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Abstract

In this thesis, we focus on developing and validating onboard robust nonlinear control
approaches for multiple multirotor unmanned aerial vehicles (UAVs), for the promise of
achieving nontrivial tasks, such as path following with aggressive maneuvers, naviga-
tion in complex environments with obstacles, and formation in group. To fulfill these
challenging missions, the first concern comes with the stability of flight control for the
aggressive UAV maneuvers with large tilted angles. In addition, robustness of control
is highly desired in order to lead the multirotor UAVs to safe and accurate performance
under disturbances. Furthermore, efficiency of control algorithm is a crucial element for
the onboard implementation with limited computational capability. Finally, the potential
to simultaneously control a group of UAVs in a stable fashion is required. All of these
concerns motivate our work in this thesis in the following aspects.

We first propose the problem of robust control for the nontrivial maneuvers of a mul-
tirotor UAV under disturbances. A complete framework is developed to enable the UAV
to achieve the challenging tasks, which consists of a nonlinear attitude controller based
on the solution of global output regulation problems for the rigid body rotations SO(3),
a backstepping-like position controller, a six-dimensional (6D) wrench observer to esti-
mate the unknown force and torque disturbances, and an online trajectory planner based
on a model predictive control (MPC) method. We prove the strong convergence proper-
ties of the proposed method both in theory and via intensive real-robot experiments of
aggressive waypoint navigation and large-tilted path following tasks in the presence of
external disturbances, e.g. wind gusts.

Secondly, we propose the problem of autonomous navigation of a multirotor UAV in
complex scenarios. We present an effective and robust control approach, namely a fast
MPC method with the inclusion of nonlinear obstacle avoiding constraints, and imple-
ment it onboard the UAV at 5S0Hz. The developed approach enables the navigation for a
multirotor UAV in 3D environments with multiple obstacles, by autonomously deciding
to fly over or around the randomly located obstacles.

The third problem that is addressed in our work is formation control for a group of
multirotor UAVs. We solve this problem by proposing a distributed formation control
algorithm for multiple UAVs based on the solution of retraction balancing problem. The
algorithm brings the whole group of UAVs simultaneously to a prescribed submanifold
that determines the formation shape in an asymptotically stable fashion in 2D and 3D
environments. We validate our proposed algorithm via a series of hardware-in-the-loop
simulations and real-robot experiments in various formation cases of arbitrary time-
varying (e.g. expanding, shrinking or moving) shapes. In the actual experiments, up



Abstract

to 4 multirotors have been implemented to form arbitrary triangular, rectangular and cir-
cular shapes drawn by the operator via a human-robot-interaction device. We have also
carried out virtual tests using up to 6 onboard computers to achieve a spherical formation
and a formation moving through obstacles.
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Kurzfassung

In dieser Arbeit konzentrieren wir uns auf die Entwicklung und Validierung von ro-
busten nichtlinearen On-Bord Steuerungsansitzen fiir mehrere unbemannte Multirotor-
Luftfahrzeuge (UAVs), mit dem Ziel, nicht triviale Aufgaben zu erledigen wie z.B. Weg-
folge mit aggressiven Manovern, Navigation in komplexen Umgebungen mit Hinder-
nissen und Formationsflug in einer Gruppe. Um diese anspruchsvollen Missionen zu
erfiillen liegt unser Hauptaugenmerk bei der Stabilitidt der Flugsteuerung fiir aggres-
sive UAV Manover mit steilen Lagewinkeln. Des weiteren ist Kontroll-robustheit sehr
wiinschenswert, um die Multirotor-UAVs unter Beeinflussung sicher und genau zu steu-
ern. Dariiber hinaus ist die Effizienz des Kontrollalgorithmus ein wichtiges Element fiir
die Onboard-Implementierung mit eingeschrinkter Rechenfahigkeit. Abschliessend ist
das Potenzial, gleichzeitig eine Gruppe von UAVs in stabiler Weise zu kontrollieren,
erforderlich. All dies motiviert uns zur Arbeit an den folgenden Aspekten:

Zuerst behandeln wir das Problem der robusten Steuerung nichttrivialer Mandver ei-
nes Multirotor UAV unter Storeinfluss. Ein komplettes Framework wird entwickelt, wel-
ches dem UAV ermoglicht diese anspruchsvollen Aufgaben zu bewiltigen. Es beinhaltet
einem nichtlinearen Lageregler, basierend auf der Losung von globalen Ausgangsrege-
lungsproblemen fiir Starrkorperrotationen SO(3), einem backstepping basierten Positi-
onsregler, einen sechsdimensionalen (6D) wrench observer um die unbekannten Kraft-
und Drehmomenteinfliisse zu schitzen, sowie einem Online-Trajektorienplaner basie-
rend auf Model Predictive Control (MPC). Wir weisen die starken Konvergenzcharak-
teristiken der vorgeschlagenen Methode nach, sowohl in der Theorie als auchmittels
intensiver Realroboter-Experimente, mit aggressiver Wegpunktnavigation und Wegfin-
dungsaufgaben in extremer Fluglage in Gegenwart externer Einfliisse, z.B. Windboen.

Als nichstes bearbeiten wir das Problem der autonomen Navigation eines Multirotor
UAV in komplexen Szenarien. Wir stellen einen effektiven und robusten Steuerungs-
ansatz dar, ndmlich eine schnelle MPC-Methode mit der Einbeziehung von nichtlinearer
Einschrinkungen zur Hindernisvermeidung, und implmenetieren diese an Bord des UAV
mit S0Hz. Der entwickelte Ansatz ermdglicht die Navigation eines Multirotor UAVs in
3D-Umgebungen mit mehreren Hindernissen, wobei autonom entschieden wir, iiber oder
um die zufillig gelegenen Hindernisse zu fliegen.

Das dritte Problem, das in unserer Arbeit angesprochen wird, ist die Bildungssteue-
rung fiir eine Gruppe von Multirotor UAVs. Wir 16sen dieses Problem, indem wir einen
verteilten Formationskontrollalgorithmus fiir mehrere UAVs auf der Grundlage der Losung
des Retraction Balancing Problems vorschlagen. Der Algorithmus bringt die ganze Grup-
pe von UAVs gleichzeitig auf eine vorgeschriebene Untermanigfaltigkeit, welche die
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Formation in asymtotisch stabiler Weise in 2D- und 3D-Umgebungen bestimmt. Wir
validieren unseren vorgeschlagenen Algorithmus iiber eine Reihe von Hardware-in-the-
Loop-Simulationen und Real-Roboter-Experimente mit verschiedenen Formationsvari-
anten in beliebigen zeitveridnderlichen (z. B. expandierenden, schrumpfenden oder be-
wegten) Formen. In den eigentlichen Experimenten wurden bis zu 4 Multirotoren ein-
gesetzt, um beliebige dreieckige, rechteckige und kreisformige Formen zu bilden, die
vom Bediener iiber eine Mensch-Roboter-Interaktionsvorrichtung vorgezeichnet wur-
den. Wir haben auch virtuelle Tests mit bis zu 6 Onboard-Computern durchgefiihrt, um
eine sphirische Formation und eine Formation zu erreichen, die sich durch Hindernisse
bewegt.
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Notation

The list below contains the symbols and abbreviations that are most frequently used in
this thesis. Furthermore, all vectors are denoted by bold lower-case characters (e.g. x).
Matrices are expressed by upper-case characters (e.g. K).

N R 3

KI' ot

mass of quadrotor UAV

gravitational acceleration

translational position of quadrotor in inertial frame

forces generated in body frame of the quadrotor by the rotor aero-
dynamics

moments generated in body frame of the quadrotor by the rotor
aerodynamics

external force disturbance acting in inertial frame

external torque disturbance acting in body frame

inertial matrix of the quadrotor in body frame

angular velocity of the quadrotor in body frame

skew-symmetric matrix of the angular velocity

rotation matrix that represents the quadrotor attitude w.r.t. inertial
frame

thrust generated in the quadrotor along its z axis

propeller thrust coefficient

propeller drag coefficient

length of the quadrotor arm

desired position of the quadrotor

exogenous reference position of the quadrotor

diagonal, positive gain matrix for the position cost

linear velocity tracking error in inertial frame

diagonal, positive gain matrix for the tracking error

external force disturbance estimate in the inertial frame

external force disturbance error

diagonal gain matrix for the disturbance observer

rotation matrix that represents the reference attitude w.r.t. inertial
frame

attitude tracking error

angular velocity tracking error in the body frame

positive gain for the rigid body rotation cost
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Yref
C(¢)

Aext

Xiv

positive gain for the angular velocity tracking error

yaw attitude of the quadrotor in body frame

reference yaw attitude of quadrotor in body frame
coriolis-centrifugal matrix

input wrench generated by the rotor-propeller setup

six dimensional external force/torque disturbance wrench
Jacobian relating the translational and rotational dynamics with the
angular velocity

generalized momenta of the quadrotor

diagonal gain matrix for the residual

estimated generalized external force vector

estimated external force in inertial frame

estimated external toeque in body frame

state vector of the trajectory planner

nominal input (jerk) for the trajectory planner

sampling time for state &

state matrix in the state space model of optimal control problem
input matrix in the state space model of optimal control problem
quadratic cost function of optimal control problem

receding horizon in trajectory planner

weights of stage input cost

stage state cost

terminal state cost



The list below contains the abbreviations that are most frequently used in this thesis.

UAV
MAV
SLAM
GPS
CAD
3D

6D
DOF
IMU
RMSE
OoCP
MPC
VO
HIL
HRI

Unmanned Aerial Vehicle
Micro Aerial Vehicle

Simultaneous Localization and Mapping

Global Positioning System
Computer-Aided Design
three dimensional

six dimensional

Degrees of Freedom
Inertial Measurement Unit
Root-Mean-Square Error
Optimal Control Problem
Model Predictive Control
Valid Obstacle

Hardware In the Loop
Human-Robot Interaction
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Chapter 1

Introduction

1.1 Motivation

Robotics has been an area of keen interests in scientific community since the last decades,
because the development of robots is expected to provide human beings with a promis-
ing way to extend our physical capability and potential, to get rid of lifelong repeated
work, and to make our childhood dreams true. Nowadays, robotics topic has even been a
popular issue in daily life, of which the news can be found on most media over the world.
Research on industrial robots, namely the manipulators/robot arms with multiple degrees
of freedoms mounted on the fixed ground platforms, which has been widely employed
for industrial manufacturing on assembly lines worldwide (as shown in Fig.[I.Ta] and
[I.TB), or served as the assistant for doctors during the surgeries (as shown in Fig. [I.1c)),
or utilized as recreational facilities (as in Fig. @]), has been carried out over decades.
Meanwhile, research on mobile robots is recently becoming another attractive field in
robotics community, which seeks the alternatives with mobility (i.e. automatic machines
that can move) for human beings to discover the unknown and risky environments. The
capability of locomotion provides the robots with broad range of applications, such as
service, rescue, transportation, surveillance, exploration, etc. Simultaneously, the appli-
cation of robots is therefore not restricted to ground, instead being extended to sky and
sea.

Many impressive developments have been witnessed in the field of mobile robots Sieg-
wart et al| (2011). So far, different types of mobile robots have been designed and
served for various applications ranging from micro-scale robots, humanoid robots, to
underwater and aerial robots, as depicted in Fig. Researchers from John Hopkins
University have designed and tested miscroscopic star-shaped grippers to grasp tissue
samples for biopsies (Gultepe et al.| (2013) (as is shown in Fig.[I.2a). The humanoid
robot Pepper (Softbankl [2017) (see Fig. [I.2b)), produced by SoftBank to assist people in
their daily life via oral and touch interactions, is able to respond to the questions from
humans with informative and emotional answers. The autonomous driving cars designed
by Google (Fig. [I.2¢]), which enable to achieve self-driving tasks on public roads without
maneuvering from a human driver, have carried out over 2 million kilometers’ test on the
road (Waymo), 2017)). The humanoid robotic diver from Stanford University (depicted in
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(@) | (b)

Figure 1.1: State-of-the-art robotic manupulator platforms. (a) Multiple KUKA indus-
trial robots cooperatively work at a car assembly line. ©OKUKA AG. (b) ABB Yumi
dual-arm industrial robot. © ABB Group. (c) The robot-assisted minimally invasive
surgical platform SurgiBot. ©TransEnterix International, Inc. (d) The Kuka Coaster
passenger-carrying robot for amusement ride. ©OKUKA AG.

Fig.[[.2d), called OceanOne (Stanford Robotics Lab, [2017), is powered by artificial in-
telligence and haptic feedback systems, allowing human pilots an unprecedented ability
to explore the depths of the oceans in high fidelity. Meanwhile, the unmanned aerial vehi-
cles (UAVs), for example the Inspire 2 (see Fig. from dji designed with
person tracking and obstacle avoidance techniques, have been widely applied on film
industry for the purpose of aerial photography. Fig.[I.2f] demonstrates the two-legged
wheeled robot with a payload over 45kg, called Handle from Boston Dynamics, which
can jump over 1m height and travel at speeds up to 14km/h (Boston Dynamics,, 2017).
Among more and more popular mobile robots research in the robotics community,
UAV has been an area of keen interests since the last decade. In the variety of different
types of UAVs, the multirotor UAVs is recently becoming a topic that grows rapidly.
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Figure 1.2: Examples of the state-of-the-art mobile robot platforms. (a) A star-shaped
microgripper used to take biopsies. ©Gracias Lab, Johns Hopkins University. (b) A
humanoid robot Pepper interacts with human. ©SoftBank Robotics. (c) A prototype
of Google self-driving car. ©Waymo, Alphabet Inc. (d) The humanoid robotic diver
OceanOne explors a 17th century shipwreck. ©Stanford Robotics Lab, Stanford Univer-
sity. (e) The UAV Inspire 2 from DJI is used for aerial photography ©Da-Jiang Inno-
vations Science and Technology Co., Ltd. (f) The two-legged wheeled robot Handle is
jumpping onto a table at high speed. ©Boston Dynamics Co., Ltd.
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The dramatic development is potentially due to the versatility of multirotors, which can
be utilized efficiently, with the implementation of reliable sensors, to explore complex
3-dimensional (3D) environments that are inaccessible to ground vehicles or large-size
fixed-wing UAVs. With onboard visual solutions, e.g. simultaneous localization and
mapping (SLAM) technique Heng ef al.| (2011), multirotor UAVs can autonomously nav-
igate and map the unknown scenarios, such as a earthquake-damaged building Michael
et al. (2012); With the implementation of mobile manipulators, multirotor UAVs are able
to transport goods Palunko et al. (2012b)) and achieve construction tasks|Augugliaro et al.
(2014), etc; With the application of trajectory planning techniques, a group of multiro-
tors succeeded in performing swarm demonstrations above audience in the amusement
park |Intel| (2017b). In order to achieve the variety of applications, control techniques are
essential for the multirotor UAVs.

The control problem is one of the most fundamental problems in robotics. It makes
the basic task for each mobile robot, “how to move from A to B”, possible. Without this
basic task, the high-level applications presented above can never be realized properly.
The answer of this question (“how to”) can be found through the application of the ex-
isting control algorithms that have been listed in the control textbooks, from the classical
model-free patterns to the recently developed nonlinear or optimal approaches. From
the perspective of application on multirotor UAVs, the development of flight control is
so far becoming more and more matured: many consumer-level products on the market
have impressively stable flight performance and user-friendly interfaces to the operators.
However, the stable maneuvering is usually under trivial, mild maneuvers with restricted
tilted angle and horizontal acceleration. This arouses us a new brainstorm, namely “how
to fly aggressively from A to B”.

Although with the application of several advanced control techniques, multirotors can
perform aerial acrobatics |[Lupashin et al.| (2010); Mellinger et al.| (2012), the answer
to large-tilted maneuvers is still not complete for multirotor UAVs. To achieve these
aggressive, large-tilted maneuvers, classical linear control algorithms are usually not the
perfect solution because the linearization of the flight attitude of the UAV is only working
properly under a small angle assumption, i.e. with tilted angle less than 20°. Thus the
control algorithm should be based on one of the nonlinear patterns, and should be with
strong convergence properties.

Therefore, the first problem to be solved is: Can we develop a nonlinear control
algorithm for a multirotor UAV? This is the main motivation for the first part of our
work in Chapter [3] The solution to this first specific problem addressed in this thesis is
a nonlinear control approach to nontrivial/aggressive multirotor maneuvers. This can be
nicely found by solving the problems for rigid body rotations SO(3). Meanwhile, we
expect our proposed approach to be versatile, which should support a multirotor UAV to
achieve different types of tasks, e.g. waypoint navigation, and path following, etc. To
respond to this concern, a model predictive control (MPC) method is applied. Our work
presented in Chapter [3] will reflect this solution through both mathematical derivations
and experimental validations.
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The control problem for UAV's should not be restricted to “how to fly from A to B”, and
“how to fly aggressively”. It also includes reliable maneuvers in complex environments
with disturbances, which can be stated as: “how to fly aggressively under disturbances”.
Despite that we have experimentally tested several linear and nonlinear control algo-
rithms on our multirotor UAV platform, the control performance is not as we expected
due to the model uncertainties and external disturbances, e.g. wind gusts. This leaves us
two potential directions: to perform improvement from the aspect of carrying out model
identifications, or from the aspect of designing robust control approaches. Between the
two ways, the latter is chosen in the thesis.

Hence, the second problem to be solved, on the basis of the solution to the first prob-
lem that we just addressed, is: Can we develop a robust nonlinear control structure

Jor a multirotor UAV under disturbances?, where the term “robust” or “robustness”
throughout this thesis is mainly regarded as the capability of meeting high control accu-
racy under disturbances, instead of the response to sudden, unexpected hardware failure
on sensors or onboard processors. This becomes the motivation for the second part of
our work in Chapter 3] the solution of which is either to modify the nonlinear control
algorithm with an additional robustness design, or to apply certain observation technique
to estimate the unknown disturbances and further compensate against them. Both poten-
tial solutions have been attempted, through the design of convergent Lyapunov function
and through the inclusion of a nonlinear observer. Again, our work in Chapter 3] will
demonstrate that our solution towards the proposed problem is competitive via theoreti-
cal proofs and intensive real-robot experiments.

Then the next question directly comes, since the term “complex environments” can be
explained in another extensible way, namely “with disturbances and obstacles”. Much
research has been carried out on the trajectory planning algorithms in the envrionments
with obstacles. However, the majority proposes offline trajectory planning methods in
2D scenarios. One difference, between the problem we encounter with for a multirotor
UAV and the obstacle avoidance problems for ground robots, is that we expect a trajec-
tory planning algorithm, or even a direct control algorithm that enables the multirotor to
navigate smartly in 3D environments, instead of only to fly around the detected obstacles
with a kept altitude. Meanwhile, we also require the solution to be updated in real-time,
so that the multirotor UAV could deal with sudden situations in complex environments.

These two major concerns lead to the third problem, as a extension from the second
problem, to be solved: Can we develop a robust nonlinear control framework for a
multirotor UAV in complex environments with obstacles and disturbances? This third
problem addressed in the thesis motivates our work in Chapter {l where we try to answer
the following questions: How to make a multirotor UAV autonomously avoid obstacles in
3D environment? How to speed up the computation of the trajectory planning algorithm
so that it can be executed online? We reply to these questions by developing a fast,
nonlinear MPC method for the multirotor UAV and implementing it onboard with limited
computational capability after optimizing the computational cost.

In case that we can solve the three problems addressed above, is it possible to ex-
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tend the control framework from a single multirotor UAV to a group of UAVs, so that
a networked system of UAVs can fly in formation and achieve commanded high-level
missions? So far, much research on formation control relies on an offline, prescribed
trajectory for each agent in the group. Meanwhile, many existing formation algorithms
that output online trajectories for agents cannot lead the whole group of agents to the
target positions simultaneously. Furthermore, since much research has been carried out
on human-robot interaction, is it possible for an operator to interact with multiple UAVs
at the same time, for instance by drawing a shape, etc.?

All these concerns turn to the forth problem to be solved: Can we develop a formation
control algorithm for a group of multirotor UAVs that is suitable for simple human-
robot interactions? By employing the work in Chapter ] we address the problem of
extending the flight control to a whole group of multirotor UAVs simultaneously in a
stable fashion. We also have to bridge the interaction between the operator and all the
UAVs in a simple way. These are the two motivations for our work in Chapter [5} which
additionally includes our multirotors with a formation control algorithm based on a so-
lution for retraction balancing problem, arouses a “draw and fly” concept between the
operator and multiple UAVs via the “drawings” from finger motions.

1.2 Contributions

The research presented in this thesis largely focuses on developing and validating ef-
ficient and robust onboard flight control systems for the nontrivial tasks for multirotor
UAVs, e.g. aggressive path following, waypoint navigation with obstacle avoidance, for-
mation, etc. The specific contributions made in each of the three technical chapters can
be described as follows:

Chapter 3:

* A nonlinear attitude controller based on the solution of rigid body rotations SO(3)
is proposed, which is with strong convergence properties for almost all initial atti-
tude conditions, and suitable for aggressive maneuvers for multirotor UAVs.

* A robust backstepping-like position controller is proposed, which is able to com-
pensate against the force disturbances during the flight of UAV.

* A 6D nonlinear wrench observer is presented, which estimates the unknown force
and torque disturbances and is implemented onto the flight control system for ro-
bustness.

* A versatile trajectory planning algorithm is developed based on a MPC method,
which online updates the reference states for the multirotor UAV to track during
both waypoint navigation and path following tasks.



1.2 Contributions

* The asymptotic stability of the complete control-observation system is theoreti-
cally proved and experimentally validated.

* The analyses and discussions on a series of intensive real-robot experiments carried
out in the scenarios with model uncertainties and wind gusts are presented.

