance. This suggests that the colli-

mated display optics are driving the vergence angle outwards by a constant amount. These

results replicate the fndings of Experiment I and further emphasize the importance of con-

sistent accommodative and convergence demands for accurate perception of virtual objects

at near-feld distances.
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Experiment II: The change in vergence angle with distance.
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Figure 6.18

Experiment I and Experiment II reaching responses for Real and AR environments.

107



In Figure 6.18 the green line shows that when blind reaching to real world targets,

participants consistently underestimated distances by 2.8 cm. Even though the additional

proprioception feedback reduced the underestimation seen in Experiment I (the blue line),

these results failed to match the accuracy found by Tresilian and Mon-Williams [87] (Fig-

ure 6.8). These results confrm Hypothesis 2.1 that matching is a more accurate distance

measure than reaching. Furthermore, these results also confrm Hypothesis 2.2 that the

reaching responses in Experiment II are more accurate than Experiment I. In Figure 6.18,

the red line shows that when blind reaching AR targets, participants reached ∼ ±1 cm of

the actual target distance. While more accurate than the real world results, the large slope

(m =1.16) does not suggest accurate reaching for the AR targets.

In the overall analysis, there is an effect of intervention in only one of the four main

conditions. In the real, RMR condition, the matching intervention affected the reaching

performance. The effect of matching on reaching judgments is also visible in the real,

MRM condition, where reach-2 is similar to reach-3 of the real, RMR condition. It is

possible that match-1 affected reach-2 in real, MRM condition, in the same way match-

2 affected reach-3 in the real, RMR condition. Therefore, the participants were able to

correct their reaching responses with the disparity and the proprioception feedback of the

matching task. However this effect was not present in the AR condition; there was no sig-

nifcant difference between any of the reach-1, reach-2, and reach-3, indicating perceptual

differences in the real and the AR environments. Therefore, Hypothesis 2.3 was rejected as

we did not fnd a consistent effect of the intervention condition. We can sum up the results

for the hypotheses that we stated at the beginning:
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• Hypothesis 2.1 was confrmed. The perceptual matching task was more accurate
than the blind reaching task for both real and AR environments.

• Hypothesis 2.2 was confrmed. The reaching responses were more accurate in Ex-
periment II than Experiment I for both real and AR environments.

• Hypothesis 2.3 was rejected. We did not fnd a consistent effect of intervention.

6.3 Experiment III - Accommodation 

One consistent effect that we found in Experiments I and II was that matching in the

AR environment shows a linear increase in the judged distance with increasing target dis-

tance, which is consistent with the collimated optics of the head-mounted display driving

the participants’ vergence angle outwards by a constant angular amount.

Experiment III studied the effect of accommodation on depth perception by comparing

three accommodation conditions: collimated, consistent, and midpoint. The collimated

condition presented the AR objects at an accommodative demand of infnity, and thus

replicated the accommodation settings of Experiments I and II. The consistent condition

presented the AR objects at the same accommodative demand as the target distance, and

was consistent with how real objects are seen. The midpoint condition presented the AR

object with an accommodative demand at the middle of the studied distances. This condi-

tion replicated the accommodative settings of current displays that can only utilize a single

fxed focal distance. The midpoint condition was included from a practical point of view

of display manufacturing: if we fnd that the distance judgments can be accurately made

with an accommodative demand that lies in the middle of the task area, than this fnding

can be incorporated while designing HMDs.
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Experiment III collected data only from younger participants. Because the accommo-

dation ability deteriorates as a person ages, age of the participants is important in studies

that examine accommodation. We wanted to study the effect of accommodation in isola-

tion, without any confounding effect of age related changes in accommodation. Therefore,

in Experiment III, we only included participants who were less than 40 years old, majority

of which ranged in age from 18 to 22. A future experiment will study older participants

who wear reading glasses.

Experiement III tested the following hypotheses:

• Hypothesis 3.1: Overestimation in collimated condition: Since Experiments I and
II found that collimated optics drives participant vergence outwards, we hypothe-
sized the distance judgments would be overestimated in the collimated condition.
We also expected to see a similar trend of linear increase in the judged distance as
previously seen in Experiments I and II.

• Hypothesis 3.2: No bias in consistent condition: Since the consistent condition
provides the depth cues that closely replicate real world viewing, we hypothesized
that distance judgments would be comparable to real world objects in the consistent
condition.

• Hypothesis 3.3: Bias towards accommodative distance in midpoint condition: The
midpoint condition presented the AR objects with an accommodative demand in the
middle of the studied distance range. We hypothesized that the distance judgments
will be underestimated for the farther targets, overestimated for the closer targets,
and accurate for the middle target.

6.3.1 Experimental Setup 

We used the same tabletop apparatus as in Experiments I and II; instead of the head-

mounted display, we used an AR-haploscope to present the AR targets. Figure 6.19 shows

a side-view diagram of the apparatus and the distance judgment task. Figure 6.20 shows an
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annotated photograph of the apparatus. The design of the haploscope has been explained

in section 4.2.2.

Haploscope Experiments III, IV, V

Haploscope Environment = Real, AR

Task = match

Figure 6.19

Experiment III: Side view diagram of the experimental table.

In the real environment, participants saw a slowly rotating (4 rpm) green wireframe

diamond shape with a 5 cm base and 6 cm height. As shown in Figure 6.20, we presented

the target object at the eye level; 29 cm above the tabletop. In the AR environment, we

presented a virtual rendering of the same target object. In both environments, participants

viewed the target object through the haploscope’s optics, with no graphics displayed in the

real environment. Participants viewed the target object against a black curtain that hung

1.20 m away (see Figure 6.20).
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Experiment III, IV, V 

cameras

background curtain 

stimulus diamond

haploscope pointer

Figure 6.20

Experiment III: Annotated photograph of the experimental table.
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We implemented the matching task from Experiment I. We slid a length of white plastic

PVC pipe through two collars that were attached to the right-hand side of the table surface

(see Figure 6.20). To the pipe, we mounted an arm that extended to the middle of the

table. At the end of this arm, we attached a vertical pipe with a green LED on top. While

performing the matching task, the participant used their right hand to slide the pipe until the

LED was at the same depth as the bottom apex of the rotating target object. We mounted

a retro-refective sphere to the arm, which allowed the tracker to automatically encode the

participant’s matching responses.

