173 research outputs found

    A control architecture and human interface for agile, reconfigurable micro aerial vehicle formations

    Full text link
    This thesis considers the problem of controlling a group of micro aerial vehicles for agile maneuvering cooperatively, or distributively. We first introduce the background and motivation for micro aerial vehicles, especially for the popular multi-rotor aerial vehicle platform. Then, we discuss the dynamics of quadrotor helicopters. A quadrotor is a specific kind of multi-rotor aerial vehicle with a special property called differential flatness, which simplifies the algorithm of trajectory planning, such that, instead of planning a trajectory in a 12-dimensional state space and 4-dimensional input space, we only need to plan the trajectory in 4-dimensional, so called, flat output space, while the 12-dimensional state and 4-dimensional input can be recovered from a mapping called endogenous transformation. We propose a series of approaches to achieve agile maneuvering of a dynamic quadrotor formation, from controlling a single quadrotor in an artificial vector field, to controlling a group of quadrotors in a Virtual Rigid Body (VRB) framework, to balancing the effect between the human control and autonomy for collision avoidance, and to fast on-line distributed collision avoidance with Buffered Voronoi Cells (BVC). In the vector field method, we generate velocity, acceleration, jerk and snap fields, depending on the tasks, or the positions of obstacles, such that a single quadrotor can easily find its required state and input from the endogenous transformation in order to track the artificial vector field. Next, with a Virtual Rigid Body framework, we let a group of quadrotors follow a single control command while also keeping a required formation, or even reconfigure from one formation to another. The Virtual Rigid Body framework decouples the trajectory planning problem into two sub-problems. Then we consider the problem of collision avoidance of the quadrotor formation when it is meanwhile tele-operated by a single human operator. The autonomy with collision avoidance algorithm, based on the vector field methods for a single quadrotor, is an assistive portion of the quadrotor formation controller, such that the human operator can focus on his/her high-level tasks, leaving the low-level collision avoidance task be handled automatically. We also consider the full autonomy problem of quadrotor formations when reconfiguring from one formation to another by developing a fast, on-line distributed collision avoidance algorithm using Buffered Voronoi Cells (BVCs). Our BVC based collision avoidance algorithm only requires sensed relative position, rather than relative position and velocity, while the computational complexity is comparable to other methods like velocity obstacles. At last, we introduce our experimental quadrotor platform which is built from PixHawk flight controller and Odroid-XU4 single-board computer. The hardware and software architecture of this multiple-quadrotor platform is described in detail so that our platform can easily be adopted and extended with different purposes. Our conclusion remark and discussion of future work are also given in this thesi

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Onboard Robust Nonlinear Control for Multiple Multirotor UAVs