Large parts of this work have been pre-published in the following paper:

1. Liu, Y., Montenbruck, J. M., Stegagno, P., Allgower, F., and Zell, A. (2015). A
Robust Nonlinear Controller for Nontrivial Quadrotor Maneuvers: Approach and
Verification. Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 600-606, 2015.

2. Liu, Y., Rajappa, S., Montenbruck, J. M., Stegagno, P., Biilthoff, H., Allgower, F.,
and Zell, A. (2017b). Robust Nonlinear Control Approach to Nontrivial Maneu-
vers and Obstacle Avoidance for Quadrotor UAV under Disturbances. Robotics
and Autonomous Systems, vol. 98, pp. 317-332, 2017.

Chapter 4:

* A tube-based MPC framework is designed for multirotor UAVs, which provides
accurate control performance under model uncertainties.

* A MPC-observer framework is presented for multirotor UAVs in order to further
compensate against external forces and torques generated from unknown distur-
bances.

* A MPC method with nonlinear obstacle avoiding constraints is developed, which
enables the multirotor UAV to avoid the randomly located obstacles in 3D environ-
ment by autonomously deciding to fly over or fly around the detected obstacles.

* The proposed nonlinear MPC method with obstacle avoidance is modified into
an online trajectory planner and is implemented onboard together with the robust
nonlinear control approach presented in Chapter [3]

Large parts of the work presented in Chapter [3]and | have been together pre-published
in the following paper:

2. Liu, Y., Rajappa, S., Montenbruck, J. M., Stegagno, P., Biilthoff, H., Allgdwer, F.,
and Zell, A. (2017b). Robust Nonlinear Control Approach to Nontrivial Maneu-
vers and Obstacle Avoidance for Quadrotor UAV under Disturbances. Robotics
and Autonomous Systems, vol. 98, pp. 317-332, 2017.
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Chapter 5:

* A distributed formation control approach is presented, which brings the whole
group of UAVs simultaneously to a prescribed submanifold that determines the
formation shape in an asymptotically stable fashion.

* The formation control algorithm is extended to be feasible for circular, triangular,
rectangular, and spherical formations for a group of multirotor UAVs.

* A human-swarm interaction strategy is proposed for the multirotor UAVs to con-
verge to a formation with a human operator “drawing” the target shape via a finger
tracking device.

* By combining with an onboard MPC method, the distributed formation control
algorithm is experimentally validated through a series of real-robot experiments
and hardware-in-the-loop simulations.

Large parts of this work have been pre-published in the following paper:

3. Liu, Y., Montenbruck, J. M., Odelga, M., Zelazo, D., Rajappa, S., Biilthoff, H.,
Allgower, F., and Zell, A. (2017a). A Distributed Control Approach to Formation
Balancing and Maneuvering of Multiple Multirotor UAVs. IEEE Transactions on
Robotics, Special Issue: Swarm Aerial Robotics (to appear), 2018.

The structure of this thesis is given in the following way: the motivations and con-
tributions of this thesis have first been presented from a general view in this chapter.
The background related to multirotor UAVs, including the flight control methods we
used for comparison, and the configurations of real-robot experiments, is presented in
Chapter [2| The following three technical chapters demonstrate the main scientific work
of this thesis, of which the highlight has been enumerated earlier in this section. The
specific literature review on each topic is given individually in each technical chapter
which proposes the corresponding problem. In Chapter 6] we finally conclude this the-
sis by summarizing the our solutions to the proposed problems and further raising open
questions for future research.



Chapter 2
Background

In this chapter, we present background principles and related work on the flight control of
multirotor UAVs. The outline of this chapter is as follows. In Sec. [2.1] we first introduce
the dynamic model of a multirotor UAV and the basic estimation of the related physical
parameters. We then briefly present an overview of widely-used control methods, e.g.
PID, geometric tracking algorithm that are used for benchmark in the technical chapters,
as well as their implementations on multirotor UAVs in Sec.[2.2] Finally in Sec.[2.3]
we demonstrates the specific configurations of the multirotor UAV platforms on which
we have implemented the control and trajectory planning algorithms we propose in this
thesis.

2.1 Dynamics and Modelling of Multirotor UAV

In this section, we introduce the dynamic model of the multirotor UAV (e.g. quadrotor
and hexarotor) and how we estimate the related physcial parameters, e.g. inertial and
aerodynamic coefficients, that are required for the flight control algorithms proposed
later in Sec. [3] 4 and [3]in this thesis.

2.1.1 Dynamic Model of Multirotor UAV

A multirotor UAV can be modelled as a rigid body with a multirotor body having the
propeller arms and a group of propellers. The propeller connected to the motor rotors
causes the spinning actuation. In most cases, these multirotors posses limited mobility
because of the underactuation, i.e. the availability of only decoupled 4 control inputs in
comparison to the 6 DoFs required to position/orient the UAVs in free space.

The dynamic model of the multirotor UAV is written in simplified form using Euler-
Lagrangian generalized force formulation with the system states { for the translational
and the rotational dynamics as

ME+C(E)E+G = A+ Aex, Q2.1
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where

I3 0
M:r”“ P3| ROX6 2.2)

033 J

is the diagonal, positive definite inertial matrix with J the diagonal multirotor body inertia
matrix, I € R3*3 the identity matrix and 0 € R3*3 the zero matrix;

033 033
0 L.r  —I,q
033 —Ir 0 Lip
Iyyq _[xxp 0

c(¢) = e RO (2.3)

expresses the coriolis and centrifugal terms with Iy, I, and I ; being the diagonal com-
ponents of J; while G is the Gravitational vector given by

" eRC. (2.4)

G= [0 0 mg 0 0O

Here the system states { are defined using the translational and rotational velocities as
: T L T

(=[x o] =[xy z p q 1] (2.5)

with x denoting the 3D position in the inertial frame and @ = (p,q,r)" denoting the
angular velocity in the body frame.

Note that in the above equation the terms related to the propeller dynamics, e.g.
hub forces, the terms from IMU, e.g. gyro effects, and the non-diagonal components of
the inertial matrix J, are all neglected because those static and viscous friction terms, and
the coupling physical parameters in the model, which are part of the standard Lagrangian
formulation, are usually small with respect to the other terms and are combined as part
of the external disturbance.

Looking at the right-hand side of |(2.1), A € R is the input wrench (3D force F and
3D torque 7) that is applied on the multirotor as a means of control input.

The control input of force and torque is unified for most types of the multirotor UAVs,
e.g. quadrotors and hexarotors. While it can be related to the rotational speed of the
propellers, depending on the type of multirotor UAVs, and the mapping of these con-
trol inputs onto each motor on the top of the arms. We here give two configurations of
quadrotor and hexarotor UAVs. In this thesis, we demonstrate the versatility of our pro-
posed control and trajectory planning algorithms on different types of multirotor UAVs,
by employing qauadrotor UAVs as the platform for real-robot experiments, while utiliz-
ing hexarotor UAVs as the platform for desktop-based and hardware-in-the-loop (HIL)
simulations.

A common configuration of quadrotor UAVs can be illustrated in Fig. [2.Ta] which is

10
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XB
* F, i M,
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X
o )

(a) b)

Figure 2.1: (a) Top view of rotation directions of the four rotors on a quadrotor UAV. The
generated yawing moments acting are in the counter directions to motor rotation. (b)
Forces and moments acting on the quadrotor frame, with a depiction of the principle of
yaw control to anti-clockwise rotation.

with four fixed propellers mounted on the brushless rotors configured in a symmetric
cross. The angle between two neighboring arms is fixed as 90°. This configuration
applies to all the quadrotors we used for the real-robot experiments.

Meanwhile, the simplified dynamic model of a quadrotor represented in [(2.1)] can be
illustrated in Fig.[2.16] The quadrotor body frame B is assumed to have the coordi-
nate center coinciding with the geometric center of a quadrotor. xp coincides with the
preferred forward (“heading”) direction along one arm on the quadrotor (the arm that
rotor 1 is mounted), while zp points to the upward direction perpendicular to the plane
where all four quadrotor arms are located. The rotor 1 and 2 rotates along zp direction
(anti-clockwise), while rotor 3 and 4 rotates along —zp direction. The rotation of each
propeller generates a lift force perpendicular to the rotation plane of the propeller due
to aerodynamics. In addition, the rotation produces a yawing moment acting on the ro-
tation plane, whose direction is always in the counter directions to motor rotation. The
forces and moments generated from the rotation of propeller at different speeds lead to
the translational and rotational motion of the quadrotor UAV. Consequently, we control
the attitude and position of the quadrotor by properly adjusting the rotation speed of each
rotor mounted on the quadrotor Nonami ef al.| (2010).

The rotation of a rigid body can be expressed as a rotation matrix R, which transform
a vector from the body frame B, with zp pointing upward, to the world frame W, with
zw pointing upward. We apply Z —Y — X Euler angles Schilling (1990) to represent the
rotation of the quadrotor. This means that when rotating W to body frame B, we rotate the

11
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coordinate first around zy by the yaw angle vy, then rotate it around y axis by the pitch
angle 0, and finally rotate it around x axis by the roll angle ¢. The resulting rotation
matrix can be represented as

cycO cyspsO —cosy  sPsy+cPcysO
R= |cOsy cPcy+sosysO —cPsysO —cyso |, (2.6)
—s50 cOs¢ coco

where s¢ and c¢ represent sin(¢) and cos(¢ ), respectively. Similarly for 6 and y.

The relation between the lift force generated from each propeller, F; Vi=1,...,4, and
the control input of force and torque can be represented as
fx 1 1 1 1 Fi
| |—d d 0 0 |’ @D
Tz km km _km _km Fy

where d, k;,, denote length of the propeller arms and moment coefficient, respectively.

Therefore, the final mapping from the control input of force and torque into the rota-
tional speed of each motor on a quadrotor UAV, @y ; = \/F;/cr, Vi=1,...,4, is given

by
i 0
Iy 2 20 2 2
A F _ fz _J CT(wz71+wt,2+wt,3+mt,4) 2.8)
T T © crd(wpy — o) '
Ty crd (0, — o)
[ %] CQ(wtz.,l + a’zz,z - a)t2,4 - a’z2,3)

with c¢7 and cg being the propeller lift coefficient and propeller drag coefficient, respec-
tively, having c¢r = cp/kin. The identification of these coefficients will be briefly intro-
duced in Sec. [2.1.2] The Jg in[(2.8)]is the Jacobian that relates the translational dynamics
in inertial frame and the rotational dynamics in body frame with the angular velocity @y ;
of each propeller whereas Ay accounts for the external force/torque disturbance wrench
and the unmodeled effects acting on the quadrotor.

Similarly, a common configuration of hexarotor UAVs is illustrated in Fig. [2.2] Com-
pared to a quadrotor UAV, the major difference on dynamics is that the angle between
two neighboring arms on a hexarotor is fixed as 60°.

Following the notations in the quadrotor dynamics we introduced above, the relation
between the lift force generated from each propeller, F; V i = 1,...,6, and the control

12
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Figure 2.2: Top view of rotation directions of the six rotors on a hexarotor UAV. The
generated yawing moments acting are in the counter directions to motor rotation. The
angle between two neighboring arms is 60°.

input of force and torque now is given by

F
fz 1 1 1 1 1 1 1)
Ty _ dS3() —dS3() —d —dS30 dS3() d F3 (2 9)
Ty —dC3() —dC30 0 dC30 dC30 0 F4 ’ )
T, km —km  —km  —km  km  kn| |Fs
| Fe

where 539, ¢39 denote sin(30°) and cos(30°), respectively.
Therefore, the final mapping from force and torque into the rotational speed of each

motor, @ ;, i = 1,...,6, can be described as
X
h 0

2 2 2 2 2 2

A F Iz 7 CT(wz,l T+ 03+ 0+ 05+ wt76)
— = = 2 2 2 2 2 2
T T (€] CTd(O)t71S3() + a)t’ssw + a)t76 — Wy 5530 — ;3530 — a)t74)
2 2

Ty ch(a)t74C30 + 0 5€30 — a)m Cc30 — a)t72C3())

2 2 2 2 2 2
Ka i CQ(wt,l s+ Ofg — O — O3 — COt,4)

(2.10)

The desired angular velocity of each motor, which is assumed as the control input on
a hexarotor UAV by neglecting the error from the motor controller, therefore, can be
obtained via solving the inverse of

13
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There have been various regulation approaches developed to compute the desired non-
conservative forces and moments on the multirotor UAV. We will give an overview of
several widely-applied methods in Sec. 2.2

2.1.2 Parameter Identification

We here briefly introduce how the physical parameters required in the modelling of mul-
tirotor UAV are identified. The mass of a multirotor platform can be directly measured
by a scale, meanwhile the arm length can also be simply measured. Therefore, the rest
parameters include the inertial matrix J, the propeller lift coefficient c7, and the propeller
drag coefficient cg.

A widely-employed approach to identify the inertial matrix J of a multirotor UAV is to
estimate all the inertial coefficient components of a full-scaled multirotor model virtually
built in the Computer-Aided-Design (CAD) software.

This estimation via CAD modeling can be achieved by the following procedure:

1. Measuring the geometric size of each component on a multirotor UAV platform,
e.g. metal frame, arm, rotor, propeller, landing gear, onboard computer, etc.;

2. Building the model of each component in the CAD software based on the geomet-
ric size of the parts on the real experimental platform;

3. Measuring the mass of each component in real-world and add the mass property
onto the CAD model;

4. Assembling all component models together with proper constraints as a complete
product/assembly, and computing the rigid-body inertial matrix J.

In this thesis, we employ the commercial CAD software CATIA V5 (Systems, 2017)
to build the virtual multirotor UAV model and to estimate all the iertial coefficient com-
ponents. For the sake of visualization, we here display a rendering photo of the CAD
model of our QuadroXL platform in Fig. In order to reduce the risk of damaging
the onboard equipments, we removed the cameras and additionally mounted a two-layer
plastic-polymer case to protect the onboard computer during real-robot experiments.

The mass, arm length, and inertial coefficients of all the multirotor UAV platforms
we employed to validate our proposed control and trajectory planning algorithms, in the
simulation and in real-robot experiments, are listed in the following tables [2.1]and 2.2}

The propeller lift coefficient c7 and the propeller drag coefficient cg can be estimated
via a series of hardware tests. During the tests, a rotor, mounted one the multirotor arm
and fixed on a frame, is required to get connected with a closed-loop-fashion brushless
motor controller, which has the embedded sensor so that the rotational speed of the con-
trolled rotor is able to be read out. In addition, a 1D force sensor is required to measure
the lift force during the rotation of the propeller.

14
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Figure 2.3: The CAD model of the QuadroXL (with camera) quadrotor UAV platform.

Platform mass arm length
QuadroXL (with camera) 1.715[kg] 0.29[m]
QuadroXL 1.605[kg] 0.29[m]
QuadroL 1.055[kg] 0.235[m]
Hexarotor (simulation) 1.588[kg] 0.215[m]

Table 2.1: Physical parameters of multirotor UAV platform: mass and arm length.

Considering that the lift force F; = cr a)t%i from a single propeller, one can record the
lift forces under different conditions of motor speed, and consequently generate a look-
up table of measured lift force against the square of motor rotational speed. One can then
directly calculate the estimate of cr from the slope of the fitted function.

Analogous to the test of lift coefficient, the propeller drag coefficient can be estimated
via similar tests with the help of a 1D torque sensor. Considering that the torque due to
drag 7, = cQa)l%i from a single propeller, a look-up table of measured torque against the
square of motor rotational speed can be recorded. Thus the drag coefficient c¢p can be
estimated from the slope of the fitted function.

The tests on the identification of propeller acrodynamic coefficients have been carried
out in previous research Nonami ef al.| (2010). For the sake of brevity, we here directly
list the estimates of lift coefficient and drag coefficient of 8inch and 10inch enhanced-
plastic-polymer (EPP) propellers in the following table [2.3]
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Platform L Ly I,

QuadroXL (with camera) 0.028[kg-m?] | 0.027[kg-m?] | 0.049[kg-m?]
QuadroXL 0.027[kg-m?] | 0.026[kg-m?] | 0.047[kg-m?]
QuadroL. 0.022[kg-m?] | 0.021[kg-m?] | 0.042[kg-m?]
Hexarotor (simulation) 0.035[kg-m?] | 0.046[kg-m?] | 0.098[kg-m?]

Table 2.2: Physical parameters of multirotor UAV platform: inertial coefficients.

Platform lift coefficient c7 drag coefficient cp
Propeller EPP 1074.5' 1.938¢73 2.688¢7
Propeller EPP 874.5' 8.549¢° 1.368¢77

Table 2.3: Aerodynamic coefficients of multirotor propellers.

2.2 Flight Control of Multirotor UAV

This section gives an overview of the flight control of multirotor UAVs. Since a cou-
ple of control approaches to the multirotor UAVs have been proposed in this thesis, we
here generally introduce the control architecture and a couple of existing flight control
methods that have been widely implemented on the multirotor UAVs. For the purpose of
comparison, we have also applied the methods introduced in this section in the real-robot
experiments.

2.2.1 Multirotor UAYV Control Architecture

It can be found from the Eq. [(2.1)|that the translational dynamics and rotational dynamics
of the multirotor UAV are decoupled. Therefore, an efficient way of multirotor flight
control is to regulate the position and attitude of the UAV in a cascaded feedback system.

A block diagram of the UAV flight control system can be illustrated in Fig. 2.4 More
specifically, a position controller is applied in a higher level, which, in most cases, out-
puts the sum of lift forces (thrust) generated from the propellers, 7' = f; in as well
as the desired attitude, i.e. roll, pitch and yaw angles. The desired attitude is then passed
into a lower-level controller, which is designed to track the error between current and
desired attitudes. The output of the attitude controller is usually the regulated torque
Ty, Ty, T, on body frame. Finally, the regulated force and torque are transferred into the
mapping of motor speeds via[(2.8)] or[(2.10)|

Apart from the relevant parameters introduced in Sec [2.1.2] a closed-loop control sys-
tem required an update of the states of UAV position and attitude at every moment.

The current attitude data (rotational angle and angular velocity) are usually comput-
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Figure 2.4: The diagram of the casacaded UAV flight control system.

ed/filtered based on the record from an embedded inertia-measurement-unit (IMU) on
the multirotor UAV platform, which is able to collect real-time angular velocity and lin-
ear acceleration. These data collected from an onboard IMU sensor are usually with bias
and are quite noisy, thus the fusing approaches, e.g. a Kalman filter Kalman| (1960), or
a particle filter Moral| (1996), are additionally implemented in order to provide unbiased
and smooth angular velocity and roll, pitch, yaw angle at each moment.

The current position data (position, linear velocity, and linear acceleration) can be col-
lected or estimated with the help of onboard or offboard computer vision techniques.
For instance, the external motion capture system, i.e. OptiTrack (Naturalpoint, 2017) or
Vicon (Vicon, 2017), is able to provide accurate position of the tracked objects at 120Hz
or faster. The linear velocity can then be differentiated from the position messages.
Other onboard-camera-based vision techniques, e.g. optical flow Cesetti et al.| (2010),
simultaneous localization and mapping (SLAM) Bailey and Durrant-Whyte (2006), par-
allel tracking and mapping (PTAM) Klein and Murray|(2007)), also enable the multirotor
UAV to estimate its current position in real-time. With the usage of onboard cameras
and IMU sensor, the full autonomy of the multirotor UAV is feasible in a GPS-denied
environment without the help of external tracking systems.

2.2.2 Proportional-Integral-Derivative Control

One of the existing control approaches that is dominant in engineering fields is the
proportional-integral-derivative (PID) Control. Although it has been developed since
1920s, PID control is still widely used because of its simplicity, reliability and model-
free characteristic.

A nested flight control framework, as illustrated in Fig.[2.5] has been developed and
experimentally validated in Michael et al.| (2010), which consists of a cascaded atti-
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Figure 2.5: The casacaded UAV flight control system in Michael et al.| (2010).

tude controller plus near-hovering position controller structure, with both controllers in
linear PID style. Additionally, a 3D trajectory planing algorithm has been developed
together with the PID feedback control system, which enables the agile quadrotor UAYV,
with accurate model identification, to achieve precise maneuvers (at 200Hz or faster fre-
quency). Note that these controllers rely on small angle assumptions, e.g. the tilted angle
of quadrotor should not be larger than 20°

The attitude controller is in a proportional-derivative (PD) type in form of

Awy = kpg (‘Pd” - ¢> +kap (pd” — p) , (2.11a)
A@g = ky (6%~ 6) + ka0 (4" ~4) (2.11b)
Aoy =kpy (V=) +hay (1= r). (2.11¢)

where Ay, Awg, and Awy produce moments leading to the rotation of roll, pitch and
yaw, respectively.

The desired quadrotor motor speeds can be calculated as

des

of 1 0 1 —1] [on+Awr

des

oSl |1 -1 0 1 Aoy

ofes| T[T 0 -1 —1 Awg |’ (-12)
g 11 0 1 Aoy

where @), denotes the nominal rotor speed of a steady hovering state, and Awr leads to a
net force on zp axis. In addition, Awy, A®y, and Awy, are the deviations of attitude.

At a higher position control level, a near-hovering controller is applied on the quadro-
tor to reach the desired position and yaw angle with zero linear and angular velocities.
Denoting 7r and Y7 the trajectory and yaw angle to be tracked by the position controller,

and the position error e; = (¥7,; — 7;), the desired acceleration ?ld“ at ith time step can be
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calculated from a proportional-integral-derivative (PID) feedback system as
Sdes .
= kmei + kw’ e;dr + kd’,-ei. (2.13)
Considering that the thrust produced by the propellers has the relation with the motor

speed, T = fz = cr®?. The desired roll, pitch angles and the derivation of thrust can be
calculated and passed to the attitude controller via

1 .. .
¢l = g(ﬁm sin(yr) — 7% cos(yr)), (2.14a)
1 .. .
gdes — ;?ﬂ{es cos(yr) + 74 sin(yr)), (2.14b)
m  sies
Awp = Fdes (2.14c¢)
F 8kF(L)h 3

We briefly introduce this PID control framework here, because we have implemented
this control frame on our QuadroXL platform during the validation tests of aggressive
maneuvers. We will introduce the detail of experiments later in Chapter [3|

2.2.3 Geometric Tracking Approach

Apart from the classical linear PID control approach, several nonlinear methods based
on Lyapunov function, e.g. backstepping and sliding modes |[Khalil (2002) have been
developed and implemented on the multirotor UAV platforms. The major pro of these
nonlinear approaches is that they can get rid of the small angle assumptions and enable
the multirotor UAVSs to achieve the nontrivial maneuvers with large tilted angles.