6.3.2 Experimental Variables and Design 

Table 6.3 shows the independent and dependent variables of Experiment III. In this

study, we recruited 44 younger participants from a population of university students. The

participants ranged in age from 18 to 38; the mean age was 20.48, and 25 were female

and 19 male. The inter-pupillary distance (IPD) ranged from 54 to 68 mm; the mean

IPD was 59.7 mm. 36 participants received course credit and rest received $12 for their

participation. We did not analyze data from four participants, as one participant did not

pass the stereo vision test and the three did not perform the experiment seriously. As

indicated in Table 6.3, we analyzed data from the remaining 40 participants.

Participants performed the perceptual matching task in four accommodation condi-

tions: real, collimated, consistent, and midpoint. As described above, in the real environ-

ment, participants saw a physical green octahedron shape as the target object, while in the

other three conditions they saw a similar virtual object. We presented the target objects
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Table 6.3

Experiment III: Independent and Dependent Variables

INDEPENDENT VARIABLES 
Participant 40 (random variable)
Accommodation 4 between Real, Collimated, Consistent, Midpoint
Distance 5 within 33.3, 36.4, 40, 44.4, 50 cm
Repetition 6 within 1, 2, 3, 4, 5, 6

DEPENDENT VARIABLES 
Judged Distance in cm

Error Judged Distance − Distance

at 5 different distances from the participant: 33.3, 36.4, 40, 44.4, and 50 cm. At 33.3 cm

distance the target object subtended a maximum of 10.2◦ of visual angle, while at 50 cm

distance the target object subtended a minimum of 6.8◦ . Participants saw 6 repetitions of

each distance.

As shown in Table 6.3, the primary dependent variable was judged distance, which we

measured using the matching task. We also calculated error = judged distance − distance.

The sign of the error indicated the direction of bias in the distance judgments.

We used a mixed design with the accommodation condition varying between the par-

ticipants, resulting in four main conditions: (1) real (2) collimated (3) consistent, and (4)

midpoint. We varied the presentation order of these four main conditions in a round-robin

fashion. For each main condition, our control program generated a list of 5 (distance) × 6

(repetition) = 30 distances. The program then randomly permuted the presentation order

of the distances, with the restriction that the same distance could not be presented twice in

a row. We collected 1200 data points [40 participants × 5 distances × 6 repetitions].
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6.3.3 Procedure 

We screened and trained the participants with same procedures as used in Experiment

I. We calibrated the haploscope for the participants’ IPD. Next, participants wore a pair of

plastic safety goggles with circular openings (3.5 cm diameter) that provided a binocular

view of the target object through the haploscope’s optical combiners, while blocking the

view of the rest of the haploscope equipment. Participants looked through the approximate

optical centers of each of the optical combiners, while they rested their chin on a chin-rest

and placed their forehead against the chin-rest bar (see Figure 6.21).

Figure 6.21

Experiment III: A participant after calibration.

The participants next completed one of the four main conditions. At the beginning of

the trials, we placed the pointer at a random position between the trackable distance of
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23 cm to 67 cm from the observer. For the frst trial, the participant adjusted the pointer

from this starting position to indicate the distance of the target object. At the beginning of

every trial, the participant closed their eyes, and we presented the target object at the trial

distance. To present the real target, we adjusted the PVC arm, and to present the AR target,

we rotated the left and right image-generator assemblies and switched the appropriate ac-

commodation lenses (see 4.2.2). We followed the same procedure for the real world targets

by introducing plain glasses instead of lenses. Next, participants performed the matching

task similar to Experiment I.

6.3.4 Results 

We analyzed the judged distance results from N = 1200 data values. Figure 6.22 shows

the main results as judged distance versus actual distance and Figure 6.23 shows this same

data plotted as error. We conducted an ANOVA analysis of this main experimental design.

There is a signifcant 2-way interaction between accommodation and distance (F (12,144)

= 5.36, p <.001). This interaction includes a main effect of accommodation on error

(F (3,36) = 24.45, p <.001) and a main effect of distance on error (F (4,112) = 3.97,

p =.004).

In (1) the real condition, the distance judgments are extremely accurate (error = 0.05

cm). This result replicated the fndings of Experiments I and II that participants are very

accurate at judging distances to a real object at near feld distances. For (2) the collimated

condition, the judged distance shows a linear increase with increasing distance, beginning

with an error of +0.73 cm and progressing to an error of +1.78 cm. There is also a strong
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Experiment III: Mean judged distance versus the actual distance.
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Experiment III: Mean error for the depth judgments.
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effect of distance on error (F (4,36) = 7.04, p < .001), and a Ryan REGWQ post-hoc

homogeneous subset test indicates that the response distances fall into two groups: (33.3,

36.4, 40) and (44.4, 50) at p ≤ .05. The judgment distance means are well-described

by a linear model with m = 1.06, b = −1.33 (r2 = 97%); this model indicates that for

every additional centimeter of distance participants localized the target an additional 0.6

mm farther away than its veridical location. For (3) the consistent condition, the distance

judgments are slightly underestimated for all distances (error = −0.42 cm). This condition

is signifcantly different from the real environment (F (1,18) = 10.92, p = .004). For (4)

the midpoint condition, the distance judgments are also slightly underestimated for all

distances with a mean error of −0.23 cm (F (1,18) = 1.90, p = .18).

6.3.5 Discussion 

In the collimated condition, the distance judgments were overestimated, and the error

increased linearly with increasing distance. The disparity analysis of the collimated condi-

tion (see Figure 6.24) indicates that the collimated display optics were driving the vergence

angle outwards by a constant amount, similar to Experiment I and II. These results confrm

Hypothesis 3.1.