    Get PDF
    In this thesis, we focus on developing and validating onboard robust nonlinear control approaches for multiple multirotor unmanned aerial vehicles (UAVs), for the promise of achieving nontrivial tasks, such as path following with aggressive maneuvers, navigation in complex environments with obstacles, and formation in group. To fulfill these challenging missions, the first concern comes with the stability of flight control for the aggressive UAV maneuvers with large tilted angles. In addition, robustness of control is highly desired in order to lead the multirotor UAVs to safe and accurate performance under disturbances. Furthermore, efficiency of control algorithm is a crucial element for the onboard implementation with limited computational capability. Finally, the potential to simultaneously control a group of UAVs in a stable fashion is required. All of these concerns motivate our work in this thesis in the following aspects. We first propose the problem of robust control for the nontrivial maneuvers of a multirotor UAV under disturbances. A complete framework is developed to enable the UAV to achieve the challenging tasks, which consists of a nonlinear attitude controller based on the solution of global output regulation problems for the rigid body rotations SO(3), a backstepping-like position controller, a six-dimensional (6D) wrench observer to estimate the unknown force and torque disturbances, and an online trajectory planner based on a model predictive control (MPC) method. We prove the strong convergence properties of the proposed method both in theory and via intensive real-robot experiments of aggressive waypoint navigation and large-tilted path following tasks in the presence of external disturbances, e.g. wind gusts. Secondly, we propose the problem of autonomous navigation of a multirotor UAV in complex scenarios. We present an effective and robust control approach, namely a fast MPC method with the inclusion of nonlinear obstacle avoiding constraints, and implement it onboard the UAV at 50Hz. The developed approach enables the navigation for a multirotor UAV in 3D environments with multiple obstacles, by autonomously deciding to fly over or around the randomly located obstacles. The third problem that is addressed in our work is formation control for a group of multirotor UAVs. We solve this problem by proposing a distributed formation control algorithm for multiple UAVs based on the solution of retraction balancing problem. The algorithm brings the whole group of UAVs simultaneously to a prescribed submanifold that determines the formation shape in an asymptotically stable fashion in 2D and 3D environments. We validate our proposed algorithm via a series of hardware-in-the-loop simulations and real-robot experiments in various formation cases of arbitrary time-varying (e.g. expanding, shrinking or moving) shapes. In the actual experiments, up to 4 multirotors have been implemented to form arbitrary triangular, rectangular and circular shapes drawn by the operator via a human-robot-interaction device. We have also carried out virtual tests using up to 6 onboard computers to achieve a spherical formation and a formation moving through obstacles.In dieser Arbeit konzentrieren wir uns auf die Entwicklung und Validierung von robusten nichtlinearen On-Bord Steuerungsansatzen für mehrere unbemannte Multirotor-Luftfahrzeuge (UAVs), mit dem Ziel, nicht triviale Aufgaben zu erledigen wie z.B. Wegfolge mit aggressiven Manovern, Navigation in komplexen Umgebungen mit Hindernissen und Formationsflug in einer Gruppe. Um diese anspruchsvollen Missionen zu erfullen liegt unser Hauptaugenmerk bei der Stabilität der Flugsteuerung für aggressive UAV Manöver mit steilen Lagewinkeln. Des weiteren ist Kontroll-robustheit sehr wünschenswert, um die Multirotor-UAVs unter Beeinflussung sicher und genau zu steuern. Daruber hinaus ist die Effizienz des Kontrollalgorithmus ein wichtiges Element für die Onboard-Implementierung mit eingeschrankter Rechenfähigkeit. Abschliessend ist das Potenzial, gleichzeitig eine Gruppe von UAVs in stabiler Weise zu kontrollieren, erforderlich. All dies motiviert uns zur Arbeit an den folgenden Aspekten: Zuerst behandeln wir das Problem der robusten Steuerung nichttrivialer Manöver eines Multirotor UAV unter Störeinfluss. Ein komplettes Framework wird entwickelt, welches dem UAV ermöglicht diese anspruchsvollen Aufgaben zu bewältigen. Es beinhaltet einem nichtlinearen Lageregler, basierend auf der Lösung von globalen Ausgangsrege lungsproblemen für Starrkörperrotationen SO(3), einem backstepping basierten Positionsregler, einen sechsdimensionalen (6D) wrench observer um die unbekannten Kraftund Drehmomenteinflusse zu schätzen, sowie einem Online-Trajektorienplaner basierend auf Model Predictive Control (MPC). Wir weisen die starken Konvergenzcharakteristiken der vorgeschlagenen Methode nach, sowohl in der Theorie als auchmittels intensiver Real-roboter-Experimente, mit aggressiver Wegpunktnavigation und Wegfindungsaufgaben in extremer Fluglage in Gegenwart externer Einflüsse, z.B. Windböen. Als nächstes bearbeiten wir das Problem der autonomen Navigation eines Multirotor UAV in komplexen Szenarien. Wir stellen einen effektiven und robusten Steuerungsansatz dar, nämlich eine schnelle MPC-Methode mit der Einbeziehung von nichtlinearer Einschränkungen zur Hindernisvermeidung, und implmenetieren diese an Bord des UAV mit 50Hz. Der entwickelte Ansatz ermöglicht die Navigation eines Multirotor UAVs in 3D-Umgebungen mit mehreren Hindernissen, wobei autonom entschieden wir, über oder um die zufällig gelegenen Hindernisse zu fliegen. Das dritte Problem, das in unserer Arbeit angesprochen wird, ist die Bildungssteuerung für eine Gruppe von Multirotor UAVs. Wir lösen dieses Problem, indem wir einen verteilten Formationskontrollalgorithmus für mehrere UAVs auf der Grundlage der Lösung des Retraction Balancing Problems vorschlagen. Der Algorithmus bringt die ganze Gruppe von UAVs gleichzeitig auf eine vorgeschriebene Untermanigfaltigkeit, welche die Formation in asymtotisch stabiler Weise in 2D- und 3D-Umgebungen bestimmt. Wir validieren unseren vorgeschlagenen Algorithmus uber eine Reihe von Hardware-in-the- ¨ Loop-Simulationen und Real-Roboter-Experimente mit verschiedenen Formationsvarianten in beliebigen zeitveränderlichen (z. B. expandierenden, schrumpfenden oder bewegten) Formen. In den eigentlichen Experimenten wurden bis zu 4 Multirotoren eingesetzt, um beliebige dreieckige, rechteckige und kreisförmige Formen zu bilden, die vom Bediener über eine Mensch-Roboter-Interaktionsvorrichtung vorgezeichnet wurden. Wir haben auch virtuelle Tests mit bis zu 6 Onboard-Computern durchgeführt, um eine sphärische Formation und eine Formation zu erreichen, die sich durch Hindernisse. bewegt

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited
    • …
    corecore