We here introduce one kind of backstepping controller, the geometric tracking ap-
proach Lee et al. (2010b), which is one of the nonlinear control approaches that have
been successfully implemented on the multirotor UAVs. The architecture of the geo-
metric tracking approach is also in a cascaded fashion, which indicates that a high level
position controller is designed to compute the desired thrust and the desired attitude
via tracking the reference trajectory and desired yaw angle. The desired attitude is then
passed into a lower level attitude controller so that the regulated torque can be calculated.
Finally, the regulated thrust and torque are transformed to the angular velocities of each
motor via Eq.

The major difference between the geometric tracking approach and the classical lin-
ear methods is that such controller is developed on the special Euclidean group SE(3),
which is the semidirect product of R? and the special orthogonal group SO(3) = {R €
R3| RTR =1,detR = 1}. InLee et al|(2010a), technical details of the algorithm as well
as a rigorous proof of asymptotic stability of this nonlinear tracking method has been
demonstrated. Therefore, we here only introduce the core concept of this method and
several relevant, key equations, e.g. the control laws.
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Figure 2.6: Control structure for geometric tracking controller in Lee et al. (2010a).

The geometric tracking controller is developed on the nonlinear configuration Lie
group and thus it avoids the singularities in local coordinates. The general control struc-
ture of the approach is illustrated in Fig. [2.6]

Let the tracking errors between the current state and the position tracking command
x4 for the position and velocity be given by:

ex =X—Xg4, (2.15a)
ey, =V—X,4. (2.15b)

Following the notations in the expression of the thrust magnitude for the high
level position controller is represented as

[z = (—keex — kye, +mges —miq) - Res, (2.16)

where ky, k, are positive constants, while R denotes the rotation matrix that expresses the
current attitude of the quadrotor.
Considering that the desired attitude R; € SO(3) and the desired angular velocity Q
are given by
Rd:[bld;b3d><bld; bSd]an ZRJRd, 2.17)

where b3, is defined by

by = —kyex — ke, +mges —miy (2.18)

C | = kyex — kyey, +mges —miy||’

and by, is selected to be orthogonal to b3, for instance

b3, x <b3d X (cos y,sin IV,O)T>
__ /. (2.19)
Hb3d X (COS V. sin W?O) H

Ly

with the desired yaw angle y.
A geometric attitude controller is further developed in order to track the desired atti-
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tude calculated in |(2.17) Following the derivation in Lee et al.| (2010a), a real-valued
error function is chosen as:

W(R,R;) = %tr[[ —RJR]. (2.20)

By denoting the variation of a rotation matrix SR = R for n € R>, the derivative of
the error function is given by

~ 1 ~
Dr¥(R,Rq) RN = —tr[R; R7] = eg -7, 2.21)

where the attitude tracking error eg € R? is chosen as

1
er=7 (RIR—R'Ry)Y, (2.22)

while the tracking error for the angular velocity is given by
e =Q—R'R;Q,. (2.23)

The vee map V: SO(3) — R? denotes the inverse of the hat map, a skew symmetric
matrix, for instance:

R 0 —r ¢ v
Q'=|r 0 —p| =(p.qn". (2.24)
q p 0

The nonlinear geometric tracking controller for the attitude is, therefore, described as:
M = —kger —kgeq +Q X JQ — J(ﬁRTRdQ.d — RTRde), (2.25)

where kg, kg are positive constant diagonal matrices.

This geometric tracking approach, with the control law [(2.16)] and [(2.24)] has also
been implemented on our multirotor UAV platform QuadroXL to achieve the nontrivial
path-following and waypoint navigation tasks. A comparison among this approach and
other proposed methods will be demonstrated in the experiments in Chapter 3]

2.3 Multirotor UAYV Platforms

In this thesis, we select two quadrotor configurations to be our multirotor UAV platforms
in a series of real-robot experiments. Based on the various mission requirements, one
medium-size (about 1.6kg) quadrotor as well as four relatively light-weight (about 1kg)
quadrotor UAVs are built. The quadrotor platforms provide us with the benefits such as
being simple in mechanism, having sufficient payload for onboard equipments and be-
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(a) (b)

Figure 2.7: (a) Side view of the QuadroXL quadrotor UAV platform, with 10-inch pro-
pellers and onboard computational unit implemented. (b) Odroid-XU4 onboard com-
puter implemented on our QuadroXL platform, which is used for all the computation on
flight control and remote communication. ©Hardkernel co., Ltd.

ing suitable for indoor low-speed flights, thus the quadrotors enable us to experimentally
validate our proposed control and trajectory planning algorithms in the indoor environ-
ments.

The medium-size quadrotor UAV platform is displayed in Fig. The quadrotor me-
chanical frame is based on a frame from the MikroKopter QuadroXL (HiSystems, 2017,
which is made of aluminum material and is thus durable. Later in this thesis, we may call
it “QuadroXL” in some cases. The original quadrotor is equipped with four motors and
12-inch propellers, with an capability to carry a payload up to 1.0 kg except battery. The
total weight of the quadrotor is approximately 1.605kg, including a 5000mAh 4-cell LiPo
battery. The arm length of this quadrotor is 29cm. In order to achieve a flight with high
autonomy, an onboard computational unit is implemented on the quadrotor. The onboard
computer is one Odroid-XU4 board (Hardkernel, 2017) featuring Samsung Exynos5542
ARM® Cortex™-A15 2GHz and Cortex™-A7 Octa core CPUs, 2G LPDDR3 RAM
and 64G SSD. Compared to other available onboard computers, e.g. Intel Nuc (Intel,
2017a), AMD Zotac (AMD, 2017)), etc., Odroid-XU4 is with relatively lower cost but
less powerful, with 5V input voltage. Hence, we additionally mount a Pololu 5V, 6A
step-down voltage regulator chip (Pololu, |[2017) on the quadrotor.

The inertial measurement unit (IMU), which includes the inertial sensors e.g. a tri-
axes accelerometer, a tri-axes gyroscope, and an air pressure sensor, is embedded on
an intermediate printed circuit board (PCB) with original flight control programmings
from MikroKopter. However, since in this thesis we focus on the flight control and its
implementation, we re-flash the flight control board and use it only as an interface to
the readout of raw IMU data and to the transfer of computed motor speed messages to
the four brushless motor controllers. The accelerometer and the gyroscope embedded
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2.3 Multirotor UAV Platforms

Figure 2.8: The four quadrotor UAVs for the formation missions.

on IMU provide a 3-dimensional (3D) linear acceleration (+8g) and a 3D angular ve-
locity (£500deg/s) measurements of the quadrotor UAV. The IMU board is connected
to the onboard computer via two FTDI usb-to-serial cables, one for data readout, and
another for publishing control commands. The transfer speed of IMU is theoretically
up to 300Hz, while in the real-robot experiments we speed it down to 120Hz, in order
to match the frequency of subscribing position data. The brushless controllers work in
a open-loop fashion, which might lead to problematic mismatches between the desired
motor speeds computed from the control algorithm and the actual motor speeds.

This quadrotor is employed as the experimental platform for the validation of robust
control approach to the aggressive maneuvers under disturbances, and the predictive con-
trol for the maneuvers with obstacle avoidance, as in Chapter 3] and 4] There may be
slight changes on the quadrotor platform during the real-robot experiments. For those
specific configurations, we will detail them later in the relevant sections in the technical
chapters.

We extend the research direction to the control of multi-agent systems in Chapter [5]
In order to experimentally validate the proposed formation control approach, we built
another four relatively light-weight quadrotors and command them to simultaneously fly
in formation.

An assembly of the four quadrotor UAV platforms for the formation missions is shown
in Fig. 2.8] Different from the QuadroXL platform we have introduced, each quadrotor
UAV for the formation missions is with the weight of approximately 1.05kg including
a 2700mAh 4-cell LiPo battery. Four 10-inch propellers are mounted with (smaller)
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Figure 2.9: The Telekyb Framework for multirotor UAV teleoperation and control in

Grabe et al.| (2013)).

motors on the arms of 23.5cm on the quadrotor. We still implement Odroid-XU4 on
each quadrotor in order to execute all the computations onboard. The hardware settings
in other aspects, i.e. the brushless controllers, the IMU board, the voltage regulator, etc.,
are kept with no change.

The group of the four quadrotor UAVs are employed for the experimental evaluation
of the distributed control approach to the shape-driven formation, as in Chapter 5]

2.3.1 Experimental Configuration

In this section, we generally introduce the configurations of simulations and real-robot
experiments. In most cases, the control and trajectory algorithms presented in this thesis
have been validated step-by-step, from virtual stage to actual experiment stage.

First we carry out a series of numerical tests in MATLAB for the purpose of san-
ity check. ROS-based simulations are then carried out via Gazebo multi-robot simu-
lator. We finally set up real-robot experiments by employing the hardware platforms
that we just introduced. In order to develop a flexible software environment to exper-
imentally validate our proposed algorithms, we bridged a modified interface between
(onboard) computers, Gazebo physical simulator, and the quadrotor platforms on the ba-
sis of Telekyb |Grabe et al| (2013) (as illustrated in Fig. 2.9). This interface enables us to
run the exact packages of flight control (written in C + + language) for both the virtual
simulation and real-robot experiments. In most of the situations, we tuned the relevant
parameters (e.g. control gains, weight functions for optimization problems, etc.) in the
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2.3 Multirotor UAV Platforms

Figure 2.10: The Leap Motion gesture tracking device. ©LEAP MOTION, INC

Gazebo simulations and inherited them to the real quadrotors.

Since this thesis focuses on the control aspect, we rely on the external tracking system
consisting of a group of infrared cameras on the wall to estimate the current position data
of the quadrotors. The experiments we demonstrate in this thesis have been carried out in
an indoor environment equipped with Vicon (Vicon, |2017) tracking system. Meanwhile,
we have also validated the proposed algorithms using the same quadrotor in an indoor
laboratory with OptiTrack (Naturalpoint, [2017) motion capture system.

During the real-robot experiment, the operator uses a Logitech Gamepad F710 joy-
stick to remotely send the commands to the quadrotor. The commands include takeoff,
landing, hovering, path-following, and waypoint navigation. The quadrotors are set to be
completely autonomous in the whole flight duration. The communication between the
joystick and the quadrotors is through the 2.4GHz wireless network.

Apart from the basic operational devices like a joystick, we additionally employ a Leap
Motion 3D gesture tracking device (Leap Motion, 2017) for the purpose of achieving
formation via human-swarm interaction, as we will later introduce in Chapter [5 The
Leap Motion device is shown in Fig. [2.10] which consists of two infrared cameras to
track the motions of palms and fingers. In this thesis, we utilize it to track the finger
motions of the operator and distinguish the drawn ‘““shape”. The detected shape will be
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the formation shape for a group of quadrotors.
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Chapter 3

Robust Nonlinear Control for
Nontrivial Multirotor Maneuvering

In this chapter, we propose the problem of robust control of multirotor Unmanned Aerial
Vehicles (UAVs) for nontrivial/aggressive maneuvers. We present two onboard robust
nonlinear control approaches for the quadrotor UAVs in the environment with unknown
disturbances.

The first approach consists of an attitude controller based on the solution of rigid
body rotations SO(3), a robust position controller for the system with bounded distur-
bances, and an online trajectory planner based on a model predictive control (MPC)
method. While the second approach is a modification on the basis of the first robust con-
trol approach. The new control structure is with the combination of the first approach
and a 6-dimensional (6D) wrench (force/torque) observer to estimate the unknown force
and torque disturbances. The performance of the two proposed algorithms have been
validated through intensive experiments and compared with another nonlinear control
method on the aggressive waypoint navigation and path following tasks in the presence
of external disturbances, e.g. wind gusts.

Large parts of this work have been pre-published in Liu ef al.| (2015} [2017).

3.1 Introduction

Unmanned Aerial Vehicles (UAVs) have been an area of keen interest in the robotics
community since the last decade. Among the variety of UAVs, quadrotor Micro Aerial
Vehicles (MAVs) have becomed popular because of their mechanical simplicity, the ca-
pability of vertical takeoff and landing (VTOL), as well as the potential to low-speed
flight. With the application of advanced control and computer vision techniques, MAVs
are recently able to achieve versatile tasks, from autonomous navigation and mapping
Heng et al.| (2011); |[Fraundorfer et al.| (2012), rescue searching Mueggler et al. (2014)), to
goods transportation Palunko ez al.| (2012b)), construction |Augugliaro et al. (2014}, and
aerial acrobatics |Lupashin et al.| (2010); Ritz et al.| (2012); Mellinger et al.| (2012), etc.
From the control perspective, research has been carried out on the real implementation
of advanced control theories Mellinger et al.| (2012), on the development of the algo-
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Chapter 3 Robust Nonlinear Control for Nontrivial Multirotor Maneuvering

rithms that enable quadrotors to reach exceptional maneuverability [Lee et al.| (2010b),
and on the improvement of MAV robustness |Alexis et al.| (2011). The application on
MAVs of various control theories has been exploited, including the Lyapunov-based
nonlinear control approaches such as backstepping and sliding mode Bouabdallah and
Siegwart| (2005, [2007), as well as the relatively novel control algorithms, e.g. super
twisting |Derafa ef al.| (2012) and model predictive control Raffo et al|(2010), among
others. In |Raffo e al.| (2010), a cascaded linear MPC and nonlinear H., control frame-
work has been proposed and numerically verified. However, the classical linear control
patterns, such as proportional-derivative controllers Hoffmann ez al.|(2007); Bouabdallah
and Siegwart (2007) and Linear Quadratic Regulators (LQR) Bouabdallah and Siegwart
(2007), are still dominant in real implementations. A novel geometric tracking method
on the special Euclidean group SE(3) for quadrotor motion has been proposed in recent
research Lee et al.|(2010b), and implemented in Mellinger et al.| (2012)) with impressive
performances under accurate model identification. A switching explicit MPC has been
validated by experimental results in Alexis et al.| (2011)), while a learning-based MPC for
quadrotor translational motion has been proposed and tested in Bouffard et al.| (2012).
Although predictive control techniques have been successfully tested on FPGAs |Hartley
et al.| (2014), they have been seldom implemented on onboard computational units due
to the expensive computational cost.

In this chapter, we first propose a robust nonlinear control method, the Robust Output
Regulation (RobOR) approach, henceforth called the RobOR method. we also focused
on its onboard implementation for a heavier and less agile quadrotor UAV with model
mismatches, in order to enable the quadrotor to achieve waypoint navigation and path
following tasks with aggressive, large-tilt maneuvers. Technically, the RobOR method is
a combination of a robust backstepping-like controller for a system with bounded distur-
bances, and a nonlinear attitude controller that is suitable for almost all initial attitudes,
which is based on the solution of a certain class of global output regulation problems for
a nonlinear rigid-body system on Lie groups and is endowed with strong convergence
properties. An online trajectory planner based on a linear MPC method, which consid-
ers the trajectory planning problem as three decoupled local Optimal Control Problems
(OCPs), is additionally developed and comined with the proposed nonlinear control al-
gorithm, for the purpose of achieving both waypoint navigation and path-following tasks
smoothly.

In order to further improve the performance of the RobOR method presented in this
chapter, we extend the control architecture into a modified approach with the inclusion of
a nonlinear wrench observer. Many interesting approaches have been proposed recently
in the context of aerial robots and interaction. In Hacksel and Salcudean| (1994), non-
linear observers for velocity and force estimation on a rigid body are presented. An un-
scented Kalman Filter for the linearized model of a quadrotor is proposed in|Augugliaro
and D’ Andrea (2013). Recently, adaptive control methods have been employed to coun-
teract external disturbances Roberts and Tayebi (2009); Palunko et al.|(2012a); Antonelli
et al.| (2013). In Bellens et al.| (2012}, external wrench estimation for flying robots has

28



3.1 Introduction

been investigated in the context of hybrid pose/wrench control, where they performed an
offline measurement of the forces and torques generated by the UAV. However, the UAV
was fixed to a base during the experiments. A force control approach with an external
feedforward signal has been utilized in|Albers et al.|(2010). A force sensor is used as an
estimator in Nguyen and Lee|(2013)). An alternative Lyapunov-based nonlinear observer
for estimating the external forces applied has been proposed in Yiiksel et al.|(2014) and
numerically validated. However, it can not precisely track a rapidly varying wrench. In
our control algorithm we employ a nonlinear 6 dimensional (6D) force/torque wrench ob-
server with the concept of a momenta-based residual technique. This residual technique
has been earlier used in Collision/Fault Detection and Identification (FDI) methodology
for robotic manipulator arms Takakura et al.| (1989); |De Luca and Mattone| (2003)) and
recently been exploited for other robotic platforms Tomic and Haddadin| (2015)).

In summary, we develop an overall system including a robust nonlinear flight con-
troller with a 6D force/torque estimator, as well as an online MPC-based trajectory plan-
ner, which considers the trajectory planning problem as a coupled 3D local OCP. The
complete system is implemented onboard on a low-power computational unit. We call
the complete control framework the RobOR+ method henceforth in this chapter. Tech-
nically, the RobOR+ method includes the same nonlinear backstepping-like controllers
we developed in the RobOR method for position and attitude control. The control perfor-
mance is additionally improved with the use of the proposed online nonlinear disturbance
observer plus the trajectory planner. This framework provides the multirotor UAVs, even
ones heavier, less agile and with uncertainties, with robust performance when achiev-
ing aggressive waypoint navigation and path following tasks in a scenario with wind
gusts. In order to demonstrate the robust control algorithm intuitively, we tested the
state-of-the-art geometric tracking method as introduced in|Lee ef al.|(2010b) and tested
in Mellinger and Kumar (2011); Mellinger et al.| (2012) (we have briefly introduce this
method in Sec. henceforth it is called the GeoTrack method), the RobOR method
we first proposed, and the improved RobOR+ method on our quadrotor platform on the
exact same tasks for the purpose of comparison.

The outline of this chapter is as follows. Sec.[3.2] describes the structure of our pro-
posed control framework. A nonlinear approach for the position and attitude control for
the quadrotor UAVs, including the proofs revealing that our algorithms are asymptoti-
cally stable, are introduced as the main structure of both RobOR and RobOR+ meth-
ods. In Sec.[3.3] we demonstrate the robustness design applied in our first proposed
RobOR method. We then present a nonlinear 6D wrench observer, which is used in
RobOR-+ method, for unknown disturbances and prove the asymptotic stability of the
complete control-observation system in Sec. An online trajectory planner using a
MPC method for waypoint navigation or path following tasks is introduced in Sec.
Sec. [3.6] demonstrates the configuration and the results of the experimental evaluations
we have carried out to validate our proposed control approach, as well as the comparisons
with the GeoTrack method. Finally, we conclude this chapter in Sec.
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Figure 3.1: The diagram of a feedback system for a quadrotor UAV.

3.2 Control Approach

We here start the technical details on the two nonlinear control approaches.

Fig. [3.1] depicts the block diagram of a closed-loop control system for a quadrotor
UAV. Although it is possible to develop a single-layer control approach to the position
and attitude of the UAV, a cascaded system is more popular for the multirotor UAV
because of the decoupled characteristic of the multirotor dynamics. More specifically,
in case the model-based control methods are applied, only the rotational dynamic model
used in the attitude controller is nonlinear. Thus the position controller is based on a
linear translational model, which is more effective and leads to lower computational
cost.

In our proposed system, we develop a cascaded feedback with both position and atti-
tude controller designed based on the dynamic model of the multirotor.

For the control theorem derivation and discussion, the dynamic equations of the mul-
tirotor UAV [(2.T)] are rewritten simplified in their Newton-Euler formulation as

x=v, (3.1a)
mv = —mge3z + RF + bF, (3.1b)
R=RO(w), (3.1¢)
JOo=—0XxJO+T+bg, (3.1d)

where m is the mass of the quadrotor, x denotes the translational position, g is the scalar
value of the gravity acceleration, ez = (0,0, 1)T, F is the nonconservative force gener-
ated in the body frame of the quadrotor, T is the nonconservative moments generated
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in the body frame of the quadrotor by the aerodynamics of the rotors, br is the distur-
bance due to the external force and unstructured dynamics in the inertial frame. b; is
the disturbance due to the external torque and unstructured dynamics in the body frame.
The inertial matrix J in the body frame is computed on a simple CAD model of the
QuadroXL platform used in the real experiment (as introduced in Chapter [2)), with un-
known mismatch to the actual values. Q(®) is the skew-symmetric matrix form of the
angular velocity @ in the body frame cross product such that

0 —r g¢q
OQlw)=|r 0 —p|. (3.2)
-qg p O

The rotation matrix R represents the attitude of the quadrotor with respect to the inertial
frame, which is an element of the special orthogonal group SO(3)= {R € R¥*3|R~! =
R", detR = 1}.

On the quadrotor UAYV, the direction of the thrust 7" is along the Z axis of the body
frame and therefore F = (fy, fy, f;) | = (0,0,T)7". The desired angular velocity @ ; of
each motor, which is assumed as the control input on a quadrotor UAV by neglecting
the error from the motor controller, therefore, can be obtained via solving the inverse
of The regulation approach to compute the desired nonconservative forces and
moments on the quadrotor is discussed further in this section.