In the consistent condition, we expected the distance judgments to be accurate and com-

parable to the real world. However, the distance judgments were slightly underestimated

by 0.42 cm. This underestimation indicates there are other factors besides accommoda-

tion and convergence that affect depth perception at near-feld distances. We addressed

one such factor, brightness, in Experiment IV. These results confrm Hypothesis 3.2 as
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Experiment III: The change in vergence angle with distance.

the distance responses were more accurate in the consistent condition as compared to the

collimated condition.

In the midpoint condition, the distance responses were extremely accurate. Overall,

these results reject Hypothesis 3.3 as we expected that the distances farther than the ac-

commodation distance will be underestimated and the distances closer than the accommo-

dation distance will be overestimated. However, the objects at different distances were not

judged differently, and the judgment error did not change with distance. It is possible that

the change in accommodation demand was not large enough to affect depth judgments.

An important fnding of Experiment III is that there was no signifcant difference be-

tween the distance responses of the consistent and midpoint conditions. These results
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indicate that even though participants were able to detect the change in accommodation in

the midpoint and consistent conditions as compared to the collimated condition, they did

not use the differential accommodation information to judge distance at these near-feld

distances, resulting in similar distance judgment accuracy in the both conditions. This

fnding is important as it indicates that the human visual system is capable of tolerating the

convergence-accommodation mismatch when this mismatch is small. A practical impli-

cation of this fnding is that single-focal-depth display systems could be used for various

near-feld AR applications.

These results are consistent with past research on the convergence-accommodation

mismatch on depth perception in the near-feld (Bingham et al. [10], Rolland et al. [77, 78]).

Bingham et al. [10] studied depth perception of virtual objects at 30-40 cm, displayed us-

ing a VR display with focal length of 1 meter. They found that accommodation pulled

the vergence in towards the virtual image and resulted in distance overestimation. When

they approximately matched the accommodative demand (50 cm) with the target distance,

the overestimation reduced by 50%. Rolland et al. [77] also found overestimation for AR

targets at 80-120 cm using a collimated display. In their next study, the distance judgments

became accurate when the targets were presented with correct accommodative demand at

80 cm (Rolland et al. [78]).

Overall, the fndings of Experiment III can be summarized as:

• Hypothesis 3.1 was confrmed. The distance judgments were overestimated in the
collimated condition, and error increased linearly with increasing distance, similar
to Experiments I and II.

• Hypothesis 3.2 was confrmed. Making the accommodative demand equal to the
target distance resulted in accurate judgments in the consistent condition.
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• Hypothesis 3.3 was rejected, as we did not see the effect of the accommodative
demand in the midpoint condition, and the targets at different distances were not
judged differently.

6.4 Experiment IV - Brightness 

In Experiment III, we expected that the AR objects would be judged accurately in the

consistent condition. However, we found underestimation of the AR objects, even when

the convergence and accommodative demands were consistent. A potential reason for this

effect could be the appearance of the AR objects: the real object was painted with matte

green paint, while the AR object was rendered on the monitors, and was brighter than the

real object (see Figure 6.25). Since it has been found that brighter objects are perceived

as being closer, the difference between the luminance levels of the two objects could be

responsible for at least some of the underestimation in perceived distance.

Experiment IV studied the effect of the luminance of the AR object on depth percep-

tion. In Experiment III, the luminance of the AR object was 33.19 cd · m−2 . In Experiment

IV, we reduced the luminance of the AR object to 6.84 cd · m−2 (see Figure 6.25(c)). The

luminance was measured under normal indoor conditions using an ASD FieldSpec Pro

spectroradiometer as explained in section 5.2.

Experiment IV had all of the independent and dependent variables as Experiment III.

We used the same setup as Experiment III, except for the reduced level of brightness.

This experimental design facilitated a direct comparison of the results of Experiment IV

and Experiment III. We used the four accommodation conditions of Experiment III as the

control conditions in Experiment IV.
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� Effect of  brightness

� High brightness (0.4 lux)

� Low brightness (0.2 lux)

� Younger Participants

� PRP

� Perceptual Matching

� Same setup as Exp III

Experiment IV - Brightness

(a) (b)

(c)

Figure 6.25

Experiment IV: (a) Real world object, (b) bright AR object, and (c) dim AR object.
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Experiment IV tested the following hypothesis:

• Hypothesis 4.1: Bias towards background in all conditions: We hypothesized that
the reduced level of brightness would affect depth perception. We expected that the
distance judgments in all of the accommodation conditions will be shifted towards
the background, as compared to Experiment III.

6.4.1 Experimental Variables and Design 

Table 6.4 shows the independent and dependent variables of Experiment IV. In this

study, we recruited 31 younger participants from a population of university students. The

participants ranged in age from 17 to 24; the mean age was 19.8, and 10 were female

and 21 male. The inter-pupillary distance (IPD) ranged from 52.5 to 67.5 mm; the mean

IPD was 60.1 mm. 25 participants received course credit and rest received $12 for their

participation. We did not analyze data from one participant, as she did not perform the

experiment seriously. We analyzed data from the remaining 30 participants, along with the

data from 40 participants from Experiment III.

Table 6.4

Experiment IV: Independent and Dependent Variables

INDEPENDENT VARIABLES 
Participant 70 random variable (40 from Experiment III)
Brightness 2 Bright, Dim
Judgment 4 between Collimated, Consistent, Midpoint
Distance 5 within 33.3, 36.4, 40, 44.4, 50 cm
Repetition 6 within 1, 2, 3, 4, 5, 6

DEPENDENT VARIABLES 
Judged Distance in cm
Error Judged Distance- Distance
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All the experimental variables were replicated from Experiment III, except for the real-

world condition, which was not included as we used Experiment III as a control condi-

tion for Experiment IV. We collected 900 data points [30 participants × 5 distances × 

6 repetitions].

