5,832 research outputs found

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    The Perceptual Experience Of Slope By Foot And By Finger

    Get PDF
    Historically, the bodily senses have often been regarded as impeccable sources of spatial information and as being the teacher of vision. Here, the authors report that the haptic perception of slope by means of the foot is greatly exaggerated. The exaggeration is present in verbal as well as proprioceptive judgments. It is shown that this misperception of pedal slope is not caused by calibration to the well-established visual misperception of slope because it is present in congenitally blind individuals as well. The pedal misperception of slope is contrasted with the perception of slope by dynamic touch with a finger in a force-feedback device. Although slopes feel slightly exaggerated even when explored by finger, they tend to show much less exaggeration than when equivalent slopes are stood on. The results are discussed in terms of a theory of coding efficiency. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    Designing Vibrotactile Widgets with Printed Actuators and Sensors

    Get PDF
    Physical controls are fabricated through complicated assembly of parts requiring expensive machinery and are prone to mechanical wear. One solution is to embed controls directly in interactive surfaces, but the proprioceptive part of gestural interaction that makes physical controls discoverable and usable solely by hand gestures is lost and has to be compensated, by vibrotactile feedback for instance. Vibrotactile actuators face the same aforementioned issues as for physical controls. We propose printed vibrotactile actuators and sensors. They are printed on plastic sheets, with piezoelectric ink for actuation, and with silver ink for conductive elements, such as wires and capacitive sensors. These printed actuators and sensors make it possible to design vibrotactile widgets on curved surfaces, without complicated mechanical assembly

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation
    corecore