On the promise of fulfilling various tasks, one can pre-describe a set of references,
which can either be a path or simply a waypoint far from the quadrotor. An online
trajectory planner (which we will introduce later) generates a trajectory so that later
the quadrotor moves via tracking these references. The reference information, as well
as the position and attitude data collected or estimated via reliable onboard hardware,
algorithms or external motion capture systems, are passed to a control block, which
outputs the desired rotation speed of each motor on the quadrotor via a cascaded position
and attitude control algorithm and finally the transformation through The details
of the regulation algorithms for the quadrotor position and attitude are introduced in

Sec.[3.2.1]and [3.2.7] respectively.

3.2.1 Position Control

First, a position controller based on a nonlinear backstepping approach is introduced
here, which tracks the desired translational state and generates a desired thrust 7. The
desired attitude matrix and its derivative are further calculated and passed into the attitude
controller .

Subject to the first two equations in [(3.1)| but starting with an assumption of the full
knowledge of external disturbances, we define the strongly convex cost function

P (x - xref) = (x - xref)TKO(x - xref)a (3.3)
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in order to specify the desired differential equation

Xdesired — Xref = _Vpl (x - xref)a (34)

where Xgesired and Xgef represents the desired quadrotor position resulting from the above
gradient system and the exogenous reference position to track, respectively, while Ky =
diag(kox, koy,ko;) is a positive gain matrix (containing the diagonal elements denoting
positive gains in each axis) for the position cost. The tracking error for the velocity and
its derivative are accordingly given by

€y = X— xdesired =V—- xref + VPl (x _xref)7 (353-)
6y =V — Fref + V2P (X — Xpef) (X — drer)- (3.5b)

Using a backstepping-like approach, we choose a Lyapunov function candidate
1
Vpos(ewx_xref) = EevTev +P (x_xref)a (3.6)

whose Lie derivative is rendered negative definite (under the assumption of full distur-
bance knowledge as we will see later) if R equals Rt subject to

RyetF = mges — br — mVZPI (X - xref) (x - xref) 3.7)
+ mief — mKe, — mV Py (x — xpep) =: F', ’

where K = diag(ky, ky, k;) is a positive gain matrix (in the same structure as Kj) for the
tracking error.

Considering that Ryer in |(3.7)|1s orthonormal and only the third entry of F, i.e. the
thrust 7, is nonzero, one must choose 7 = ||F’|| in order to suffice|(3.7), Therefore, the

- 1203
third column of Ryef = [Fpos g ] can be solved from

F/
3
Tref = s (3.8)
<
and the other two columns of R can be filled orthonormally, for instance by a Gram-
Schmidt process with candidates rfef from the previous equation and r!, 7> from the

actual rotation R = [rl r? r3] ,1.e.

2.3

2/ 2 s 3
et =T — 3 I'g Tiefs (393)
Tref " Tref
’,2/
2 ref
Fret = 2000 (39b)
H rref“
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1 .3 1 .2
17 1 Tt 3 FTer 2
Tref =1 =733 Tref ~ 2 2 Tref> (3.9¢)
Tref " Tref Tref " Tref
rl/
1 _ ref
Veef = ITRTETE (39d)
HrrefH

such that we obtain both the desired total thrust 7 and the desired attitude R.s for the
quadrotor control.

Here we prove the asymptotic stability of this position controller for R = Ry =
[rrlef rrzef rfef} . By sending RF to F’, the closed-loop dynamics under the full disturbance

knowledge assumption is given by
éy, =V — Xref + V2P1 (x — xref) (x — xref)

br 1 . .
= —ge3+ P + n—qRF — Vyef + v2p (2 — Xpef) (X — Xref)

. . . 3.10
= —8e€3 _Vref+V2P1 (x_xref)(x_xref)+ge3+Vref ( )
— V2P1 (x— Xref) (X — Xref) — Ke, — VP (x — Xref)
= —Ke, — VP (x — Xer).
The (directional) derivative of the chosen Lyapunov function candidate is
Vpos =VP (x _xref) : (X _xref) +ey-éy
= VP (x — Xgef) - (ey — VP (x — Xpef)) + €y (—Key, — VP (X — Xpef) ) B.11)

= — VP (x —Xref) | VP (x — Xef) — Ke| e,
<0,

hence|(3.11)[is negative definite.

3.2.2 Attitude Control

In this section, we introduce a control method for the tracking of the attitude R of the
quadrotor with strong convergence properties. The specific approach is based on the
solution of a class of output regulation problems which contains the rotational motion
for a rigid body. The tracking error is given by E = RRrTef, where R corresponds to
the rotation matrix describing the current attitude, and Rf, computed via the approach
introduced in Section represents the desired attitude. We also assume the error

between the current and a desired angular velocity in body frame as

€ = Q(w) - Q(wdesired)- (3.12)

The goal of the attitude controller is to regulate the output of the quadrotor attitude
(E,ew) — (1,0) for t — oo, which implies R — Ryt and Q(®) — Q(@gesired) for t — oo.
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We employ a backstepping method analogous to the position controller for the atti-
tude regulation. Based on the proof in Schmidt ez al.| (2013a), a cost function P»(E) =
Tw((E—1)T(E —1)) = n—tr(E), which has

grad Py (E) = %(E—ET)E, (3.13)

can be chosen, where grad P; is the projection of VP, onto tangent spaces of SO(3). Here
we assume a cost function for the quadrotor rotation in form of

P(E)=3—1tr(E). (3.14)

The derivative of the rotational error E becomes
E=RR.:+RR.: 2 —Kygrad P, (E), (3.15)

where K is a positive gain for the cost of rigid body rotation.

By employing the desired angular velocity of the quadrotor is given by

K .
Q(wdesired) = %Ot (RrTefR - RTRref) - RrTeerefy (3~ 16)
which is obtained from [(3.15)}
RO(@gesired )R 2 —Kiorgrad P (E) — RR (3.17a)

Q(wdesired) = RT ( _Krot grad P2 <E> )Rref - RTRR;E;eref

ref

1 .
= KR 5 (RRyof — RrefR " )RR Rret — RioiRief- (3.17b)
The derivative of the desired angular velocity computed from|(3.16)|is

) d K .
Q(wdesired) = % { - %Ot (R;lf—;f - RTRref) - RI—‘ngref}
Krot

=7 (Re

(3.18)

R+RLR—R Rt — R Rie) — RLiRret — R cRes.

e

Considering Egs.[(3.1d)| and [(3.18)] we obtain the derivative of the angular velocity
error represented by

ép = Q((D) - Q((’:)desired)
= Q(Jil(—a)XJw+T+br))+RI>eref+R;£eref (3.19)

Koot - L .
+ %‘ (RLR+R R —R"Ries— R Reey).

1
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For a backstepping approach for the rigid body rotation, we choose a Lyapunov func-
tion candidate

1
Var(E,eq) = EQ_I(ew)TQ_l(ew) +P(E), (3.20)

whose Lie derivative, similar as the position controller we introduced in Sec. [3.2.1} is
rendered negative definite if T equals Tgesireq SUbject to

_ K, . L
Tdesired = J O ! —Kpep — = Rr—ng + RerR — RTRref
2 (3.21)

—RTRref] R Ruef — R Rue — 2Rr£fR) Y oxJo—b:,

where K, is a positive gain for the tracking error of the quadrotor angular velocity. The
derivative R can be obtained by introducing the current attitude R into |(3.1c), while Ryef

inherits from the results of |(3.8)|and |(3.9)l We first compute the derivative of quadrotor
(3.7)

desired attitude Rye; from through the following process:
The (closed) derivative of F’ in is

. d .. .
RyefF £ — (mg€3 —bp — mV2P1 (X - xref) (X - xref) + MXief

dt

—mKe, —mV Py (X — Xeef)) (3.22)
= _m(2K0 + K) (x - Xref) - 2mK0K(jC _xref) +MX per — bF
=: F/,

from which the reference angular velocity is computed using

O(ref)F = RiegF”. (3.23)

ref

Recalling the third column entry of Q(®) in |(3.2), one can obtain the reference roll
and pitch rate in form of

(RietF")?
=_ref 3.24
pref HF/H 9 ( a)
(RLFN!
== 3.24b
Qref ”F/H ( )

Considering that in most cases the yaw attitude is required as the camera front direction
(or zero for the quadrotor with no vision-based equipment) and no specific desired yaw
rate is required for the quadrotor flight, one can constantly define the value of ref =
%(Wref — Weurrent) for the reference and current yaw attitude y at every moment, and Ryef,
therefore, can be solved via

Analogous to the derivations for the position controller, we prove here the asymptotic
stability of the attitude controller for T = Tgesireq Under the assumption of full knowledge
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of torque disturbance. By sending 7 to|(3.1d)| the closed loop dynamics for rigid body
rotation is given by

020 <J‘1 (—w xJO+xJo+JO ! <—2RrTefR

Kot [ o ‘
~ Koo — % [RER+ RLR— R Ry =R R
— RirReet = Righeer) + bz = be) ) + RiegReer + RgRer (3.25)

4 %"t [R];fR Y RLR— R Ryt — RTRref}

— —Kpew — 2R (R.

(S

The (directional) derivative of the chosen Lyapunov function candidate [(3.20)}, is

Vai(E,e0) = Q' (e0) ' Q7' (éw) + grad P (E) - E
=0! (ea,)TQ*1 (—Kwew — 2RrTefR) +grad Py (E)-E

B B (3.26)
=—0"'(¢a) ' Q7 (2RR)
—KoQ™' (ea))TQ_] (ew) +grad Py (E) - E.
Considering the property x 'y = —% tr[Q(x)Q(y)] for any two vectors, we can reach
_ _ 1
Q' (ew) Q7' (2RR) = —3 tr(e02R ), (3.27)
by applying[(3.15) and [(3.27)} [(3.26)|is given by
- 1 NT 1 1 T :
Vatt(E, ea)) = —Ka)Q (ea)) Q (ea)) + E tr(ea)erefR) — tr(E)
(3.28)

- _ 1 )
=: Vatgl +Vatt,27

where V1 = —Kp0 ew) 0 ew) <0.

We therefore only focus on the rest term Vatt,z in |(3.28)[since Vatt’l is negative definite
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(proved in Schmidt et al.| (2013b))),
. 1 T .
Vatt,Z = 5 tr(ewZRrefR — 2E)

1 ¢
=t < (RTR + %‘”(Rjef —R"Ryt)

+Rr—<[,eref) ZR;‘EfR —2RR!.—2RR . >

ref ref

1
= 5 (Kot (RLRRL:R—1))

ref (3.29)
_ %u((ﬂ _EET) = %tr(E(E _ET))
— K;"‘ tr(E(E—E")+(E" —E)E")
KI'O
= 4ttr((E —E'))
<0,

hence|(3.26)|is negative definite.

3.3 Robust Design for Position Control

An assumption of full disturbance knowledge is not always practical for real implemen-
tations, especially under the condition that the reliable model identification or accurate
estimate of external influence is not available. We, therefore, in the following do not
impose the assumption of no disturbance for the purpose of robustness.

In our case, we regard the sum of the unstructured dynamics, internal disturbance and
the external forces as the disturbance b from the exogenous system, and we need an
estimate of such disturbance, beg, such that the disturbance error e¢;, = % (best —br) — 0
for t — oo. Although still not in perfect practice, we further choose a Lyapunov function

candidate |

Vpos,l (ewx _xref) = Vpos(ewx _xref) + %ebTe}H (3.30)

under the assumption of a bounded external disturbance whose first derivative is negli-
gible, which still works for a dynamic disturbance with trivial changes. Kj, denotes the
gain diagonal matrix of the disturbance observer. The Lie derivative of Vpos 1(€y,X — Xref)
is rendered negative definite (as we will see later) subject to

best = MKy (5% — Jef) + 2mKp Ko (X — Xref)
r (3.31)
best = / best(s)dsa
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where beg can replace the external force disturbance term br in|(3.7)|in the closed-loop
feedback system.

In the next step, we consider the real environment without full knowledge of the distur-
bance generated from the unstructured dynamics and exogenous system. Still by sending
RF to F', but replacing br with beg, the closed-loop dynamics is now given by

1
éy =~ —(best — br) ~ Key = VPi (x—xer) (3.32)

=—Ke, — VP (x_xref) —€p.

The (directional) derivative of the Lyapunov function candidate [(3.6)| now turns to be
Vios = — VP (x— Xref) | VP (x — Xef) — Ke| e, — e ¢y, (3.33)
which is no longer negative definite for arbitrary disturbance error.

We here naively assume that the change of external force disturbances is very slow,
thus by is negligible. Now we consider the new Lyapunov function candidate
extended with a term of disturbance error, whose derivative, subject to a chosen derivative
of disturbance as in|(3.31)] is given by

. . K1 .
Voos1 = Vpor 5= (e] )
—1

. -
=Voos + —2—e) beg
pos m b Ves

=-VP (x_xref)TVPI (x_xref) _Ke\—;rev (3.34)
—1

K .
T b T
ep+ €y e
m

_ev

=—-VP(x— Xref)TVPI (X — Xpef) — Ke;r ey
<0,

Therefore, [(3.34)| is negative definite, which proves the asymptotical stability of the
proposed position control algorithm.

The design of RobOR method (above) is to some extent robust, since the modified
position controller is able to reduce the tracking error and thus compensates for the un-
known force disturbances. However, it is with limit since there is no compensation for
the torque disturbances. Meanwhile, the assumption we proposed in the proof that by =0
is quite strong and not always practical, thus such a robust design is not perfect in real
world.
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- Reference Path
| Waypoint (if given)

| Online Trajectory Planner I-

Measured/Estimated x, X, v, v,z, 2

. 3 l ) Desired thrust T
Desired thrust T [ pogition Controller | l
. vy Ext. force estimate F,,,
Rief, R,-efl | 6D Wrench Observer |-7
- ] Ext. torque estimate 7., ' ry
Attitude Controller T Estimated ¢, 8, 1)
Desired torque T Desired torque 7 Measured ¢, 8,1
| , IMU
*|_BL-Ctrl (Motor)

Motor speed commands

Unknown - : 1 | Estimation/Self-localization/
Disturbances >|_Quadrotor Motion | External Tracking System [

Figure 3.2: The control structure of the proposed RobOR+ method.

3.4 Disturbance Observation

In this section, we extend the backstepping-like regulator discussed in Sec. with the
inclusion of a nonlinear force/torque external wrench observer using the Fault Detection
and Isolation (FDI) method which has been used earlier in manipulator arms [Takakura
et al.| (1989); |De Luca and Mattone| (2003). The observer estimates all the system off-
sets, parameter uncertainties and external disturbances, and passes the estimate to the
controller for compensation.

The modified complete control-observation system, as our proposed RobOR+ method,
can be illustrated in Fig. 3.2

Denoting the external forces acting on the quadrotor in the inertial frame with by € R3
and the external torque acting on the quadrotor in the body frame with b; € R3, the
external disturbance Aex¢ inf(2.1)|can be defined as

Aext = [Zi } : (3.35)

The external disturbance may be variable (e.g. wind) or permanent (e.g. due to uncer-
tainty in the dynamical parameters). Therefore, the FDI technique needs to generate an
asymptotically stable residual vector signal, to make sure that the disturbance recovery is
occuring and that each scalar value of the residual is decoupled from each other. The FDI
design is based on the simple but powerful idea of the generalized momenta Q = M{. In
fact, one can write the following first-order dynamic equation for the momentum as

0=A+Aexi+C (), -G, (3.36)
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which is obtained from |(2.1) and the knowledge that the coriolis term C' ({) involves
the partial differentiation Khalil and Dombre (2004) of the mass matrix M w.r.t. to the

system state £ in|(2.5)

Let the residual vector r € R® for the disturbance estimation of the quadrotor be de-
fined as |De Luca et al.| (2006)

r(t) :KI(Q—/(:<A+CT(§)C—G+r>ds), (3.37)

where Q = M{ is the momentum of the quadrotor and K; > 0 is the diagonal gain matrix.
The dynamic evolution of residual r satisfies

F=K;(Aext—7), when r(0) =0, (3.38)

which has an exponentially stable equilibrium at r = A¢x. For “sufficiently” large gains
the dynamic residual in|(3.38)[becomes

r >~ Aext. (3.39)

This approach provides a model-based estimate of the external torque Acx; resulting from
the force/torque disturbances that is acting on the quadrotor.

The residual vector gives deeper knowledge about the disturbance components that
are affecting the quadrotor. If a particular component of external disturbance is zero then
the scalar residual value corresponding to that component converges to zero.

Hence we can write the estimated external wrench as

—  |bp
Aext - [bf

T

] =r, (3.40)

where A indicates the estimated value.

When no external disturbance is acting on the quadrotor, the whole residual vector r
is practically zero. In presence of I'ex;, one or more residuals rise above the threshold
corresponding to the disturbance. In particular, the larger the value of K; > 0 is, the faster
and more accurately the residual in will converge to the external force/torque
disturbance. On the other hand, too large values of K; will result in noisy estimates.
Hence, the gain matrix K; must be tuned taking into account those two aspects.

With the inclusion of the external wrench estimate, the position control law in[(3.7)]is
modified as

RF & —ZF +mges — mV2P1 (x _xref) (x _xmf)

) (3.41)
+ mirer — mKe, — mV Py (X — Xeef),
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3.4 Disturbance Observation

while the attitude control law in becomes

- K
T=—by+JO! (—Kwew - [R];fR +RLR—R Rt —R Rref]
(3.42)

R Reer — R Rres — 2RrTefR> o xJo.

3.4.1 Control-Observation Stability

In this section, we consider a more practical environment without full knowledge of the
disturbance generated from the unstructured dynamics and exogenous system. Instead,
we employ the disturbance estimate proposed in the previous section into the position
and attitude control law. This indicates that there exist the error between external force
disturbance and its estimate e;,, = br — br, as well as the error between external torque

disturbance and its estimate e;, = br — by, respectively.

For the sake of completeness, we hereby prove the asymptotic stability of the whole
control-observation system that gets rid of the full disturbance knowledge assumption
(bF = br, b’L’ - br)

We first prove the asymptotic stability of the position control algorithm. St111 by send-
ing RF to F’, but replacing br with bF (applying the control law in , the closed-
loop dynamics is now given by

1

€y :—(bF —ZF) — Kev - VPl (x —xref)
m : (3.43)
=— Ke, — VP (X — Xpef) + ZebF.
The (directional) derivative of the Lyapunov function candidate [(3.6)| now turns
. 1
Vpos = —VPi(x — Xref>TVP1 (X — Xpef) — KevTeV + Eel—ebp (3.44)

which is no longer negative definite for arbitrary disturbance error.

We therefore choose a new Lyapunov function candidate |[(3.45)| extended with a term
of disturbance error

1
Vpos,dis(ewx _xref) = Vpos(ewx _xref) + %ezlebp (3.45)

Since the force estimate satisfies |(3.38), we can obtain the relationship between the

derivative of force estimate and the error of force estimate EF = K;(bp — EF) =: Kjep,.
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The derivative of|(3.45)|is thus given by

. . 1 )
Vpos,dis = Vpos + m (el—,rFebF>

. 1+
= Vpos + EebFebF
k! goleT (3.46)
=-Vp (x—xref)TVPl (x—xref) —Ke;rev + 17€ij + #b[: by
K_l ~ ~
= —VPVP —Ke|e,+ #(ev -bp +bF - ép,).
We here write
. Kl ~
Voosais = —[IVPL2 = Kllev|+ =L~ ((ey+¢v,) - br
= —(1 = Bpos) ([I[VPL|* + K]lev||?) (3.47)

Kl ~
— Opos (IVPL I+ Klles]?) + == ((ev+¢5,) br )

where 605 € (0,1).

Since —(1 — Bpos) (|[VP1]|* +K]|lev]|*) < O, as long as we can find a condition that
suffices to
K ~
2 ()

we can prove that|(3.46)|is negative definite.

According to the Cauchy-Schwarz inequality and absolute homogeneity, will
certainly be the case if

< Opos ([IVPL> +Klen]1?) , (3.48)

K ~
ey +én I [Br | < Bpos (IVAIP+Kller]) (3.49)

which holds, by the triangle inequality, whenever
I sl
L (lewll+ e ID||Br | = = Cllel+ lle 1) llew | (350)
< Bpos (HVPIHZ"‘KHeVHZ) :

Therefore, as long as e,, e, and é;, are bounded, we can always make K( and K large

enough to have the inequality [(3.50), and hence |(3.48), satisfied on any compact set. So
far, we have proved that the position control algorithm together with force estimation

is asymptotically stable when Ky and K are chosen so as to guarantee the overestimate

(3.50)
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3.4 Disturbance Observation

Analogous to the derivations for the position controller, we prove here the asymptotic
stability of the attitude controller without the full torque disturbance knowledge assump-
tion.

Similarly as the force disturbance observation, the torque estimate suffices to [(3.38)]

we have Zr = Kj(b; —ZT) =: Kje;,. By sending 7 in attitude control law|(3.42)[to|(3.1d)|
the closed-loop rotational dynamics becomes

ép = _Kwew_erTefR"i"Q(Jilebr)' (3.51)

Hence the derivative of the Lyapunov function candidate [(3.20)]is given by
Vau(E, e0) = o' (ea))TQ_l (éw) +grad (E)-E

3.52
= —KoQ ew) 0 ew) + K;"t tr(E—EN)+0 (ew) T ey, (5:2)

which is no longer negative definite for arbitrary disturbance error.

Therefore, we choose a new Lyapunov function candidate [(3.53) extended with a term
of disturbance error
~1

J
Vatt,dis (Ea eco) = Vatt(E7 ew) + Tel;rrebw (353)

and its derivative now turns to be

- 1 \T 1 1T
Vatt,dis:Q (ea)) J Cep, +J €p by

K (3.54)
—KwQ_l(ew)TQ_l(ew)+ ;Ot tr((E—ET)Z).
We here write
' 1 2 Kot T2
Vatt,dis:—KcoHQ (ew)|| _T”E_E I
+J1 (0 Hew) +éb,) - ep,)
_ K
= —(1- 0 (Koll 0 (ea)|* + 2 [E—ET ) (3.55)

B K,
~ OulKollQ (o) P+ S5 ET?)
+I (07 ew) +¢b,) - en,)
where 6, € (0,1).