6.4.2 Procedure 

The procedures for this experiment were exactly the same as Experiment III; the same

screening and training protocols were used.

6.4.3 Results 

We analyzed judged distance results from N = 900 data values. Figure 6.26 shows the

main results as judged distance versus actual distance, and Figure 6.27 shows this same

data plotted as error. We conducted an ANOVA analysis of this main experimental design.

There is a signifcant 2-way interaction between accommodation and distance (F (8,108)

= 3.83, p = .001). This interaction includes a main effect of accommodation on error

(F (2,27) =8.35, p = .002), and a main effect of distance on error (F (4,108) = 15.21, p < 

.001).

For (1) the collimated condition, the judged distance shows a linear increase with in-

creasing distance, beginning with an error of +0.71 cm and progressing to an error of

+1.85 cm. There is a strong effect of distance on error (F (4,36) = 11.96, p <.001), and

a Ryan REGWQ post-hoc homogeneous subset test indicates that the response distances

are grouped into three groups: (33.3), (36.4, 40, 44.4), and (50). For (2) the consistent

condition, the error in the distance judgments stays constant at 0.1 cm. There is an effect
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Experiment IV: Brightness
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Figure 6.26

Experiment IV: Mean judged distance versus the actual distance.
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Experiment IV - Brightness

Figure 6.27

Experiment IV: Mean error for the depth judgments for bright and dim targets.

of distance on error (F (4,36) = 6.16, p = .001), and a Ryan REGWQ post-hoc homo-

geneous subset test indicated that the response distances are grouped into three groups:

(33.3, 40.0), (36.4), and (44.4, 50). The target object at 33.3 and 40 cm distance is un-

derestimated, while for other distances it is overestimated. For (3) the midpoint condition,

the error stays constant at +0.15 cm, with no effect of distance. The midpoint condition

is signifcantly different from the collimated condition (F (1,18) = 8.42, p =.01) but not

from the consistent condition (F (1,18) = 0.25, p =.63).

When comparing the corresponding conditions of Experiment IV and Experiment III,

there is no effect of reduced brightness in the collimated condition (F (1,18) = 0.002,

p =.096). However, the consistent condition in Experiment IV is signifcantly different

than the consistent condition in Experiment III (F (1,18) = 9.66, p =.006). Also, the mid-
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point condition in Experiment IV is signifcantly different than the midpoint condition in

Experiment III (F (1,18) = 4.30, p =.053).

6.4.4 Discussion 

In the collimated condition, the distance judgments were overestimated, and the error

increased linearly with increasing distance. The disparity analysis (see Figure 6.28) in-

dicates that the collimated display optics were driving the vergence angle outwards by a

constant amount; similar to Experiments I, II, and III. However, the distance judgments in

this experiment were not signifcantly different from the distance judgments in the colli-

mated condition of Experiment III.

33.3 36.4 40 44.4 50

-0
.4

-0
.2

0
.0

0
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0
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0
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0
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1
.0

Experiment IV - Collimated

Distance(cm)

∆
v
e
rg

e
n
c
e

°

Figure 6.28

Experiment IV: The change in vergence angle with distance.
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In the consistent and midpoint conditions, the distance judgments were signifcantly

different from the distance judgments in the corresponding conditions of Experiment III.

The distance judgments became more accurate with a mean error of 0.1 cm in the consistent

condition and a mean error of 0.15 cm in the midpoint condition. The reduced brightness

caused the target object to be perceived farther than in Experiment III.

These results suggest that the brightness affected depth perception in conditions with

none (consistent) or very small (midpoint) convergence-accommodation mismatch, and not

in the collimated condition with a large convergence-accommodation mismatch. It could

mean that the brightness as a depth cue affects depth perception only when it is perceived

“correctly” through consistent or nearly consistent vergence and accommodative demands.

The human visual system combines the depth information from various depth cues based

on their ability to reliably convey depth. It is possible that the level of change in the

brightness was only discernible in the consistent and midpoint conditions and this change

was not suffcient enough to be detected in the collimated condition. This could lead to the

human visual system to not use luminance as a distance cue or at least reduce the weight

given to luminance cue during distance estimation.

Our results in the consistent condition replicate the fndings of previous research on the

effect of brightness in the real environment, with consistent convergence-accommodative

demands. Previous studies in real environments have found that increasing the brightness

of a target object causes it to be perceived closer for both monocular and binocular condi-

tions (Ashley [4], Farne [27]). To the best of our knowledge, there are no previous studies

that tested the effect of brightness for an inconsistent convergence-accommodation pair
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in the real environment, or that tested the effect of brightness in a virtual or augmented

environment.

Overall the fndings of Experiment IV can be summarized as:

• Hypothesis 4.1 was partially confrmed. When compared to Experiment III, the
distance judgments were shifted towards the background in the consistent and mid-
point conditions, while the distance judgments were not signifcantly different in the
collimated condition.

6.5 Experiment V - Older Participants 

Experiment III found an effect of accommodation; participants judged distance accu-

rately when the accommodative demand was equal (consistent) or nearly equal (midpoint)

to the stimulus target. In Experiment III, all of the participants were young (mean age of

20.5 years). Because the accommodation ability deteriorates as a person ages, one valid

critique of Experiment III is that these results may not generalize to older people.

Our original motivation for studying the depth perception of AR objects is AR-assisted

surgery and other AR-enhanced medical applications, which are usually used by surgeons

and medical professionals who are in their 40’s and older, and who have thus lost substan-

tial accommodative ability relative to people in their early twenties.

Experiment V studied the effect of age on depth perception by studying depth judg-

ments for various accommodation conditions for older participants. We used the same

setup as Experiment III. Experiment V had all of the independent and dependent variables

as Experiment III. This experimental design facilitated a direct comparison of the results

of Experiment V and Experiment III. We used the four accommodation conditions of Ex-

periment III as the control conditions in Experiment V.
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Experiment V tested the following hypothesis:

• Hypothesis 5.1: Older participants less accurate than younger participants : Since
accommodation ability diminish with age, we hypothesized that the distance judg-
ments for older participants will be less accurate, as compared to the younger partic-
ipants.