Considering that —(1 — 0,¢) (Ko ||Q ™! (ee)||* + %HE —ET|?) <0, we can prove
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that is negative definite, if we can find a condition under which
(07 (o) + v -e) | < B (Kw”Q_l(ew)Hz + 2 —ETHZ) . (356)
By the Cauchy-Schwarz inequality and absolute homogeneity, [(3.56)| will hold if
M0 (ew) +ép.ll lep. || < Ou (Ka)HQl(ea)) 12+ %HE —ETHZ) . (357
While by the triangle inequality, holds whenever
Sl eo)ll+ llen ) llenll < Oue (Kqu—l (ol + 2 E —ET||2> . (358)

Hence, as long as ey, e;,. and é;,_ are bounded, we can always make Ko and K, suffi-
ciently large to have the inequality and therefore |(3.56)| satisfied on any compact
set. At this stage, we have proved that the proposed attitude control algorithm together
with torque estimation, provided that K and K¢ are chosen sufficiently large for guar-

anteeing [(3.58)] is stable.

So far, we have proved the asymptotic stability of the complete control-observation
system for sufficiently large control gains. We further experimentally validated the accu-
racy and convergence of the nonlinear disturbance observer, the details of which will be
introduced in Sec.[3.6.21

3.5 Trajectory Planning

In this section, we further propose an online trajectory planning algorithm based on an
MPC method. This planner is used in both RobOR and RobOR+ methods. The online
planner is able to subscribe both a single waypoint and an array of prescribed path, and
then generate a trajectory prediction for the quadrotor via solving a 3D Optimal Control
Problem (OCP) at each step. The planner sets the nominal jerk u (the 3rd order derivative
of position) as the input vector for a coupled OCP describing the translational motion of
the quadrotor. The discrete time state & of the OCP consists of the position, velocity and
linear acceleration along the three axes in the inertial frame. In general, the discrete time
equations of state at the k™ step with the sampling time Ar are given by

ulk] = X[k| (3.592)
& k] = [x[k] x[k] X[k] y[k] y[K] $1[k] z[k] z[k] Z[k]] " (3.59b)
E[k+1] = AE k] + Bul] (3.59¢)

44



3.5 Trajectory Planning

Ap 0343 0343

Agxo) = [03x3  Ap 0331, (3.59d)
053 03x3  Ap
1 At A2
where A, = [0 1  Ar |. (3.59¢)
0 O 1
B, 03 03
Bgx3)= |03 B, 03], (3.59%)
0; 03 B,
1 1
where B;, = [EM 5“2 Ar]". (3.59g)

The OCP is with a convex quadratic cost function

N
minJocp = ¥ (u[k]TPu[k]
= (3.60)
F(EIK] = & elk)) TLs (1K) — ErrlK))
+(EIN+1] = &gV +1]) "Lu(EIN +1] = & [N +1]),
subject to the dynamics explained above and the state and input constraints
Umin SX[/C] S Umax (3.613.)
Emin &K < & max (3.61b)

where N represents the receding horizon, and P, Lg and L; are the weight matrices of
input cost, stage state cost and terminal state cost, respectively. The described OCP is
solved via CVXGen Mattingley et al. (2011) using the interior point method. We have
also attempted to decouple the 3D OCP into three independent 1D OCPs via a similar
linearization approach. Both configurations are feasible for the quadrotors without big
difference on performance.

The online planner is with an adaptive cost weight setting. For a waypoint navigation
task in which only one waypoint reference, instead of a group of references, is passed
into the planner, the weight of the terminal state cost is automatically set dominant, while
the weight off all states in the stage cost is set to zero. In contrast, for a path following
task, the weight of the terminal cost is set to zero. Differently from a normal MPC
approach where the first step control input u[0] is used as the input for the system, the
first step predicted state (as €[1]) as well as u[0] are passed into the controller introduced
in Sec. The nominal jerk u[0] is utilized in as Xyef. In case that no feasible
locally optimal solution is available, the planner automatically loads the last previous
feasible solution to avoid an “unstable” trajectory.
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Figure 3.3: “Large Tilt Maneuvers” experiment. The quadrotor is tracking a tilted eight-
shape trajectory with a maximum tilt of over 40°.

3.6 Verification

In order to validate both RobOR and RobOR+- approaches introduced herein, we have
step-by-step carried out a series of experiments via numerical tests in MATLAB, phys-
ical simulations in ROS/Gazebo and finally multiple trials with real implementations.
However, for the sake of brevity, we report here only the results of the actual experi-
ments. Initially, we have validated the force/torque residual based wrench estimator with
the quadrotor in hovering mode subject to external forces and torques.

The performance of our proposed control method has then been assessed via a way-
point navigation test, a large tilt maneuver test (Fig. and a hovering with wind gusts
test (Fig. [3.4)), through the actual experiments in our lab. The experimental results have
been compared with the results obtained using the geometric tracking control (GeoTrack)
algorithm in [Lee ef al|(2010b). The GeoTrack method (as we introduced in Sec. [2.2.3)
is chosen because it has been verified to be ideal for aggressive quadrotor maneuvers and
is widely used in the robotics community.

Other conventional control approach, such as PID (in Sec. @), has also been tested
initially. However the linear PID controller is with poor performance for aggressive
quadrotor maneuvers with large tilt or high acceleration. Therefore, we do not report the
results obtained using PID controller.

We carried out each set of experiments with multiple trials using all three control
approaches (RobOR+-, RobOR, GeoTrack) so that the influence on the results due to
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Figure 3.4: “Hovering with wind gusts” experiment. The quadrotor with the proposed
robust output regulation approach plus the nonlinear observer (RobOR+) is hovering
with the wind gusts generated by the ventilation system and two 40 W electric fans.

random factors could be largely ruled out.

3.6.1 Experimental Configuration

Although we have introduced the hardware platform in [2.3] we here briefly recap the
technical details for the sake of brevity.

A middle-size quadrotor UAV (our QuadroXL) with a capability of up to 1.0 kg pay-
load is set as the platform for a series of our experiments. The quadrotor is equipped with
an Odroid-XU4 board with Cortex™ A15 quad-core CPUs and all the computations are
carried out onboard.

We have implemented our proposed control approach within the ROS-based TeleKyb
framework |Grabe et al| (2013), which provides an interface with the brushless motor
controllers on the quadrotor, so that the desired motor speeds regulated via the given
control approaches can be executed. An external motion capture system is employed
to record the position and the orientation of the quadrotor. The linear velocity is then
estimated from the position. These data, plus the other essential data collected via a
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low-cost on-board Inertial Measurement Unit (IMU), i.e. the linear acceleration and the
angular velocity, are passed into the on-board computational unit at a sampling frequency
of 120 Hz over a wireless channel. The on-board computer filters the collected data, per-
forms all the computation of the control algorithms and generates the regulated motor
commands for the quadrotor at 100 Hz. The 6D wrench observer is also run at the fre-
quency of 100 Hz. Meanwhile, the online MPC-based trajectory planner is run at 20 Hz
with a receding horizon of 1 s due to its computational time consumption of 24 ms on
average. A faster frequency of the trajectory planner up to 35 Hz is feasible, however,
a shorter sampling time would lead to more aggressive trajectories for the quadrotor. In
our tests, we conservatively keep the trajectory planner at a sampling time of 0.05 s.

The MAV is equipped with a 5000 mAh LiPo battery, which allows a 15 min intensive
flight test without recharge. The overall weight of the quadrotor platform, including a
battery, an onboard computer, communication devices and all sensors except cameras,
reaches 1.605 kg. However, the nominal mass is manually set to 1.45 kg in the con-
troller throughout the experiments to intentionally generate a mass mismatch. The iner-
tial coefficients are estimated via a simple CAD model, without further advanced system
identification approaches. In addition, the mass distribution is centered away from the
actual center of the quadrotor. These parametric mismatches lead to the steady hovering
state (with no use of robustness designs) at a tilt of approximately 3° on pitch and —1°
on roll in air. The motors on the MAV are controlled in an open-loop fashion, which
is problematic when the LiPo battery turns low because the actual currents sent to the
motors would be lower than the required. After multiple flight tests, the actual rotation
of the motors would become slower than the given motor commands. This disturbance
due to the hardware affects the control performance to a large extent (we will discuss it
later). The lab where we have carried out our experiments is equipped with a ventilation
system in the ceiling. The constant winds from the vents and the airflow generated by the
propellers become the external disturbances acting on the quadrotor. All these parametric
mismatches and disturbances, plus the other unknown internal and external disturbances,
e.g. wind gusts from electrical fans, are added in order to check the robustness properties
of our proposed approach.

During the validation of the external wrench observer, we used known suspended
weights which in turn produce known forces or torques. These weights were transferred
to the desired axes by means of a rope-pulley setup. Frictionless pulleys were used so
that the losses due to friction are negligible.

During the validation of the whole control framework, we chose relatively conserva-
tive control gain settings on all three controllers for the purpose of more stable aggressive
maneuvers throughout the experiments. With the RobOR and geometric tracking con-
troller, a more aggressive gain setting can reduce the translational offsets on hovering but
may lead to a risk of instability when executing aggressive waypoint navigation and path
following tasks.
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3.6.2 Experimental Results
Experiment 1: Validation of Wrench Observer

During this experiment, we validated the 6D wrench observer by subjecting the quadrotor
to known external forces and torques at its CoM while it was in hovering. This series of
experiments were operated by the coauthor of |Liu ez al.|(2017), Sujit Rajappa.

The forces were applied in steps, to test different forces acting on the quadrotor. As
shown in Fig.[3.5] at the time instants 35 s, 46 s and 57 s respectively forces of 0.85 N,
2.17 N and 4.35 N were applied along the Z axis by adding weights of 87 g, 221 g and
443 g. The estimated external force along the Z axis, shown in blue, is correctly esti-
mated by the observer.

At time 69 s a weight of 222 g acting along the Z axis was removed and then at times
97 s, 107 sand 119 s respectively, forces of 0.22 N, 1.19 N and 2.53 N were added along
a vector laying on the XY-plane and having an azimuth of —60°. These forces were
successively removed in the same order in which they were added. As shown in Fig.
the external forces Fexy were correctly estimated for Fey, (red), Fext, (green) and Fey,
(blue).

Like the force estimation validated above, a similar experiment was conducted sepa-
rately for the torque estimation with the same setup. In the first torque experiment the
weights were suspended at the end of the arm of the quadrotor along the —Y axis. This
creates are torque w.r.t. to X axis, namely Tex; . During the experiment, a weight of 27 g
was suspended at a distance of 37.5 cm from the quadrotor center in the —Y axis. As
shown in Fig. a torque of 0.099 Nm was applied. The Figure also shows the esti-
mated torque Tex, (red). A small constant Text, (green) is also estimated during the whole
experiment, and it is due to a non perfect balance of the weights on the quadrotor.

In the second torque experiment, a force was applied through our rope-pulleys setup
in order to create a torque Ty, around the Z axis. Similarly to the first experiment, a
weight of 27 g was suspended at a distance of 37.5 cm from the quadrotor center. As we
show in Fig. Text, Of 0.099 Nm was correctly estimated (blue in Fig.[3.7). Overall,
these experiments prove the effectiveness of the external force/torque estimator.

Experiment 2: Waypoint Navigation

After the validation of the wrench observer, we first evaluated the performance of our
two proposed approaches by commanding the quadrotor to achieve a navigation task by
given a waypoint 2.5 m far from the quadrotor. We started the first test with a full battery
and repeatedly carried out 13 trials until the voltage of the onboard LiPo battery turned
very low. For a fair comparison, we also performed 13 trials for the same task using
each of the other two control algorithms. In each trial, the quadrotor took off and kept
hovering at a height of 1 m. It was then commanded to repeatedly fly forward between
the waypoints (—0.65,—1,1)" and (—0.65,1.5,1) every 5 s for four times, and was
finally commanded to land.
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External force disturbance estimate along X,Y,Z axis
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Figure 3.5: Results of the experiment with the external force disturbance along X, Y
and Z axes. Applied disturbance (black dashed lines), estimated disturbance Fex, along
X (red solid line), estimated disturbance Fex, along Y (green solid line) and estimated
disturbance Fexq, along Z (blue solid line).
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Figure 3.6: Results of the experiment with the external torque disturbance around X.
Applied disturbance (black dashed lines), estimated disturbance Tex, (red solid line),
estimated disturbance 7ext, (green solid line) and estimated disturbance Texi, (blue solid
line).

Since directly sending the waypoint which is far from the current position to the con-
troller would lead to an unstable flight, we employed the online trajectory planner in-
troduced in Sec. [3.5] to balance the aggressiveness and stability. The aggressiveness of
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External torque disturbance estimate w.r.t. Z axis
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Figure 3.7: Results of the experiment with the external torque disturbance around Z.
Applied disturbance (black dashed lines), estimated disturbance ey, (red solid line),
estimated disturbance Text, (green solid line) and estimated disturbance Tex;, (blue solid
line).

the trajectory can be modified via changing the weight matrices within the cost function.
In our first experiment, we set the parameters so that the maximum horizontal acceler-
ation reached 25.23 m/s? and the maximum magnitude of the quadrotor velocity along
the y direction arrived at approximately 3 m/s. For all three control approaches, it is also
possible to track an offline, prescribed trajectory instead of using our proposed online
MPC-based planner. However, tracking the reference generated from the online trajec-
tory planner outperformed the direct tracking of an offline trajectory in most instances
during our experiments. We, therefore, kept the online trajectory planner active for all
the trials.

In order to demonstrate the hardware disturbances due to low battery levels more in-
tuitively, we show the translational trajectories of the quadrotor on each axis in the 1st
and 13th trial, respectively, in Fig.[3.8 and in Fig.[3.9] The solid green line represents
the quadrotor trajectory with the geometric tracking approach (GeoTrack). The solid
blue line represents the quadrotor trajectory with the robust output regulation approach
(RobOR). The solid red line represents the quadrotor trajectory with our proposed robust
output regulation approach plus the nonlinear observer (RobOR+).

Due to the parametric mismatches as well as unknown internal and external distur-
bances, there existed a translational offset up to 40 cm with the GeoTrack method at all
times, whether the quadrotor was at full or low battery. Meanwhile, with a fully charged
onboard LiPo, the RobOR method to a large extent reduced the translational errors by
compensating for the offsets due to the external disturbances and model mismatches.
However, when comparing the results of the two trials, we can read out that the control
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Figure 3.8: Resulting quadrotor response for the 1st trial of the repeated waypoint navi-
gation task. The reference position is switched from (—0.65,—1,1)T to (—0.65,1.5,1)"
every 5 s. The solid red line represents the quadrotor trajectory with our proposed robust
output regulation approach plus the nonlinear observer (RobOR+). The solid blue line
represents the quadrotor trajectory with the robust output regulation approach (RobOR).
The solid green line represents the quadrotor trajectory with the geometric tracking ap-
proach (GeoTrack). The dotted black line represents the waypoint reference.

performance with RobOR method dropped when the battery turned low. Meanwhile, the
use of the 6D nonlinear observer helped the RobOR+ method to improve the robustness
against the unknown disturbances, such as that due to low battery.

We compare the control performance of all three control approaches by calculating
the resulting Root-Mean-Square Error (RMSE) between the quadrotor position and the
waypoint reference from 1 s after the new waypoint is given to the controller until the
next waypoint is subscribed in every trial, as is shown in Fig. Among the 13 tri-
als using the RobOR+ method, the RMSE is in the interval of [4.730 cm,5.838 cm],
with the average RMSE equal to 5.127 cm. Meanwhile, due to the influences of low
battery and other disturbances, the maximum RMSE with the RobOR method reaches
19.078 cm, although the minimum RMSE, occurring in the 2nd trial, is 8.327 cm. The
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Figure 3.9: Resulting quadrotor response for the 13th trial of the repeated waypoint navi-
gation task. The reference position is switched from (—0.65,—1,1)" to (—0.65,1.5,1)"
every 5 s. The solid red line represents the quadrotor trajectory with our proposed robust
output regulation approach plus the nonlinear observer (RobOR+). The solid blue line
represents the quadrotor trajectory with the robust output regulation approach (RobOR).
The solid green line represents the quadrotor trajectory with the geometric tracking ap-
proach (GeoTrack). The dotted black line represents the waypoint reference.

average RMSE with the RobOR method equals 13.935 cm. Without any robust design,
the average RMSE with the GeoTrack controller among 13 trials reaches 22.162 cm. The
minimum RMSE with the GeoTrack method, at 17.453 cm, occurs in the 1st trial, while
the 13th trial is with the maximum RMSE at 28.359 cm.

Experiment 3: Aggressive Path Following

In the third experiment, we demonstrated the capability of the controllers to nontrivial
large tilt maneuvers (as is shown in Fig.[3.3). More specific, the quadrotor was com-
manded to hover at 1.6 m and then to track a prescribed tilted eight-shape path repeat-
edly for 24 s. We evaluated the quadrotor with the same eight-shape path we employed
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Figure 3.10: Resulting Root-Mean-Square Error (RMSE) on position for 13 trials of the
repeated waypoint navigation task with three control algorithms. The left group is with
our proposed robust output regulation approach plus the nonlinear observer (RobOR+-).
The middle group is with the robust output regulation approach (RobOR). The right
group is with the geometric tracking approach (GeoTrack).

in Liu et al.| (2015)), which was parameterized as

sin(o(t)) cos(o (1))
1

AN IR X

0

where R, and R, denote the rotation matrices along the x and z axis, respectively, while
o(t) is a function whose derivative is given by

6(t) =VVsin?r 4 1. (3.63)

The prescribed path, as the dotted black line in Fig. provides the quadrotor with
a tilted eight-shape flight at an average speed of V m/s. In our experiment, we set V =
1.25 m/s.

By deriving the position reference in|(3.62), we can obtain the analytic solutions of the
velocity and acceleration references, so that an offline trajectory can be tracked by the
controllers. However, similarly to the first experiment, tracking the trajectory online out-
performs tracking the offline trajectory. Therefore, during all the trials (we have 4 trials
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Figure 3.11: Resulting quadrotor trajectories when following a tilted eight-shape path
with the use of three control approaches. The solid red line represents the quadrotor tra-
jectory with our proposed robust output regulation approach plus the nonlinear observer
(RobOR+). The solid blue line represents the quadrotor trajectory with the robust output
regulation approach (RobOR). The solid green line represents the quadrotor trajectory
with the geometric tracking approach (GeoTrack). The dotted black line represents the
waypoint reference.

with each control approach) in the second experiment, we only passed the position ref-
erence|(3.62)|into the onboard computer and utilized the online planner to automatically
generate full required state references at each step.

The maximum tilt of the quadrotor during the flight reaches 40.3°. Fig. shows
a comparison on the translational error among the three algorithms for the eight-shape
path following task. From the results, we can find that the error in z direction, mainly
due to the mass mismatch, is largely compensated by the RobOR+ method and partly
compensated by the RobOR method. On x,y axes, the errors are relatively close, how-
ever, the magnitude of the errors are not small because the quadrotor platform is not light
weighed and agile, but with payload and thus larger inertia.

A more intuitive comparison is illusrtated in Fig.[3.13] The average RMSE among
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Figure 3.12: Resulting translational error plot for following a tilted eight-shape path.
The solid red line represents the quadrotor trajectory with our proposed robust output
regulation approach plus the nonlinear observer (RobOR+-). The solid blue line repre-
sents the quadrotor trajectory with the robust output regulation approach (RobOR). The
solid green line represents the quadrotor trajectory with the geometric tracking approach
(GeoTrack). The dotted black line represents the zero reference.

the 4 trials with the RobOR+ method is 11.905 cm, while all the values are between
[10.746 cm, 13.178 cm]. The RobOR method is with an average RMSE equal to 13.559 cm,
which is close to the RobOR+ method. The GeoTrack method is with the average RMSE
reaching 22.873 cm.

Experiment 4: Hovering with Wind Gusts

In the last experiment, we validated the robustness of our proposed RobOR+ method by
commanding the quadrotor hovering in an environment with strong wind gusts. Apart
from the constant winds from the vents in the ceiling in our lab, we additionally deployed
two 40 W electric fans close to the hovering point, both with a 0.7 m horizontal distance
at approximately 1 m height. The quadrotor was commanded to hover at (0,0,1) " after it
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Figure 3.13: Resulting Root-Mean-Square Error (RMSE) on position for 4 trials of the
repeated eight-shape path following task with three control algorithms. The left group
is with our proposed robust output regulation approach plus the nonlinear observer
(RobOR+). The middle group is with the robust output regulation approach (RobOR).
The right group is with the geometric tracking approach (GeoTrack).

took off, with both electric fans running at their maximum power (Fig. [3.4)). The electric
fans provided wind gusts at approximate 2 m/s while the vents provided a 1 m/s wind. In
addition, the quadrotor itself with four 10 inch propellers generated a strong wind flow
at around 5.5 m/s. The overall wind flow influenced the quadrotor strongly since it was
commanded to hover in the space blocked by two boxes that were closely located.

We carried out 6 trials for the wind gust experiment. In each trial, we once turned the
two electric fans on and off during the quadrotor hovering instead of keeping the fans on,
so that we could evaluate the performance of our proposed method under a sudden wind
gust. The maximum RMSE occurs in the 3rd trial, which reaches 3.039 cm, while the
minimum RMSE is 1.541 cm in Ist trial. The average RMSE among all 6 trials under
wind gusts equals 2.09 cm. The translational errors during the hovering in the 1st and
3rd trial are shown in Fig.[3.14] Our proposed controller demonstrates its robustness
against sudden strong wind gusts during the experiment.
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Figure 3.14: Resulting translational errors during quadrotor hovering under strong wind
gusts. The solid red line represents the errors in the st trial. The solid blue line repre-
sents the errors in the 3rd trial. The dotted black line represents the zero reference.

3.7 Conclusions

In this chapter, we have proposed two complete, robust nonlinear control approaches for
quadrotor MAVs, so that the quadrotors, even with uncertainties, can achieve challeng-
ing tasks that require aggressive maneuvers. We have not only validated the proposed
methods in theory, but also verified it intensively (with more than 70 trials) via actual
experiments such as waypoint navigation, path following with large tilt maneuvers, and
stabilization in an environment with strong wind gusts.

A supplementary video demonstration of this work can be found onlin

Future work could include a combination of the proposed robust control framework
with pose estimation approaches via reliable onboard vision-based algorithms, so that the
flying robots can exploit unknown environments without support of the external tracking
systems, e.g. GPS or wall cameras. Another potential improvement is to combine the
proposed approach with formation control and obstacle avoiding algorithms, in order to
enable one or multiple UAVs to achieve tasks in complex scenarios autonomously.

'https://drive.google.com/open?id=0B4QuufsZAdQacjJ3SVpNLXRUcHc, accessed March-2017
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Chapter 4

Fast Model Predictive Control with
Obstacle Avoidance

In this chapter, we propose the problem of robust control of multirotor unmanned aerial
vehicles (UAVs) in the complex scenarios. We present an effective and robust control
approach to the waypoint navigation for the multirotor UAVs in 3D environments in
presence of multiple obstacles.

The control architecture is based on a model predictive control (MPC) method with
nonlinear constraints for obstacle avoidance, while the nonlinear attitude controller and
the 6D nonlinear force/torque observer are both combined for the purpose of achieving
robust and agile multirotor maneuvers. The fast nonlinear MPC framework is onboard
implemented and is executed at S0Hz. The multirotor is able to autonomously decide to
fly over or around the obstacles based on the online update of obstacle locations. The
proposed control approach has been experimentally verified by commanding a quadrotor
whose model is known only up to a certain degree of uncertainty to achieve waypoint
navigation missions with obstacle avoidance. In addition, we have validated the robust-
ness by comparing with other MPC methods (e.g. a nominal MPC and a tube MPC) on
a waypoint navigation task in a collision-free environment.

The design of fast MPC with nonlinear obstacle avoiding constraint and the relevant
configurations in this work have been modified as an online trajectory planning algo-
rithm. These parts of work have been pre-published in Liu et al. (2017).

4.1 Introduction

Multirotor UAVs have become an active area of research within both control and robotics
community, due to their potential to versatile tasks, e.g. aerial transportation Michael
et al.|(2011)), building constructions |Augugliaro et al.| (2014) and mapping Fraundorfer
et al.[|(2012), etc.

With the current trend of hardware development and miniaturization and algorithm
optimization, those robust but computational costly control approaches, such as MPC
methods, have been implemented onboard Aswani et al.| (2012); Hartley et al.|(2014). A
learning-based MPC was proposed and tested in Bouftfard et al.| (2012]) with low-power
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onboard computational units. A fast nonlinear MPC using a particle swarm optimization
approach has been recently proposed and implemented on FPGA [Xu et al.| (2016).

Apart from research on control theory and implementation Lee et al.| (2010b)); Raffo
et al. (2010); Mellinger and Kumar (2011)), much research has also been carried out on
robustness |Alexis et al.| (2011)); Bouffard ez al.|(2012) and trajectory generation with ob-
stacle avoidance Heng et al.|(2011)) in order to help the multirotor UAV's to autonomously
achieve complicated tasks in complex environments. An obstacle avoidance method for
UAVs that is based on chaos trajectory surface was simulated in Bae and Kim/ (2004). A
novel algorithm using a modified Grossberg neural network (GNN) Wang et al. (2007) is
proposed for obstacle/collision avoidance in scenario of static obstacle. A gradient search
algorithm for real-time obstacle avoidance and target tracking in UAVs is proposed in
Zengin and Dogan (2007). An algorithm based on predictive control scheme with a
decentralized control methodology has been designed in [Boivin ef al.| (2008). In Paul
et al.| (2008), a potential field based collision and obstacle avoidance strategy has been
followed. A robust control algorithm and a higher level path generation method based
on graph theoretic considerations have been proposed in Regula and Lantos (2014). Re-
cently, an algorithm based on measurements from an RGB-D camera and bin-occupancy
filter along with a MPC approach has been proposed in|Odelga et al.|(2016)). A technique
based on a transformation of a variable constraint into an input saturation to ensure a
safe trajectory around the obstacles along with a RGB-D sensor is proposed in|Chauffaut
et al. (2016). A novel biomimetic algorithm that uses optical flow data generated from
the on-board camera to avoid obstacle has been proposed in Simpson and Sabo, (2016)).
An improved method based on optical flow for obstacle avoidance is discussed in 'Wang
et al.|(2015)). A novel monocular vision-based real time obstacle detection and avoidance
for UAVs in GPS denied environment has been proposed in Saha et al.|(2014). Stereo
vision based obstacle avoidance algorithms have been proposed in Park and Kim|(2012);
Yuan-yan and Ying-xun (2011). The development and implementation of an obstacle
avoidance controller for UAVs using four ultra-sound sensors is proposed in |Bouabdal-
lah et al.|(2007).

In this chapter, we focus on a robust MPC method with nonlinear constraints for short-
est path problems with obstacle avoidance. The proposed approach, along with a combi-
nation of the nonlinear attitude controller proposed in|Liu et al.| (2015])), enables the mul-
tirotor UAV to achieve waypoint navigation tasks in complex environments with multiple
obstacles, even in case of model uncertainties and unknown disturbances. Based on the
online update of obstacle positions, the proposed MPC approach allows the multirotor
to avoid the detected obstacles. Therefore, the main contribution of this chapter is a fast
implementation of MPC with the formulation of nonlinear soft constraints on a quadrotor
UAV to avoid obstacles in 3-dimensional scenarios. Simply adding nonlinear constraints
into MPC is too computationally expensive to run the algorithm on our onboard com-
puter. Thus we have also designed and integrated an algorithm to detect valid obstacles
(those actively obstructing the UAV path), and to decide when the multirotor should fly
over or around the obstacles. The effectiveness of this approach is proved through experi-
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ments in which the MPC is performed onboard at 50Hz in an environment with randomly
located box obstacles. We have also evaluated the robustness of the proposed controller
through the waypoint navigation tasks in a collision-free environment, comparing the
results with a linear nominal MPC method and a robust “tube MPC” method (see, e.g.
Langson et al.|(2004); Mayne et al.| (2005)).

The outline of this chapter is as follows. We first present the background of model
predictive control and the basic MPC formulation for the position control of multirotor
UAVs in Sec. Sec. gives a brief description on the nonlinear attitude controller
implemented on the multirotor. We then introduce the two proposed robust MPC de-
sign for the multirotor control: In Sec. #.4] we introduce some technical details of robust
MPC, including the design of a tube-based MPC for the multirotor position control; We
demonstrate how to combine the MPC configuration with the nonlinear 6D force/torque
external wrench observer in Sec. The MPC architecture with obstacle avoidance
is described in Sec. 4.6, where we detail a method of MPC formulation with nonlinear
constraints for obstacle avoidance, and how the multirotor UAV decides to fly over or
around the obstacles. Sec. demonstrates the experimental results of waypoint nav-
igation tasks in environments with obstacles, and the results of the comparison on the
obstacle-free tests. We conclude the chapter in Sec.

4.2 Model Predictive Control Architecture

We develop a MPC-based control framework in order to maneuver the multirotors to
achieve the waypoint navigation tasks in the environments with obstacles.

MPC is an advanced feedback control method that predicts the change in the depen-
dent variables of the modeled system. It first found broad early application in the process
industry, where the typically longer time scales were compatible with the required time
to solve the optimization problem. Since last decades, MPC has become feasible for con-
trol of systems with faster dynamics, thanks to both the development of more efficient
solution techniques and the exponential increase in computing power. The controller
minimizes a cost function by computing a sequence of optimal control inputs and the
resulting optimal trajectory for a UAV model with constraints over a finite horizon. Only
the first control input of the sequence is then applied to the UAV. At the next time step,
the calculations are repeated starting from the current state, obtaining new control inputs
as well as a new predicted trajectory.

The final design of our proposed framework can be illustrated in the block diagram in
Fig. For the purpose of fitting to the onboard implementation, the MPC is used as a
position controller in the complete control framework, while a nonlinear backstepping-
like controller is used to regulate the attitude of a multirotor. A 6-dimensional nonlinear
wrench observer is further applied to estimate the unknown disturbances as external force
and torque terms, and pass the estimates to the controllers for compensation. Since
a MPC is used in the closed-loop system, no additional trajectory planner is required
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Figure 4.1: Block diagram of the MPC-based control framework for multirotor waypoint
navigation with obstacle avoidance. The gray dotted block denotes the inclusion of a 6D
nonlinear observer for unknown force and torque disturbances.

during the flight.

In this chapter, for the purpose of benchmark, we also employ a linear MPC and a
tube-based MPC onto a quadrotor. In these two cases, the 6D nonlinear observer is not
activated, thus the gray dotted block in Fig. [4.1]is omitted.

In actual experiments, the positions of the target waypoint and obstacles, as well as the
current translational and attitude data of a quadrotor are updated online and passed to the
proposed MPC and then attitude controller, which finally outputs the desired rotational
speed of each motor on the quadrotor.

For the sake of completeness, we here first briefly recap the dynamic model used in
the design of multirotor control. The mapping from the desired force and torque to the
motor speeds can be found in detail in Sec. [2.1.1

Considering the aerial vehicle as rigid body (as in Sec. 2.1.1)), the dynamic equations
are given by

xX=v, (4.1a)
mv = —mge3z + RF + bF, (4.1b)
R=RQ(w), (4.1c)
Jo=—-oxJo+71+b, (4.1d)

where m is the mass of a multirotor, x denotes the translational position, g is the scalar
value of the gravity acceleration, and ez = (0,0,1). The nonconservative forces and
moments in the body frame generated by the rotor propellers on the multirotors are rep-
resented by F € R?® and 7 = (1, Ty, 7,)". Here b, considered in the form of an external
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force in the inertial frame, denotes the additional forces due to external disturbances and
unmodeled dynamics, and b is considered as an external torque in the body frame. The
inertia matrix J in the body frame, which is decided via a simple CAD model of the mul-
tirotor UAV for computation. Q(®) is the skew-symmetric matrix form of the angular
velocity @ = (@;, @y, @3) " in the body frame.

The rotation matrix R, which is an element of the special orthogonal group SO(3)=
{ReR¥3|R"" =R, detR = 1}, represents the attitude of the quadrotor with respect
to the inertial frame.

4.2.1 MPC Formulation

In this section, we first present a general structure of the MPC for the position control of
a multirotor. By modifying the translational motion|(4.1a)land|(4.1b)|into a discrete-time
model, the MPC can be formulated as a general optimal control problem (OCP):

I%ign](é(-),ﬂ(-),&‘), (4.2a)
s.t. E[k+ 1] = AE[k] + B(i[k] — ge3), (4.2b)
Amin < IZ[/{] < Gmax, (4.2¢)
émin < E[k] < gmam (4.2d)

where dpmin, dmax € R> represent the lower and upper constraints of quadrotor accelera-
tions along three axes. Similarly, &npin, Emax € R® denote the lower and upper bounds of
the position and velocity. € represents the parameter to bound the soft constraints for
obstacle avoidance, which is introduced later.

The discrete-time model of the multirotor can be derived from Eq(4.1)] The math-
ematical model sets the acceleration as the inputs for the OCP describing the multiro-
tor motion. The state & consists of the position and velocity along three axes, namely
(x,%,y,9,2,2) T. The state & and nominal input i at k™ step with a sampling time A¢ in

Eq[(4.2b)| are given by

[x(kAt)
x(kAr) -
i (kAr)
ey = [YRAD | o
=
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Therefore, in a collision-free assumption, the OCP for waypoint navigation task of a
multirotor can be described as a quadratic cost function

min J = ZH KB+ [1EIN + 1] — Erepnet |17 (4.4)

where N represents the receding horizon, &.rn41 denotes the terminal reference (i.e.
waypoint position and terminal velocity). P and L are the weights of input cost and
terminal state cost, respectively.

4.2.2 MPC for Position Control

The major cost of OCP computation is on the problem formulation and matrix genera-
tion. We thus generate in advance the matrices that are used for numerical computation.
The computed first step control input i[0] is used in the control law. The described con-
vex OCP is solved via CVXGen Mattingley et al.|(2011) using the interior point method.
Substituting the computed nominal input to the multirotor model and assuming
that R in equals Ry, the control law for the multirotor position can be stated as

RietF = mi]0] := F'. (4.5)

Considering that Ryer in |(4.5)|1s orthonormal and only the third entry of F, i.e. the
thrust T, is nonzero, one must choose T = ||F’|| in order to suffice Eq.|(4.5), Therefore,

the third column of Ryer = [r) rZ; rl] can be solved from

3 F'

rl‘ef = ”F/H 9 (46)

and the other two columns of R can be filled orthonormally, for instance by a Gram-
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Schmidt process with candidates 3., from the previous equation and ', > from the

ref
actual rotation R = [rl r? r3] ,1.e.

2.3

2/ 2 I Tef 3
et =T — 3 1'; Tiefs (473)
Tref " Tref
2/
2 rref
Fret = Hr2/ H7 (4.7b)
ref
1 .3 1. .,2
o1 e 3 Tt 2
Tref =1 =733 Tref ™ 3 2 'ref> (4.7¢)
Fref " Tref Tref " Tref
1/
1 _ et
Fref = 7ne (4.7d)
HrrefH

such that we obtain both the desired total thrust 7 and the desired attitude R.s for the
attitude control.

4.3 Attitude Control

The control method we have implemented for the tracking of the attitude R of a multirotor
UAV was proposed in Chapter [3| We here only report the control law that is employed
on the multirotor for the sake of brevity.

The specific approach is based on the solution of a class of output regulation problems
which contains the rotational motion for a rigid body. The tracking error is given by
E = RRrTef, where R corresponds to the rotation matrix describing the current attitude, and
R, computed via the approach introduced in Sec. 4.2.2] represents the desired attitude.
We also assume the error between the current and a desired angular velocity in body
frame e, = Q(®) — O(@y).

The goal of the attitude controller is to regulate the output of the attitude (E,eq) —
(1,0) for t — oo, which implies R — Ry and Q(®) — Q(@q) for ¢ — oo. For the sake
of brevity, the full derivation as well as the proof of asymptotic stability can be found in
Sec.[3.2.2], is not reported in this chapter.

Based on |Liu et al.| (2015), the control law for the multirotor UAV’s attitude is given
by

Ty =JQ! (—kmew _ bt [RIefR YRR — R Ryt
2 (4.8)

—RTRref] R Ruet — R Reet — 2RrTefR) foxJo,

where k¢, is a positive gain for the tracking error of the multirotor angular velocity. The
derivative R can be obtained by introducing the current attitude R into |(4.1c), while Rt
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inherits from the results of [(4.6)| and (4.7)[ We choose the value @y ref, 02 ref = 0 and
03 ref = Wret — Weurrent fOr the reference and current yaw attitude y at every moment, and

Ry, hence, can be solved via Eq{(4.1c)

4.4 Tube-based Model Predictive Control

We have introduced a model predictive control framework for the flight control of mul-
tirotor UAVs. We next introduce two different ways to improve the robustness of the
MPC frame. In this section, we modify the general MPC configurations into a “tube”
MPC for the multirotor position control. We will give several background definitions on
robust MPC, followed by the computations of the Minimally Robust Positive Invariant
set (MRPI) for the robust MPC design, and then show the control law of a “tube” MPC
in Section4.4.2

The general idea of a tube MPC is to use a control law in the form of
u=i+K(E-E), (4.9)

where i and & denote the nominal control input and the system state under no disurbance
assumption (which have been introduced in Sec. , while u and £ denote the control
input and state in the actual system with disturbances. K represents a linear stabilizing
state feedback gain for the error between the actual system states and the predicted states.
Using a predefined K, we can compute an MRPI for the error system, so that the nominal
system, which optimizes the quadrotor translational motion, can maintain exponential
stability with tightened state and input constraints.
In general, a discrete-time, time-invariant linear system to be controlled can be de-
scribed by
Eir1 = Ay + Buy +w, (4.10)

where &, u; and w represent the state, input and disturbance vectors. The matrix pair
(A,B) is assumed controllable. The system is subject to the constraints

EcECRuedUCR", we WCR"Y, 4.11)

where =, U/ and VY are compact, convex polytopes that contain the origin in their interi-
ors.
Under no disturbance assumption, we can define the nominal system corresponding

to as . .
i1 = A&y + Biiy. (4.12)

The computed first step control input i[0] is used in the control law. In additional, the
predicted state at the first step (as 5_[1] in the nominal OCP) is passed into the controller
as the nominal state used to calculate the error between the current quadrotor state and
the predicted state in next time step (we record it as Eprev n .
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4.4 Tube-based Model Predictive Control

4.4.1 Robust MPC and Robustly Positively Invariant Set

In this section, we introduce how to set up the “tightened” constraints for nominal states
and control inputs so that the configuration of a tube MPC maintains stable. We here
start from certain background definitions widely applied in robust control research.

For two given sets X C R” and Y C R", the Minkowski set addition & is defined by
X @Y = {x+ylx € X,y € Y}. The Pontryagin difference © is defined by X OY = {x €
RYx+yeX,VyeY}.

The one-step robust reachable set for the system subject to[(4.1T)|is defined as

Reach(E,U, W) C{& eR"|FE &, Jueld,

4.13
IweW,s.t.E =AE)+Bu+w}. ( )

A set Z C E is defined as an MRPI for the system subject to the constraints
in[(4.11)] if initial state & € Z, then & € Z,Ywy € W,Vk > 0.

Now we assume that Z is an MRPI for the system If & € {&} @ Z, then
Erri € {&pi} @ Z, forall i > 0 and w € W, where & and &, are the states at k™ step for
the actual and nominal system respectively.

This proposition suggests that if & € {&} @ Z, then & € {&} ® Z, for all k > 0 and
w € W, as well as that the control law in [(4.9)| can satisfy the constraints for the system
with disturbance as long as there is a feasible solution for the nominal system
subject to the tightened constraints

E=20Z, U=UcSKZ. (4.14)

K € R™" is a gain (also to be used in[(4.9)) such that (A + BK) is Hurwitz for (A,B) in
the nominal system (these have been proved in Mayne ef al. (2005))).

The state feedback gain K used for the tube MPC design is chosen from a infinite hori-
zon continuous linear quadratic regulator (LQR) for the nominal system (A, B), denoted
as Ky gr. Therefore, u = —KLQRé in The MRPI Z is computed offline associated
with this gain. Instead of satisfying an exact convergence condition of MRPI, which is
with no guarantee of a termination within finite iterations, previous work provides meth-
ods |[Rakovic and Baric| (2010) to compute an approximate of MRPI. We use a similar
strategy to compute MRPI with an approximate convergence condition, as is described
by the following procedure.

Starting with an initial approximation of the set Qy = {0}, we repeat the computation
that Q; = Reach(Q;_1,U, W)U L;_; until the set satisfies the approximate convergence
condition u (Q;\ ©;_1) < &, where u denotes a positive parameter and € denotes a bound
set. Therefore, Z = Q; at the end of the iterations is the MRPI for the system@], and
the state and input constraints in the nominal OCP become

E=E0Z, U=USKLRZ, (4.15)

67



Chapter 4 Fast Model Predictive Control with Obstacle Avoidance

where a larger Kigr will results in a smaller Z but a larger K grZ so that the input
actions are further tightened.

4.4.2 Tube MPC Design

The output of the proposed tube MPC method at each time step is written as

Upos = ’Z[O] + KLQR(& - éprev); (4.16)

where upos C R3 denotes the first step control input computed from our proposed tube
MPC method. Assuming that R in [(4.1b)] equals R.f, the complete control law for the
quadrotor position is given by

ReetF & mitpos = mii[0] + mKi or (€ — Eprev) 1= F. 4.17)

Despite the fact that the mismatch of mass would still lead to the offsets to reference, such
offsets are expected to get largely compensated by Ki qr. To make the solution practical,
the unknown disturbance is assumed within the boundary between (—3N,—3N,—4N)
and (3N,3N,4N).

The desired attitude R,¢ for the attitude control can be then calculated via the Gram-
Schmidt process. Since we have introduced the technical details once in Sec 4.2.2] we
do not repeat the computation.

4.5 Nonlinear Observer

In this section, we extend the MPC approach discussed in previous sections with the
inclusion of a nonlinear force/torque external wrench observer using the Fault Detection
and Isolation (FDI) method Takakura et al.|(1989). The observer estimates all the system
offsets, parameter uncertainties and external disturbances, and passes the estimate to the
controller for compensation. The addition of such a nonlinear observer greatly improves
the robustness and the accuracy of our MPC method. The technical details, i.e. the full
definitions and the proof of asymptotic stability, and the experimental validation of the
observer on a multirotor UAV can be found in Chapter (3|in this thesis.

For the sake of completeness we briefly summarize its working principle. The tech-
nical details can be found in Considering the system states { = [xy z @, @, @3],
the dynamic model of the quadrotor in[(4.T)|can be expressed conveniently following the
Lagrangian formulation as

ME+C(E)E+G =A+Aexs (4.18)

where M = ("6133 0; ) € R6*C s the positive definite inertial matrix, C({) = ("623 _ S%w) )€

R6*6 expresses the coriolis and centrifugal terms, G = [0 0 mg 0 0 0] " is the gravita-
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4.5 Nonlinear Observer

tional vector, A= [RF" t7]T € R® is the nominal wrench due to the control input and
Aext = [pr bTT]T € RO is the external wrench acting on the quadrotor.