6.5.1 Experimental Variables and Design 

Table 6.5 shows the independent and dependent variables of Experiment V. In this

study, we recruited 45 older participants from a population of university staff and local

community. The participants ranged in age from 41 to 82; the mean age was 56.1, and 23

were female and 22 male. The inter-pupillary distance (IPD) ranged from 53 to 69 mm;

the mean IPD was 60.64 mm. All participants received $12 per hour for their participa-

tion. 5 participants did not pass stereo vision test. We analyzed data from remaining 40

participants, along with the data from 40 participants from Experiment III.

Table 6.5

Experiment V: Independent and Dependent Variables

INDEPENDENT VARIABLES 
Participant 80 random variable (40 from Experiment III)
Age 2 Younger, Older
Judgment 3 between Collimated, Consistent, Midpoint
Distance 5 within 33.3, 36.4, 40, 44.4, 50 cm
Repetition 6 within 1, 2, 3, 4, 5, 6

DEPENDENT VARIABLES 
Judged Distance in cm
Error Judged Distance − Actual Distance
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All the experimental variables were replicated from Experiment III. We collected 1200

data points [40 (participant) × 5 (distance) × 6 (repetition)].

6.5.2 Procedure 

The procedures for this experiment were exactly the same as Experiment III; the same

screening and training protocols were used.

6.5.3 Results 

We analyzed judged distance results from N = 1200 data values. Figure 6.29 and Fig-

ure 6.30 show the main results as judged distance versus actual distance. Figure 6.31 shows

this same data plotted as error. We conducted an ANOVA analysis of this main experimen-

tal design. The main result is a signifcant 2-way interaction between accommodation and

distance (F (12, 144) = 6.10, p <.001).

In (1) the real condition, the distance judgments are extremely accurate (error = 0.05

cm). This result replicated the fndings of Experiments I, II, and III that participants are

very accurate at judging distances to a real object at near feld distances.

For (2) the collimated condition, the judged distance shows a linear increase with in-

creasing distance, beginning with an error of −0.66 cm and to progressing to an error of

+0.74 cm. There is a strong effect of distance on error (F (4, 36) = 6.99, p <.001), and a

Ryan REGWQ post-hoc homogeneous subset test indicates that the response distances fall

into four groups: (33.3), (36.4), (40, 44.4), and (44.4, 50). The judgment distance means

are well described by a linear model with m = 1.08, b = -3.21 (r2 =97%); this model in-

dicates that for every additional centimeter of distance participants localized the target an
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Experiment V: Age
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Figure 6.29

Experiment V: Mean judged distance versus the actual distance (Real, Collimated).
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Figure 6.30

Experiment V: Mean judged distance versus the actual distance (Consistent, Midpoint).
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Figure 6.31

Experiment V: Mean error for the depth judgments for younger and older participants.

additional 0.8 mm farther away than its veridical location. For (3) the consistent condition,

the distance judgments are slightly underestimated for all distances (error = −0.22 cm).

There is no effect of distance for this condition. For (4) the midpoint condition, there is a

main effect of distance on error (F (4, 36) = 2.76, p =.043), and a Ryan REGWQ post-hoc

homogeneous subset test indicates that the response distances are grouped into two groups:

(33.3, 36.4, 40, 44.4), and (50). The target object at 50 cm distance was underestimated

while for other distances it was nearly accurate.

When comparing the corresponding conditions of Experiment V and Experiment III,

there is no effect of age in the consistent and midpoint conditions. However the colli-

mated condition in Experiment V is signifcantly different than the collimated condition in

Experiment III (F (1, 18) = 9.90, p =.006).
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6.5.4 Discussion 

The results indicated that the older participants judged distance more accurately than

younger participants in the collimated condition. There was no difference between the

performance of younger and older participants in the consistent and midpoint conditions.

These results are surprising in light of many studies that have found decline in visual func-

tions with age (Duane [23], Beers and Heijde [6], Bell et al. [7], Whitbourne [98]). We

hypothesized that less sensitivity to accommodation depth cue would result in a decreased

performance in depth judgment task for older participants, as the visual problems associ-

ated with older age, such as presbyopia, would cause errors in distance judgments.

One potential reason for these results could be a difference in how accommodation

is used as a depth cue during distance estimation, by people of different ages. We have

consistently found in Experiment I–IV that accommodation affects depth perception in-

directly by affecting vergence through the convergence-accommodation refex (Semmlow

and Hung [81], Mon-Williams and Tresilian [62]). Therefore, it is possible that distance

judgments of the participants who are more sensitive to accommodation will be affected

more by convergence-accommodation refex, as compared to the participants who are less

sensitive to accommodation.

This reasoning could explain the presence of a main effect of accommodation condition

for younger participants. Since younger participants are more sensitive to accommodation,

the distance responses in the collimated condition were overestimated due to convergence-

accommodation mismatch, while distance responses were almost accurate in the consistent

and midpoint condition. On the other hand, since older participants are less sensitive to
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accommodation, there was no main effect of accommodation condition present for older

participants. The distance responses in all three accommodation conditions were almost

similar.
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Figure 6.32

Experiment V: The change in vergence angle with distance.

One valid critique of above argument is that there was an effect of distance present

in the collimated condition for older participants, indicating at least some sensitivity to

accommodation. Similar to Experiment I, II, III, and IV, the error increased linearly with

increasing distance in the collimated condition. The disparity analysis (see Figure 6.32)

indicates that the collimated display optics were driving the vergence angle outwards by a

constant amount.
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The presence of a main effect of distance can be explained based on the theory of in-

formation integration (see Section 2.2.4), which defnes depth cue integration process as

a weighted combination of various depth cues. Since older participants are less sensitive

to accommodation, less weight was assigned to accommodation depth cue during depth

estimation process. The distance judgments depended primarily on the convergence in-

formation resulting into no effect of accommodation condition. However, accommodation

did contribute in the depth estimation process to some degree, and this contribution was

suffcient enough to result in a main effect of distance in the collimated condition.