The residual based observer design is based on the simple but powerful idea of the
generalized momenta Q,, = M{. In fact, one can write the following first-order dynamic
equation for the momentum as

Ow=A+Aexi+C" (0 -G. (4.19)

We define the residual vector r € R® for the disturbance estimation of the multirotor
as

t
r(t):K,( W—/<A+CT(C)C—G+r>ds>, (4.20)
0
where K; > 0 is the diagonal gain matrix. The dynamic evolution of residual r satisfies
F=Kj(Aext—r), whenr(0)=0, 4.21)

which has an exponentially stable equilibrium at r = A¢x. For “sufficiently” large gains
the dynamic residual in becomes

r >~ Aext- (4.22)

Being a model-based estimating approach, if a particular component of A¢y; is zero then
the scalar r corresponding to that component converges to zero. Hence we can write the
estimated external wrench as

)

Aext = [%F ] =r, (4.23)

T

where A indicates the estimated value of the variable.
With the inclusion of the external wrench estimate, the position control law in|(4.5)|1s
given by R R
RietF 2 —bp +F' = —bp +mii|0], (4.24)

while the attitude control law in[(4.8)|becomes

ref’

~ Koot [ o .
Ta=—bs+JO! (—Kwew — %" [RT R+R.:R—R" Ryt —R" Ryt .
(4.25)

_RrTeeref - RerRref - 2RrTefR> +oxJo.
The Eq[(4.24) and Eq[(4.25)| provide the multirotor with a robust MPC method for the

aggressive waypoint navigation tasks. The asymptotic stability of the attitude control-
observation system has been proved in[3.4.1] while the position control-observation sys-
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Chapter 4 Fast Model Predictive Control with Obstacle Avoidance

tem can not be directly proved stable. However, we experimentally validate the robust-
ness of our proposed control approach in4.7.2

4.6 Predictive Control with Obstacle Avoidance

We have demonstrated the general framework of a fast, cascaded MPC method for multi-
rotor UAVs and its two extensions with robustness design, a “tube” MPC and an observer
combined MPC, in the last couple of sections. The latter two methods are both feasible
for the robust control of the multirotor under disturbance in collision-free environment.
In this section, we extend our proposed robust MPC method with obstacle avoidance
behaviors by adding constraints into the cost function in the OCP.

The main objective of the obstacle avoidance constraints is to keep the multirotor with
no collision even in a complex environment. We hereby detail the constraints imposed
on the multirotor states to guarantee safe maneuvers.

Although the translation model of the multirotor is linear in the OCP, the new MPC
frame we here propose is nonlinear since it includes nonlinear constraints to avoid ob-
stacles. Instead of directly using hard constraints like state bounds, we set the obstacle
avoidance constraint as a series of soft constraints in the cost function, in order to reduce
the possibility that the solution of the OCP is infeasible.

In summary, the OCP [(4.4)| becomes a convex optimization problem with a set of soft
constraints

min Z alk]|[3+ | EIN +1] — Eetns 7 + At (4.262)
s.L. fobs(é[ ]7pobs,i) §1€> [ = 17~--7iN7 (4.26b)
€>0, (4.26¢)

where pgpsi represents the 3D position of the i"" valid obstacle (identified from all de-
tected obstacles). A set of i)y obstacle avoidance constraints are compactly written as
i obs(f, Pobs.i)» Whose expressions are given later in equations |(4.29)| and |(4.30)|, depend-
ing on the choice of the UAV to fly over or around the obstacle respectively. 1 is the
1-value vector with the dimension of iy. € represents a parameter to be minimized in the
OCP, which is the upper bound of the soft constraints for obstacle avoidance. A denotes
a positive weight of a non-negative scalar €.

To fit the limited onboard computational capability, we need to reduce the complexity
of the OCP. One possible way is to reduce the number of obstacles considered in the
OCP. Therefore, we perform two additional steps: selecting a group of valid obstacles
that really block the flight line during navigation, and deciding the best way for the
multirotor to avoid obstacles.

The algorithm to decide the obstacle avoidance constraints consists of the following
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4.6 Predictive Control with Obstacle Avoidance

steps: i) detecting the real obstacles via sensors and model them into “obstacles”; ii)
determining the “Valid Obstacles” (VOs) that block the multirotor to fly towards the
waypoint in a shortest path; iii) flying over the VOs if possible; otherwise, determining
a group of VOs to avoid by flying around, and generating a function to describe obstacle
avoidance constraints.

Assuming that the 3D positions of obstacles are available, we simply regard an “ob-
stacle” as one cylinder with a nominal blocking radius and height. Such a model is naive
in practical applications since the obstacle shape can be arbitrary. To make the assump-
tions more realistic, we improve this by setting each corner (or a certain point on a long
edge) of a real obstacle as the center of a nominal “obstacle”. For instance, in case of a
polygon-shaped obstacle (e.g. a box), we consider the top corners of the box as a group
of 4 (overlapping) “obstacles” instead of one. In real experiments, we deploy the mark-
ers on the corners of arbitrary polygon-shape obstacles and obtain the locations of the
markers via the external tracking system.

While we have specified step (i) in the previous paragraph, the remaining steps of the
obstacle avoidance algorithm are described in Sec.[4.6.1]and[4.6.2] The way to identify
valid obstacles that block the flight line is inspired from the idea to detect “blocking
objects” in the subtarget method on soccer robots in Bruijnen et al.| (2007). We extend it
to fit 3D environments.

4.6.1 Identification of Valid Obstacles

An example of the obstacle map for the multirotor flight can be illustrated in Fig.

We decompose all “obstacle” positions into horizontal (2D) and vertical (1D) compo-
nents. Let o, and &, respectively be the horizontal and vertical components of the position
of a multirotor UAV, o, and h; be the components of the target waypoint position, and
o; and h; describe the position of an arbitrary “obstacle”, respectively. To determine
which “obstacle” is VO that really obstruct the flight path, the centers of all “obstacles”
are projected onto the straight flight line between the multirotor and the waypoint. The
projected distances are given by

(0r —0;) - (0i —or)

a; = , (4.27a)
lo = ol
py = L= or) x (0= 0r) (4.27b)
’ los—orll '
ai
6i == m (ht - I’lr) + l’lr - l’li, (427C)

where a; denotes the length of the projected vector on the horizontal plane, b; and J;
are the horizontal and vertical distance between an “obstacle” i to its projection point,
respectively. We consider the set B of “obstacles” that are high enough and close to the
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Figure 4.2: An example of an obstacle map for waypoint navigation with obstacle avoid-
ance. The projection on horizontal plane.

flight line as VOs by computing as follows

B={i € N[0 < a; < ||o; — o|| N || ;]| < ri + 1

4.28
Né; < 6hsafe} € Nmb, ( )

where np,m; denote the amount of “obstacles” and VOs respectively, r; is the nominal
radius of each “obstacle” cylinder and r, is the assumed safe radius around the multirotor
during the flight. 8hg,f € RT represents the safe height difference between the multirotor
and an “obstacle”, noting that the vertical distance §; will be negative if an “obstacle” is
higher than the expected flight height at the projected point.

4.6.2 Flying Over or Around

Based on the valid obstacle detection algorithm that we described in the previous sub-
section, there are two possibilities for the multirotor to avoid the obstacles: either to fly
over, or to fly around them. It is possible for the multirotor UAV to fly over the VOs that
are not too tall, namely V5; > 0. We conservatively design the lift height to fly over as
Ohgate. Therefore, the obstacle avoidance constraints are given by

Fobs(E; Pobsi) = Shsafe + Zobs.i — 2[k], k=1,...,N, (4.29)

which is a iy-D vector used to set the soft constraint. z[k] and zopsj denote the vertical
position of K" state, E[k], and i'" valid obstacle, respectively. In this case, the constraint
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function is still linear.
Otherwise, in case that the multirotor is not able to fly over the (tall) obstacles, we set
the constraint so that the UAV can fly around those VOs, which can be stated as

fobs(é7pobs,i) = — (x[K] _xobs,i)z — (v[#] _yobs,i)2 (4.30)
+(ri+r)% k=1,...,N, .
where x[k], y[k] and Xobs.i» Yobs; denote the horizontal positions of k" state, é_[k] and i
valid obstacle, respectively. The obstacle avoidance constraint thus becomes nonlinear.
By importing the obstacle avoidance constraint [(4.29)] or [(4.30)| into the OCP [(4.26)]
we solve the OCP via interior point method via the nonconvex OCP solver IPOPT
Wichter and Biegler] (2006). The number of VOs fixed to iy and all VOs are initially
set to a nominal position way far from the multirotor.

4.7 Verification

The robust nonlinear MPC approach presented herein have been validated step-by-step
via numerical case studies in MATLAB, ROS/Gazebo physical simulations of a multi-
rotor model with parametric mismatch and disturbances, and finally through real robot
tests. We do not report the results of the simulations for the sake of brevity.

4.7.1 Experiment Configuration

A series of experiments have been carried out on a quadrotor UAV with capable of car-
rying a payload up to 1.0 kg. The quadrotor is equipped with a low-power Odroid-XU4
board.

The control algorithm has been implemented within the ROS-based TeleKyb frame-
work |Grabe et al.|(2013). The MAV position and the positions of obstacles are recorded
via an external motion capture system and passed to the on-board computer at a sampling
frequency of 120 Hz over a wireless channel. The other essential data i.e. linear accel-
eration, orientation and angular velocity of the quadrotor, are all measured by a low-cost
onboard Inertial Measurement Unit (IMU) and filtered via an extended Kalman filter.
The attitude controller is executed at 100 Hz with the use of the filtered received states.
Due to an average computational cost of 16.2 ms, the robust MPC controller is executed
at 50 Hz with a horizon of 12 steps.

Overall, the vehicle weight is 1.6 kg. However, we set the nominal mass to 1.4kg
during the experiments in order to create a mismatch between the physical and nomi-
nal values. Similarly, we estimated the coefficients of the inertia matrix through a CAD
model and we used some mismatched values. The model uncertainties (mass and inertial
parameters) and unknown disturbances (e.g. wind from a/c system and motor control
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in open loop fashion, etc.) have been introduced in order to test the robustness prop-
erties of our controller, and they lead to a steady hovering of the quadrotor at a tilt of
approximately 3° on pitch and —1.5° on roll in air.

The assumed radius of each “obstacle”, r;, is set to 0.3 m and the safe quadrotor radius
r, is set to 0.5 m, while the safe height difference 0t is set to 0.5 m. In order to reduce
the computational cost of MPC, the VOs were ordered based on a; and iy was limited to
5. Therefore, only the clostest 5 VOs were taken into consideration in MPC formulation.

4.7.2 Experimental Results

Initially, the performance of the proposed robust MPC (as in Fig was compared with
a nominal MPC method and a tube MPC method. To meet a relatively fair comparison,
the terminal weight parameters were fixed in the OCP so that the aggressiveness of the
quadrotor UAV did not change during all trials with three controllers. The nominal MPC
method uses only the configuration proposed in {.2] thus with no robustness design.
The tube MPC is based on the computation of a positively robust invariant set and thus
tightened state and input constraints. For the sake of brevity, the offline computation of
the robust invariant set is omitted. The readers can refer to Langson et al.| (2004); Mayne
et al.| (2005) for more details.

In the first experiment, we commanded the quadrotor to achieve a waypoint navi-
gation task. The quadrotor flew a square trajectory by reaching a series of 2m-far way-
points, (—1,—1,1), (1,—1,1), (1,1,1),and (—1,1, 1), one by one and finally flying back
to the starting point. The waypoints were sent to the quadrotor every Ss.

The resulting trajectories have been displayed in Fig.[d.3] From the results it can
be read that a nominal MPC method (solid cyan line in Figid.3)) led to a large offset
in vertical direction up to 30cm, since the quadrotor mass was mismatched by 200g
in the model. In horizontal directions, the errors to the waypoints are relatively small
because the weights in MPC is set to large values in order to increase the aggressiveness
and accuracy of flight. With the additional LQR settings, the tube MPC method (solid
blue line in Fig4.3) to a large extent improves the control performance. The offset in
z-direction reduces dramatically.

The resulting Root-Mean-Square Error (RMSE) on position, in the period from 1 s
after the new waypoint is given until the next waypoint is subscribed, is computed and
shown in Table The proposed robust MPC method (solid red line in Fig4.3) leads
to a RMSE of 6.46 cm. For tube MPC method, the RMSE is 13.86 cm, while the RMSE
with the nominal MPC algorithm reaches 32.52 cm. According to the experimental re-
sults, our proposed robust MPC outperforms the other two MPC methods.

In the second series of experiments, the quadrotor UAV executed a waypoint naviga-
tion task in the environment with arbitrary located box obstacles (Fig. @#.4). In order to
arrive at the target waypoint, the quadrotor had to decide autonomously how to avoid
the box obstacles. The results of 3 trials are shown in Fig. [4.5] During the experiments,
reflective markers were set at each corner of the boxes. The position data of the markers
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Figure 4.3: Resulting quadrotor response for a square waypoint navigation task. The ref-
erence was switched to a new 2m-far waypoint every 5s. The dotted black line represents
the waypoint reference. The solid red line represents the results with the proposed robust
MPC method. The solid blue line is the results with a tube MPC method. The solid cyan
line shows the results with a nominal MPC method.

were detected through the external tracking system and passed to the onboard computer.
Therefore, the quadrotor received the position of “obstacles” at around 100Hz.

In the first trial, the quadrotor was commanded to fly towards the target waypoint
in the environment visualized in Fig. f.5a] Two tall boxes obstructed the shortest-path
flight line and thus the quadrotor autonomously decided to turn right to fly around the
box obstacles. Then it detected another box obstacle that was not too tall. Hence, the
quadrotor enabled to fly over the box and reached the target waypoint.

In the second trial, the boxes in the experimental area were relocated. We moved the
two tall boxes slightly far from the shortest-path flight line. Still the quadrotor executed
the same waypoint navigation task. Since the box obstructing the flight line were not too
tall, the quadrotor succeeded in flying over it and arrived at the waypoint as shown in
Fig. .55

In the third trial, three tall boxes were located between the quadrotor and the waypoint.
We did not expect that the quadrotor could fly over or around all these obstacles and
reach the final target. During the flight, the quadrotor first planned to turn right and fly
around the box obstacles; however, it soon detected more tall obstacles that obstructed.
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Methods RMSE [unit]
Nominal MPC 32.52 [cm]
Tube MPC 13.86 [cm]

Proposed robust MPC | 6.46 [cm]
Table 4.1: Root-Mean-Square Error (RMSE) for the quadrotor waypoint navigation task.

Figure 4.4: “Obstacle Avoidance” experiment. The quadrotor UAV executed a waypoint
navigation task in an environment with obstacles.

The quadrotor UAV thus turned left to avoid the boxes but once again found another
tall box obstacle on the way to waypoint (Fig. [#.5¢). The quadrotor UAV was stuck and
continuously turned left and right to find a feasible trajectory. In this case, the UAV,
as expected, could not find a feasible trajectory until the end (that the quadrotor was
commanded to land) since the indoor flight space was included as the hard constraints in
MPC.

Due to the local information of valid obstacles (only closest 5 are taken into consid-
eration), and the short receding horizon, the MPC approach we proposed is unable to
overcome every complex environment. It is possible in the proposed MPC approach that
the quadrotor gets into a local optimum flight trajectory, when several valid obstacles
fully obstruct the potential flight path. This could be solved by implementing a MPC
method, with a longer receding horizon and a more informative obstacle map, into a
more powerful onboard computer.

76



4.7 Verification

R : : MAN Trajectory
hWAY Trajsctary R O  Waypoint
©  Waypoint Pt R 7- Box Obstacles

. - Box Obstacles

(a) Scenario 1. The quadrotor UAV avoided the (b) Scenario 2. The quadrotor UAV avoided the
tall box obstacles by first turning right and flying box obstacles by flying over the short box obsta-
around them. It then flew over the short box ob- cles.
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(c) Scenario 3. The quadrotor UAV attempted to turn
left and right to avoid 3 tall box obstacles, but it was
unable to find a trajectory to reach the waypoint.

Figure 4.5: Results in “Obstacle Avoidance” experiments. The blue boxes represent the
obstacles in the experimental area. The black circle denotes the target waypoint. The
solid red line represents the resulting trajectory of the multirotor.
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4.8 Conclusions

In this chapter, we have proposed a robust control approach based on a fast nonlinear
model predictive control (MPC) method for a multirotor UAV. The presented MPC struc-
ture enables the multirotors to online determine the optimal trajectories for the waypoint
navigation tasks in complex environments with multiple obstacles. We have detailed
the onboard implementation of the proposed controller on a quadrotor with model un-
certainties and disturbances. The experimental validations we have carried out and the
comparison with other two MPC methods demonstrate the improved performance of our
proposed robust MPC approach.

A supplementary video demonstration of this work can be found onlineﬂ

The MPC method with obstacle avoidance proposed in this chapter has also been mod-
ified as a trajectory planning algorithm, by following the MPC formulation in Sec3.5]in
Chapter |3| The usage of fast MPC as a trajectory planner can be found onlin in the last
series of experiments.

Future work could include a combination of the proposed control framework and on-
board cameras (with helps of reliable vision-based algorithms), so that the multirotor
UAV is able to estimate its own pose and detect the obstacle positions without support
from external tracking systems. Another potential work would be to solve the problems
for obstacle avoidance due to the local optimum.

'https://drive.google.com/open?id=0B4QuufsZAdQaR1cObG850FBEWEU, accessed March-2017
Thttps://drive.google.com/open?id=0B4QuufsZAdQacjJ3SVpNLXRUcHc, accessed March-2017
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Chapter 5

Distributed Control for Formation
Balancing and Multi-UAVs
Maneuvering

In this chapter, we propose a distributed formation control algorithm for a group of mul-
tirotor Unmanned Aerial Vehicles (UAVs). The algorithm brings the whole group of
UAVs simultaneously to a prescribed submanifold that determines the formation shape
in an asymptotically stable fashion in 2-dimensional (2D) and 3D environments. The
complete distributed control framework is implemented with the combination of a robust
model predictive control method on multiple low-power onboard computational units on
multirotor UAVs and validated via a series of hardware-in-the-loop simulations and real-
world experiments. The experiments are configured to study the control performance in
various formation cases of arbitrary time-varying (e.g. expanding, shrinking or moving)
shapes. In the actual experiments, up to 4 multirotors have been implemented to form
arbitrary triangular, rectangular and circular shapes drawn by the operator via a human-
robot-interaction device. We also carry out hardware-in-the-loop simulations using up to
6 onboard computers to achieve a spherical formation and a formation moving through
obstacles.
Large parts of this work have been pre-published in|Liu ef al.| (2018)).

5.1 Introduction

Multi-agent systems have become one of the most active research topics within the robot
control community. One of the fundamental problems studied for multi-agent systems is
the formation control problem. In this problem, a team of agents is tasked with arrang-
ing into some pre-specified spatial configuration |Oh et al.|(2015). Often, formations are
specified by certain relative state information that can be sensed between agents. These
include position-based strategies |[Ren (2006), distance-based strategies |Anderson et al.
(2008); Krick et al. (2009), and bearing-based strategies [Zelazo et al.| (2015); |Zhao and
Zelazo (2015). The sensing capabilities of the vehicles will dictate which formation con-
trol strategy is most appropriate. More recently, a new approach to formation control was
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proposed in Montenbruck et al.| (2017) where the formation is specified by prescribing
a shape (i.e., a circle, triangle, rectangle, etc.). Each agent then implements a decen-
tralized controller that asymptotically stabilizes the agents to the desired shape while,
simultaneously, a distributed controller balances their configuration on that shape.

As the theory of formation control has developed, so have the practical implemen-
tation of these strategies. Teams of Unmanned Aerial Vehicles (UAVs), for example,
have the potential to perform versatile tasks, such as aerial transportation Michael et al.
(2011), building constructions Augugliaro et al.|(2014) and swarming above audience
for entertainment D’ Andrea (2016); [Intell (2017b). Therefore, one interesting applica-
tion of formation control research is on UAVs, e.g., fixed-wing drones and multirotors,
due to their various potential applications.

Much research on formation control of UAV's has been carried out in both aeronautics
and robotics communities. A collision-free control method based on the modified Gross-
berg neural network for a group of UAVs in square formation has been proposed in Wang
et al.|(2007). In|Wang and Xin (2013)), an integrated optimal formation method has been
presented, which employs an inverse optimal control approach to achieve the formation
of multiple UAVs with obstacle avoidance. A nonlinear model predictive control (MPC)
method incorporating obstacle avoiding conditions using Karush Kuhn Tucker condi-
tions has been proposed in Shin and Kim| (2009) for formation flight. In [Turpin et al.
(2012), a decentralized formation control algorithm has been presented and tested on
a group of quadrotors, which enables the robots to safely change the formation shape
by following a specified group trajectory. A bearing formation control method based
on relative angles has been proposed and tested on mutlirotor UAVs in real experiments
in Franchi et al.|(2012). A formation controller based on the virtual rigid body in SE(3)
has been proposed and experimentally validated in Zhou and Schwager (2015)). The latter
method allows the quadrotors to simultaneously execute collision-free agile maneuvers
as a group.

In this chapter, we propose a formation control algorithm which brings a group of sys-
tems to a specified shape simultaneously in a balanced and stable fashion. The algorithm
is distributed and decentralized (we refer readers to [Montenbruck et al.| (2017) for the
stability proofs of the proposed formation algorithm). The agents in the group exchange
their position information only with their relative neighbors specified by a static and
given information exchange network, and eventually arrange their positions in a speci-
fied shape.