Our results are consistent with the only experiment that studied the effect of age on

depth perception. Bian [8] found that at medium feld distances in real world, older partic-

ipants were relatively more accurate at judging distance than younger participants. They

concluded that performance of egocentric distance estimation improves with increased age.

To the best of our knowledge, there are no previous studies that tested the effect of age for

an augmented reality environment.

Overall the fndings of Experiment V can be summarized as:

• Hypothesis 5.1 was rejected. The older participants judged distance more accurately
than the younger participants in the collimated condition. There was no signifcant
difference between the distance judgments of younger and older participants in the
consistent and midpoint conditions.
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CHAPTER 7

CONCLUSIONS

The author’s previous work (Singh et al. [83]) compared two complementary distance

judgment protocols of matching and reaching in an AR environment, and found that match-

ing is a more accurate distance measure than reaching. This experiment also found cali-

bration effects over frst 5 trials. Two critiques of this work were that (1) this experiment

only studied AR targets with no real world ground truth, and (2) this experiment used a

within-subjects design, which might have caused the calibration effects.

Experiment I addressed these concerns by replicating the experiment in Singh et al.

[83] and compared localization of AR targets with real targets. This experiment also used

between-subjects design to alleviate the experimental problems inherently associated with

within-subjects design. This experiment confrmed matching to be a more accurate dis-

tance measure than reaching. However, this experiment did not fnd any calibration effect

as previously seen in Singh et al. [83]. An important fnding of Experiment I was that in

the AR condition, the collimated graphics of the display caused an outwards shift in the

participants’ vergence angle, resulting in a linear increase in error with increasing distance.

In Experiment I, the reaching responses did not show the accuracy seen in previous

studies, and were underestimated for both the AR and the real environment. Experiment

II tested the hypothesis that these results were due to different bio-mechanical actions be-
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tween Experiment I and previous studies. Experiment II compared matching and reaching

task with a bio-mechanical action similar to Tresilian and Mon-Williams [88], where in-

stead of a physical pointer, participants used the index fnger of their right hand to judge

distance. This experiment found that the reaching responses in the AR environment be-

came more accurate under the infuence of new bio-mechanical action. Furthermore, Ex-

periment II also found that the collimated graphics of the display was causing an outwards

shift of the participants’ vergence angle in the AR environment, similar to Experiment I.

One consistent effect that was found in Experiments I and II was that matching in the

AR environment showed a linear increase in the error with increasing target distance, which

is consistent with the infnity accommodation of the collimated optics of the display driv-

ing the participants’ vergence angle outwards by a constant angular amount. Experiment

III studied the effect of accommodation on depth perception by comparing three accom-

modation conditions: collimated, consistent, and midpoint. Experiment III also found a

linear increase in error with increasing distance in the collimated condition, confrming the

fndings of Experiment I and II. On the other hand, the distance responses in the consistent

and midpoint conditions were nearly accurate. These results confrmed that in AR displays,

it is important to have consistent or nearly consistent accommodative demand in order to

perceive AR objects at correct depth.

In Experiment III, even with consistent accommodative and vergence demands, there

was a slight underestimation of depth judgments. Experiment IV tested if the bright ap-

pearance of the target object was causing this underestimation, because it has been found

that brighter objects are perceived to be closer than their actual position. Experiment IV
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replicated Experiment III with a relatively dim AR target. Experiment IV found that the

distance responses shifted towards background in all conditions. The depth judgments

were relatively more accurate in the consistent and midpoint conditions as compared to

Experiment III. However, in the collimated condition, the distance judgments were simi-

lar to Experiment III and showed similar linear increase in error with increasing distance.

These results confrmed that the luminance of target object indeed affects depth judgments,

especially when convergence and accommodative demands are equal or nearly equal.

Experiment III found an effect of accommodation, however, all of the participants were

young in that experiment. Because the accommodation ability deteriorates as a person

ages, the results of Experiment III may not generalize to older people. Experiment V

studied the effect of age on depth judgments by replicating Experiment III with older par-

ticipants. Contrary to the long-held belief, Experiment V found that older participants

judged distance more accurately than younger participants.
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[48] T. Künnapas, “Distance Perception as A Function of Available Visual Cues,” Jour-
nal of Experimental Psychology, vol. 77, no. 4, Aug 1968, pp. 523–529.

[49] M. S. Landy, L. T. Maloney, E. B. Johnston, and M. Young, “Measurement and
Modeling of Depth Cue Combination: In Defense of Weak Fusion,” Vision research,
vol. 35, no. 3, Feb 1995, pp. 389–412.

[50] W. S. Levine, The Control Handbook, 1 edition, CRC-Press, New York, 1996.

[51] J. M. Loomis and J. M. Knapp, “Visual Perception of Egocentric Distance in Real
and Virtual Environments,” Virtual and Adaptive Environments: Applications, Im-
plications, and Human Performance, L. J. Hettinger and M. Haas, eds., CRC Press,
Mahwah, NJ, 2003, chapter 2, pp. 21–46.

144



[52] E. E. Maddox, “Investigations on The Relationship Between Convergence and Ac-
commodation of The Eyes,” Journal of Anatomy and Physiology, vol. 20, 1886, pp.
475–508, 565–584.

[53] D. W. Massaro, “Ambiguity in Perception and Experimentation,” Journal of Exper-
imental Psychology: General, vol. 117, no. 4, 1988, pp. 417–421.

[54] L. I. N. Mazyn, M. Lenoir, G. Montagne, C. Delaey, and G. J. P. Savelsbergh,
“Stereo Vision Enhances The Learning of A Catching Skill,” Experimental Brain
Research, vol. 179, no. 4, Jun 2007, pp. 723–726.

[55] J. W. McCandless, S. R. Ellis, and B. D. Adelstein, “The Effect of Accommodative
Demand, Motion Parallax and Age on Virtual Object Localizations,” Proceedings:
43th Annual Meeting of Human Factors and Ergonomics Society, 1999, pp. 1328–
1332.

[56] J. W. McCandless, S. R. Ellis, and B. D. Adelstein, “Localization of a Time-
Delayed, Monocular Virtual Object Superimposed on a Real Environment,” Pres-
ence, vol. 9, no. 1, 2000, pp. 15–24.

[57] E. McCurdy, The Notebooks of Leonardo da Vinci, Volume II, Reynal & Hitchcock,
1938.

[58] P. Milgram and F. Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE
Transactions on Information Systems, vol. E77-D, no. 12, 1994, pp. 1312–1329.

[59] M. Mon-Williams and G. P. Bingham, “Calibrating Reach Distance to Visual Tar-
gets,” Journal of Experimental Psychology: Human Perception and Performance,
vol. 33, no. 3, 2007, pp. 645– 656.

[60] M. Mon-Williams and J. R. Tresilian, “The Size-Distance Paradox is A Cognitive
Phenomenon,” Experimental Brain Research, vol. 126, no. 4, 1999, pp. 578–582.

[61] M. Mon-Williams and J. R. Tresilian, “Some recent studies on the extraretinal
contribution to distance perception,” Perception, 1999, pp. 167–181.

[62] M. Mon-williams and J. R. Tresilian, “Ordinal Depth Information From Accommo-
dation?,” Ergonomics, vol. 43, no. 3, 2000, pp. 391–404.

[63] M. Mon-Williams, J. R. Tresilian, R. D. Mcintosh, and A. D. Milner, “Monocu-
lar and Binocular Distance Cues : Insights From Visual Form Agnosia I (of III),”
Experimental Brain Research, vol. 139, 2001, pp. 127–136.

[64] M. Mon-Williams, J. P. Wann, M. Jenkinson, and K. Rushton, “Synaesthesia in The
Normal Limb,” Proceedings of the Royal Society, Series B, vol. 264, Jul 1997, pp.
1007–1010.

145



[65] J. Muller, Elements of Physiology. Vol. II, Taylor and Walton. Translated in 1842 by
William Baly, London, 1826.

[66] A. Naceri, R. Chellali, and T. Hoinville, “Depth Perception within Peripersonal
Space using Head Mounted Display,” Presence: Teleoperators and Virtual Environ-
ments, vol. 20, no. 3, 2011, pp. 254–272.

[67] S. Nagata, “How to Reinforce Perception of Depth in Single Two-Dimensional
Pictures,” Pictorial Communication in Virtual and Real Environments, S. R. Ellis,
M. Kaiser, and A. J. Grunwald, eds., 2 edition, London: Taylor and Francis, 1993,
pp. 527–545.

[68] P. E. Napieralski, B. M. Altenhoff, J. W. Bertrand, L. O. Long, S. V. Babu, C. C.
Pagano, J. Kern, and T. A. Davis, “Near-Field Distance Perception in Real and
Virtual Environments Using Both Verbal and Action Responses,” ACM Transactions
on Applied Perception, vol. 8, no. 3, Aug 2011, pp. 1–19.

[69] D. Owens and H. Leibowitz, “Oculomotor adjustments in darkness and the specifc
distance tendency,” Perception & Psychophysics, vol. 20, 1976, pp. 2–9.

[70] D. A. Owens and H. W. Liebowitz, “Accommodation, Convergence, and Distance
Perception in Low Illumination,” American Journal of Optometry & Physiological
Optics, vol. 57, no. 9, 1980, pp. 540–550.

[71] C. C. Pagano and G. P. Bingham, “Comparing Measures of Monocular Distance
Perception: Verbal and Reaching Errors are Not Correlated,” Journal of Experi-
mental Psychology. Human Perception and Performance, vol. 24, no. 4, 1998, pp.
1037–1051.

[72] J. Paillard and M. Brouchon, “Active and Passive Movements in The Calibration
of Position Sense,” The Neuropsychology of Spatially Oriented Behavior, Dorsey
Press, 1968, chapter 3, pp. 37–55.

[73] E. Peli, “Optometric and Perceptual Issues with Head-Mounted Displays,” Visual
Instrumentation: Optical Design and Engineering Principles, P. Mouroulis, ed.,
McGraw-Hill, 1999, pp. 205–276.

[74] C. Prablanc, J. F. Echallier, E. Komilis, and M. Jeannerod, “Optimal Response of
Eye and Hand Motor Systems in Pointing at a Visual Target: I. Spatio-Temporal
Characteristics of Eye and Hand Movements and Their Relationships when Varying
the Amount of Visual Information,” Biological Cybernetics, vol. 35, no. 2, 1979,
pp. 113–124.

[75] F. H. Previc, “The Neuropsychology of 3-D Space,” Psychological Bulletin, vol.
124, no. 2, Sep 1998, pp. 123–164.

146



[76] H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The Effect of Pupil Size on
Accommodation, Convergence, and The AC/A Ratio.,” Investigative Ophthalmol-
ogy, vol. 1, Feb 1962, pp. 127–135.

[77] J. P. Rolland, W. Gibson, and D. Ariely, “Towards Quantifying Depth and Size
Perception in Virtual Environments,” Presence: Teleoperators and Virtual Environ-
ments, vol. 4, no. 3, 1995, pp. 24–49.

[78] J. P. Rolland, C. Meyer, K. Arthur, and E. Rinalducci, “Method of Adjustment
versus Method of Constant Stimuli in the Quantifcation of Accuracy and Precision
of Rendered Depth in Helmet-Mounted Displays,” Presence: Teleoperators and
Virtual Environments, vol. 11, no. 6, 2002, pp. 610–625.

[79] A. D. Ryer, Light Measurement Handbook, 1st edition, International Light Inc.,
1998.

[80] E. Schmidt, “Every 2 Days We Create As Much Information As We Did Up To
2003,” 2010, http://techcrunch.com/2010/08/04/schmidt-data/.

[81] J. L. Semmlow and G. K. Hung, “The Near Response : Theories of Control,” Ver-
gence Eye Movements: Basic & Clinical Aspects, C. M. Schor and K. J. Ciuffreda,
eds., Butterworth, 1983, pp. 175–195.

[82] G. Singh, Near-Field Depth Perception in See-Through Augmented Reality, master’s
thesis, Mississippi State University, Mississippi State, Mississippi, 2010.

[83] G. Singh, J. E. Swan II, J. A. Jones, and S. R. Ellis, “Depth Judgment Measures
and Occluding Surfaces in Near-Field Augmented Reality,” Applied Perception in
Graphics and Visualization (APGV 2010), Los Angeles, California, USA, 2010, pp.
149–156.

[84] J. E. Swan II, J. A. Jones, E. Kolstad, M. A. Livingston, and H. S. Smallman, “Ego-
centric Depth Judgments in Optical, See-Through Augmented Reality,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 13, no. 3, 2007, pp. 429–442.

[85] J. E. Swan II, M. A. Livingston, H. S. Smallman, D. Brown, J. L. Gabbard, and
D. Hix, “A Perceptual Matching Technique for Depth Judgments in Optical, See-
Through Augmented Reality,” Proceedings: The IEEE conference on Virtual Reality
(VR 06), 2006, pp. 19–26.

[86] I. L. Taylor and F. C. Sumner, “Actual Brightness and Distance of Individual Colors
When Their Apparent Distance is Held Constant,” Journal of Psychology, vol. 19,
1945, pp. 79–85.

[87] J. R. Tresilian and M. Mon-williams, “A Curious Illusion Suggests Complex Cue
Interactions in Distance Perception,” Journal of Experimental Psychology: Human
Perception and Performance, vol. 25, no. 3, 1999, pp. 677–687.

147

http://techcrunch.com/2010/08/04/schmidt-data


[88] J. R. Tresilian, M. Mon-Williams, and B. M. Kelly, “Increasing Confdence in
Vergence as A Cue to Distance,” Royal Society of London, 1999, pp. 39–44.

[89] M. T. Turvey and J. Solomon, “Visually Perceiving Distance: A Comment on She-
bilske, Karmiohl, and Profftt (1983),” Journal of Experimental Psychology. Human
Perception and Performance, vol. 10, no. 3, Jun 1984, pp. 449–454.

[90] R. J. van Beers, A. C. Sittig, and J. J. Denier van der Gon, “How Humans Combine
Simultaneous Proprioceptive and Visual Position Information,” Experimental Brain
Research, vol. 111, no. 2, Sep 1996, pp. 253–61.

[91] A. Viguier, G. Clment, and Y. Trotter, “Distance Perception Within Near Visual
Space,” Perception, vol. 30, 2001, pp. 115–124.

[92] C. von Hofsten and B. Rosblad, “The Integration of Sensory Information in The
Development of Precise Manual Pointing,” Neuropsychologia, vol. 26, 1988, pp.
805–821.

[93] H. Wallach and L. Floor, “The Use of Size Matching to Demonstrate The Effec-
tiveness of Accommodation and Convergence as Cues for Distance,” Perception &
Psychophysics, vol. 10, no. 6, 1971, pp. 423–428.

[94] J. P. Wann, “The Integrity of Visual-Proprioceptive Mapping in Cerebral Palsy,”
Neuropsychologia, vol. 29, 1991, pp. 1095–1106.

[95] J. P. Wann and S. F. Ibrahim, “Does Limb Proprioception Drift?,” Experimental
Brain Research, vol. 91, no. 1, Jan 1992, pp. 162–166.

[96] J. P. Wann, S. Rushton, and M. Mon-williams, “Natural problems for stereoscopic
depth perception in virtual environments.,” Vision research, vol. 35, no. 19, Oct
1995, pp. 2731–2736.

[97] C. Wheatstone, “On Some Remarkable, and Hitherto Unobserved, Phenomena of
Binocular Vision,” Philosophical Transactions of The Royal Society, vol. 33, 1838,
pp. 371–394.

[98] S. K. Whitbourne, The Aging Individual: Physical and Psychological Perspectives,
2nd edition, Springer, 2002.

[99] P. Willemsen, M. B. Colton, S. H. Creem-regehr, and W. B. Thompson, “The Ef-
fects of Head-Mounted Display Mechanics on Distance Judgments in Virtual Envi-
ronments,” Applied Perception in Graphics and Visualization, 2004, pp. 35–38.

[100] P. Willemsen, M. B. Colton, S. H. Creem-Regehr, and W. B. Thompson, “The
Effects of Head-Mounted Display Mechanical Properties and Field of View on Dis-
tance Judgments in Virtual Environments,” ACM Transactions on Applied Percep-
tion, vol. 6, March 2009, pp. 8:1–8:14.

148



[101] P. Willemsen, A. A. Gooch, W. B. Thompson, and S. H. Creem-regehr, “Effects of
Stereo Viewing Conditions on Distance Perception in Virtual Environments,” Pres-
ence: Teleoperators and Virtual Environments, vol. 17, no. 1, 2008, pp. 91–101.

[102] R. S. Woodworth, The Accuracy of Voluntary Movement, doctoral dissertation,
Columbia University, New York, Jul 1899.

[103] B. Wu, T. L. Ooi, and Z. J. He, “Perceiving Distance Accurately By a Directional
Process of Integrating Ground Information,” Nature, vol. 428, no. March, 2004, pp.
73–78.

149


	Near-Field Depth Perception in Optical See-Though Augmented Reality
	Recommended Citation

	tmp.1625165283.pdf.JqjDV