Apart from the advantage of distributed fashion, the property of collision avoidance,
and the capability of trajectory following, which have been included in some other for-
mation approaches, the key novelties of our proposed approach are: i) This method is
driven by a complete target shape, which is different from many existing formation ap-
proaches that lead the agents to the (absolute or relative) target positions of the target
polygon vertices. More specifically, we define a desired formation by simply prescribing
a shape in either R?, e.g. a circle, triangle or rectangle, or a shape in R3, e.g. a sphere,
etc., plus the center and size of the desired formation. This is suitable for certain practi-
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cal applications such as target capture, since we can simply define a moving target (not
necessary an agent in the group of robots) as the center of a target shape. ii) The pro-
posed method enables the agents to simultaneously reach to a balanced and converged
condition. This allows the agents to start from most of the initial conditions, e.g. a line
array, etc. The strong convergence property also ensures the group of agents to switch
among various target (2D or 3D) formation shapes smoothly.

In summary, we address a series of balancing control problem for a practical appli-
cation (formation) of a group of aerial robots. More specifically, we have proposed
and implemented a novel formation algorithm, in a distributed fashion, onboard multiple
multirotor UAV's with a combination of a fast MPC approach. In order to achieve a closer
connection between the proposed algorithm and real-robot applications, we further de-
velop the shape-driven property of our approach and implement the formations via the
human-robot interaction of drawing the target shapes through a gesture tracking device
(i.e. Leap Motion |Leap Motion (2017)) during the experiments. The performance of the
complete control framework has been validated via both a series of hardware-in-the-loop
(HIL) simulations and real-world indoor experiments. During the experiments, multiro-
tor UAVs were commanded to form an arbitrary, time-varying (e.g. expanding, shrinking
or moving) circular, triangular, rectangular and spherical shape in 2D and 3D scenarios.

The outline of this chapter is as follows. In Sec.[5.2] we introduce the formation
control algorithm that enables a group of agents to simultaneously reach balanced re-
tractions. More specifically, we describe how to implement the distributed algorithm
on multiple agents through case studies with various shapes. We then present a practi-
cal application of our proposed algorithm onto a group of multirotor UAVs in Sec.
where the complete control system of each multirotor UAV based on a MPC method is
demonstrated in detail. Sec.[5.4]introduces the experimental validation of the complete
distributed control framework and discussions, on both HIL simulation and real-world
experimental stages. Sec. [5.5concludes the technical chapter.

5.2 Formation Control and the Balancing Problem

In this section, we start from a brief recap of the solution (proposed in Montenbruck et al.
(2017)) towards the retraction balancing problem. The solution leads to a distributed
formation algorithm for the multi-agent system to retract and converge to a target shape
with a smooth submanifold, e.g. circle, eclipse.

Compared to the previous work, we first extend this formation control algorithm with
the targets in the shape of arbitrary convex polygon (e.g. triangle, rectangle, etc.), and
make use of it in order to steer a group of multirotor UAV's towards a desired formation.
In addition, we explore the possibilities of maneuvering the formation shape M through
R? and R3, i.e., to have our submanifold position and shape varying over time. These
modifications were not addressed in Montenbruck et al.| (2017) and are thus novel.

We consider n dynamical systems with positions x; in R? (or R?). Our goal throughout
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the chapter is to eventually bring these positions x; towards an evenly spaced, “balanced”
(equidistant) configuration on a given shape M C R? (or M C R3). Thereby, we assume
that M is a smoothly embedded submanifold. In particular, M could be a circle, leading
to a circular formation, a triangle (with smoothed out corners), leading to a triangular
formation, or a portion of a line, leading to a collinear formation.

In the previous work Montenbruck et al.|(2017), the authors introduced the scalar field

=Y Wijln(d(x;,x;)), (5.1)

Jj>i

whereby x denotes the tuple of all positions x; and d (x,-,x j) is the length of the shortest
curve on M joining x; with x;, in resemblance to the potential whose maximizers are the
so-called Fekete points known from mathematics Fekete| (1923)). Therein, the weights
W;; are determined by a weighted connected undirected graph, with W;; denoting the
weight of the edge joining i and j, and the convention that W;; = 0 whenever there is no
such edge. For most of the cases, we will take our graph to be the (undirected) cycle
graph with W;; = Wj; = 1 for j = (i+1)modn and W;; = Wj; = 0 else. The scalar field
[(5.1)| has the purpose of evenly spacing points on M through its gradient flow. If one, in
addition, asymptotically stabilizes M, then one will eventually attain an evenly spaced
configuration on M in a stable fashion. To this end, we studied the convergence properties
of the formation control algorithm

x=r(x) —x+grad¢(r(x)). (5.2)

Therein, r is the smooth retraction onto M". Thus, the control action r(x) —x asymp-
totically brings our positions x; towards M. At the same time, grad ¢ (r(x)), the gradient
vector field of ¢ evaluated at the retraction of x onto M", has the purpose of evenly spac-
ing the points x; on M. Together, these two controls thus bring the points x; towards an
evenly spaced configuration on M, as desired.

The differential equation [(5.2)| has quite strong convergence properties. In particular,
all solutions initialized in the preimage of any regular superlevel set of the potential ¢
under the retraction converge to the desired formation in a stable fashion.

According to the derivation in our previous work Montenbruck et al.[(2017), grad ¢ (r(x))
is computed via

ad(r(x) = Y 0

s = d(r(x), r(x)))

where (x;,x;) — V;; is the velocity vector of the unit speed geodesic (distance on sub-
manifold) joining r(x;) and r(x;).

Therefore, the differential equation to regulate the motion of each agent in the group
is given by

Vi, (5.3)

xi =r(x;) —xi+ Z (5.4)

<xl> )
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Figure 5.1: Cycle graph C¢ for a group of 6 agents.

In the following sections, we introduce three examples of prescribed shapes in 2D
environment as well as an example of a formation shape in 3D environment.

5.2.1 R? Formation: The Circle

In 2D formation cases, the agents in the group communicate through the unweighed
cycle graph (e.g. an example of 6 agents is shown in Fig.[5.1). Let the formation M be
an arbitrary circle embedded in R2, centered at ¢ with the radius e, 1.€.

M = {x; e R?| ||x; — c|| = re}. (5.5)

The (smooth) retraction of a certain agent x; from the tubular neighborhood of the
circle thus is equal to the length r. vector

r(xi)

Te
=——(xi—c)+c. (5.6)
e
For arbitrary two retractions r(x;) and r(x;) on the circular formation, employing the
canonical (Lie) group isomorphism

[cos(a)

sin()

cos(et) —sin(o)

sin(a)  cos(o) .7)

between the circle and the rotation group SO(2), the scaled velocity vector of the geodesic
joining r (x;) and r (x;) can be computed by

1 xr o xe0xi]\ (xi—
—rcd(xi,xj)wjzlog( [’“ o QXJD Wme) (s

i = el[flxj =l 1x;- Xixj | ) |lxi—cl’

where Q denotes the infinitesimal rotation (_(1) (1))
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Figure 5.2: An illustration on a group of 3 agents to converge to a target circle.

Therefore, to form a prescribed circle shape, the control Eq. [(5.4)]is finally given by

Al — n .
Xi= (—rc i CH) (xi—c)+ Z Wy - (log

=t rellxi =

1 s oxee O -1
e
[lxi = cllflxj —cll [xj- S  xi-x;

The computed X;, is employed as the terminal velocity reference in the MPC method
that controls the multirotor UAV (we will introduce the details in latter sections) at each
time step.

For the sake of an intuitive understanding, we hereby give an illustration on the case
of a group of 3 agents to generate a circular formation, as depicted in[5.2] We analyze
the differential equation w.r.t. the agent x; at the certain moment, where we can divide
the motion trend of this agent into 3 parts, i.e. fr,, fx, 70 and f, .

From the illustration, we can simply consider f,,, as the “attractive trend” towards x;
from its retraction r(x;) on the submanifold, while fi, ; and fy, can be regarded as the
“repulsive trends” onto x; generated from its neighbors x; and x;, respectively. Note that
the “repulsive trends” are always onto the tangent space of the “attractive trend” that
leads the agent to the convergent retraction position r(x;). The sum of the 3 “trends” can
be described as %; in Eq. [(5.9)]

(5.9

84



5.2 Formation Control and the Balancing Problem

5.2.2 R? Formation: The Triangle

Apart from the arbitrary circle shape case from the foregoing section, our algorithm
fits for rather arbitrary polygonal formations, e.g. the triangle. Unlike a circular shape
whose retraction can be represented explicitly, we compute the retraction point r(x;) on
a triangular shape by the following procedure:

1. Locate an edge on the triangle that is closest to the position x;;

2. Determine the shortest distance between x; and any arbitrary point on the closest
edge found;

3. Set the point with the shortest distance to x; as the retraction r(x;).

The geodesics d(x;,x;) and their velocity vectors V;; between two agents depend on
their retractions, namely r(x;) and r(x;).
If r(x;) and r(x;) are located on the same edge of the triangle,

d(xi,xj) = [|r(xj) = r(x)l], (5.10a)
Vij= ﬁ (5.10b)
Meanwhile, if 7(x;) and r(x;) are located on two edges that share a vertex V;,
d(xi,xj) = [r(xj) = Vsl + Vs = r(xi), (5.10c)
Vij= —ﬁ (5.10d)

By substituting the Eq. into Eq. the differential equation that represents
the agent motion during the formation period can be computed. The resulting X; of each
agent will be passed into our proposed MPC controller respectively at every time step.

Similarly for an intuitive understanding, we give a second illustration on the case of a
group of 3 agents to generate a triangular formation, as depicted in[5.3] Still, we analyze
the differential equation w.r.t. the agent x; at the certain moment, where we can divide
the motion trend of this agent into 3 parts, i.e. frx;, fx;, and fx,.

From the illustration, we still consider f,.,; as the “attractive trend” towards x; from its
retraction r(x;) on the submanifold, while fxi,» and f,, can be regarded as the “repulsive
trends” onto x; generated from its neighbors x; and x;, respectively.

Differently from the circular case, we cannot always find the “repulsive trends” onto
the tangent space of the “attractive trend” that leads the agent to the convergent retraction
position r(x;) in polygonal cases, since an arbitrary polygon is not a continuous geom-
etry in submanifold. Hence, the “repulsive trends” are defined in parallel to the edge
where r(x;) is located at the certain moment. Similarly, the sum of the 3 “trends” is still
described as x; in Eq.
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Figure 5.3: An illustration on a group of 3 agents to converge to a target triangle.

5.2.3 R? Formation: The Rectangle

The formation of a rectangular or other polygonal shape can be implemented through a
similar algorithm as what was shown for the triangle.

For a rectangle, the retraction r(x;) can first be computed by finding the edge that is
closest to x; and solving a minimization problem, same as in Sec. [5.2.2] The geodesics,
arc lengths, and velocity vectors can be computed based on the relative distance between
r(x;) and r(x;).

If r(x;) and r(x;) are located on the same edge or if (x;) and r(x;) are located on two
neighboring edges that share a vertex Vi, we employ [(53.10)]

Otherwise, if 7(x;) and r(x;) are located on two edges with no shared vertex but linked
by the edge whose vertices are Vj; and V;;,

d(xi,x;) = [[r(x;) = Vil + [IVij = Viill + [[Vii — r(x3) ] (5.11a)
Vi —r(x;)
Vii=z —— . (5.11b)
Y Vi — r (i)

Finally, the differential equation of motion can be computed by substituting Eq.
into Eq.[(5.4)] The output of Eq[(5.4)] namely the computed velocity vector x; of an
agent in the group, will be employed as the terminal velocity reference in a MPC method
to control the multirotor UAVs.
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5.2.4 R? Formation: The Convex Polygon

The two cases above from the foregoing sections, namely the triangular and rectangular
formations, can be described as rather arbitrary polygonal formations. In this section,
we demonstrate a general expression for this kind of formation. Unlike a circular shape
whose retraction can be represented explicitly, we compute the retraction point r(x;) on
a target polygonal shape by the following algorithm:

1.
2.

3.

Locate an edge on a polygon with n vertice, which is closest to the position x;;

Calculate the shortest distance, between x; and any arbitrary point on the closest
edge found;

Set the point with the shortest distance to x; as the retraction r(x;).

Considering that the geodesic between two agents d(x;,x;), and their relative velocity
vectors V;; depend on their retractions, namely r(x;) and r(x;), then d(x;,x;) and V;; can
be computed via the general formulation displayed in the following algorithm.

1.
2.

10.

11.

12.
13.

For a target polygon with n vertice (n > 3)

If r(x;) and r(x;) are located on the same edge of polygon, then

- d(xiyxj) = [|r(xj) = (x|,

o rlx)—r(x)
Vil = = ) =)
. Else if r(x;) and r(x;) are located on two neighboring edges that share a vertex V;
d(xi,xj) = [|r(xj) = Vsl +[[Vs = r(x) [l
o Veorl)
Vi = = V=T
Forn>4
If r(x;) and r(x;) are located on two edges with no shared vertex but linked by the

edge whose vertice are V;; and V, ;, then

d(xi,xj) = |lr(x;) = Vil + Vi = Vil + Vi — r(x) |l
o V()
Yii = = Wl
Forn>5
If r(x;) and r(x;) are located on two edges with no shared vertex, and the bridge

edges among these two edges are with the vertice V;, V; ;j and V¢,V i, .-V,
where (1 <k, <n—4), then

87



Chapter 5 Distributed Control for Formation Balancing and Multi-UAVs Maneuvering

Figure 5.4: Complete graph Ks for a group of 5 agents.

14 d(xi,xj) = [|r(xj) = Vil + Vi = Vig 4+ 1Vik, = Vig—tll -+ Viky = Vig | +

Vi, = Viill + Vi — r(xi) |l
o Vi)
3. Vij =~ =tar’

The final step to employ the computed velocity as the terminal velocity reference in
a MPC method onto multirotor UAVs is kept identical as the expression in previous
sections.

5.2.5 R3 Formation: The Sphere

Our distributed control algorithm is not only restricted to formations in R?. A group of
multirotor UAVs is, e.g., able to form a spherical shape centered at arbitrary points in R>
from arbitrary initial positions. The communication among the group of agents in R is
based on the complete graph (an example of 5 UAVs is depicted in Fig. [5.4).

Most considerations from the circular formation in R? remain correct. Similarly as

in we employ the (Lie) group isomorphism

sin(f) cos(a) cos(B)cos(ax) —sin(er) sin(fB)cos(a)
sin(B)sin(a) | — |[cos(B)sin(a) cos(er) sin(f)sin(a) (5.12)
cos(fB) —sin(f) 0 cos(ot)

from the sphere onto SO(3). We denote the represenation of a certain retracted x;
as a member of SO(3) by R;. The retraction of a certain agent x; € R? from the tubular
neighborhood of the sphere, whose center locates at an arbitrary point ¢ in R? with the
radius r, is still given by

Ve

r(x;) (xi—c)+c. (5.13)

i =]

Thus we can apply the logarithmic map log : SO(3) — s0(3) to RJTRi, in order to find
the velocity vector of the geodesic joining R; and R;. Since in SO(3), the tangent space
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is no longer 1D, we use the identity 2d(x;,x;)* = —tr(log(RJTRi)z) and can finally obtain
the differential equation of the velocity vector subject to an arbitrary sphere in R>

| rc—||xz-—c||>
Xi=(————)(xi—c
‘ (uxl-—cn (i =c)

2W;;

n (5.14)
+
,; rellxi —c||tr(log(R} R;)?)

log(R]TRi) (xi—c).

Similarly as in all formation cases in R?, we employ the velocity vector computed
from Eq. as the 3D terminal velocity reference in the MPC-based controller for
the multirotor UAVs.

5.3 Model Predictive Control of Multirotors

For the onboard implementation of the formation control algorithm onto a multirotor
UAV platform, we propose a framework based on a model predictive control method to
control the position and attitude of the multirotors.

Following the algorithm we proposed in the last section, we develop a distributed
framework as shown in the right part of Fig.[5.5] For the purpose of robustness and on-
board implementation, a linear MPC method plus a nonlinear geometric approach are
used hierarchically to regulate the translational motion and rotational motion, respec-
tively. A nonlinear wrench observer is further implemented onboard to estimate the
unknown disturbances as external force and torque terms, and pass the estimates to the
controller for compensation. The onboard MPC block on each multirotor (without con-
sidering the formation algorithm) is similar (with minor modifications) to the robust MPC
framework in Chapter@ that combines a linear MPC, a nonlinear attitude controller, and
a 6D force and torque observer.

Since we have introduced the technical details of the onboard MPC block in Chapter
M4, we here only report the highlights (i.e. the core concepts, the implemented control
laws, etc.) in the following technical sections. The overall control system is optimized
to fit the real-time computations into low-power onboard computers. We will show the
experimental verifications later in Sec.

5.3.1 Dynamic Model

We still consider a multirotor UAV as a rigid body (as in|(2.1)), the dynamic equations
of which can be simplified in their Newton-Euler formulation as

xX=v, (5.15a)
mv = —mge3 + RF + br, (5.15b)
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Figure 5.5: The block diagram of a distributed predictive control framework for the bal-
ancing formation of a group of multirotors.

R =RO(w), (5.15¢)
JOo=—-0xJo+1T+bs, (5.15d)

where m and J denote the mass and the inertial matrix of a multirotor, x denotes the trans-
lational position, g is the gravitational acceleration, while e3 = (0,0,1)". The desired
forces and moments to be controlled are denoted by F € R? and 7 = (1, Ty, 7,) ", while
br, considered in the form of an external force in the inertial frame, represents the addi-
tional forces due to external disturbances and unmodeled dynamics, and b is defined as
the external torque in the body frame.

The rotation matrix R, which is an element of the special orthogonal group SO(3)=
{Rec R¥3|R"! =RT, detR = 1}, represents the attitude of the multirotor w.r.t. the
inertial frame.

5.3.2 Position Control

Based on the dynamic model whose translational and rotational motions are de-
coupled, we are able to build a discrete-time model of the translational motion of a multi-
rotor under no disturbance assumption. The discrete-time model sets the acceleration in
3D as the inputs for an optimal control problem (OCP) describing the multirotor motion.
The state é_ consists of the position and velocity along three axes.

In summary, the discrete-time state E and control input i at the k" time step with a
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sampling time At are given by

[x(kAt)
] xgiig F(kAr)
Elk] = ﬁ(m) k] = |(kar) |, (5.16a)
(k) Z(kAr)
| 2(kAt) |
Elk+1] = AS k] + B(a[k] - ge3), (5.16b)
[1 Ar 0 0 0 O]
01 0 0 0 O
0 01 Ar 0 O
A= 000710 0l (5.16¢)
0 0 00 1 A
00 0 0 0 1
[3A2 0 0 ]
At 0 0
0 A% 0
— 2
B 0 As 0 (5.164)
0 0 1A?
L0 0 A
The OCP can be described with a quadratic cost function
i T T
minJ = ) (alk]' Pilk]+dgk] Ledz [k])
dzi = : . (5.17)

+dg[N+1]" Ldg[N +1],
subject to the dynamics explained above and corresponding boundary conditions

Amin S’/_l[k] < dmax, (5.18a)
Emin <E[K] < Emax, (5.18b)

where N represents the length of the receding horizon, d £ [k] denotes the error between
state and reference, and P, L and L; are the weights of input cost, stage state cost and
terminal cost, respectively. The described convex OCP is solved via CVXGen|Mattingley
et al| (2011) using the interior point method. THe vectors dmin,dmax € R> represent
the lower and upper constraints of multirotor accelerations along three axes. Similarly,
Emins Emax € RS denote the position and velocity boundaries. The computed first step
control input #[0] is used in the control law at each time step.

The OCP is designed with adaptive cost weight settings, so that the controller can
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predict a locally optimal trajectory and generate a 3D vector as the control input for
a given path or simply a waypoint. For a waypoint navigation task, the weight of the
terminal cost is automatically set dominant, while the weight of all stage state costs is
set to zero. In contrast, for a path following task, the weight of the terminal cost is set to
Zero.

For the formation tasks of multiple multirotor UAV's, we keep the weight of the stage
cost at zero. Differently from a waypoint task, we consider the output of X, as
the terminal velocity reference in the OCP. Therefore, the translational control based on
MPC of a multirotor becomes a “velocity control” method instead of a “position control”
method.

Assuming that R in equals R, the control law for the multirotor position is
given by
RietF £ mid[0] := F'. (5.19)

Considering that R.er in |(5.19)|is orthonormal and only the third entry of F, i.e., the
thrust 7', is nonzero, one must choose T = ||F’|| in order to suffice|(5.19)l Therefore, the
third column of Ryef = [rls 2 1| can be solved from

F/
3
Fref = T (5.20)
<
and the other two columns of R can be filled orthonormally, for instance by a Gram-
Schmidt process with candidates rfef from the previous equation and r!, > from the
actual rotation R = [rl rr } . To reduce the redundancy, we refer the readers to for

the derivation via the Gram-Schmidt process.

5.3.3 Attitude Control

In this section, we briefly introduce the nonlinear control method for the tracking of the
attitude R of a multirotor. For the sake of brevity, we do not report the technical details
in this chapter. The full derivation and the proof of asymptotic stability of this attitude
controller based on the global output regulation can be found in[3.2.2] The tracking error
is given by E = RRrTef, where R corresponds to the rotation matrix describing the current

attitude, and Rf, computed via the approach introduced in Section represents the
desired attitude.

The goal of the attitude controller is to regulate the output of the attitude (E,eq) —
(1,0) for t — oo, which implies R — Ry and Q(®) — Q(@q) for t — oo.

We employ a backstepping-like method for attitude regulation. Following the deriva-
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tion in[3.2.2} the control law for the multirotor UAV’s attitude is given by

ref’

Kot T o
Ta=J07! (—kwew — %" [RT R+RLR— R Ry
(5.21)

—RTRref] R Ruet — R Reet — 2RrTefR> foxJo,

where kg is a positive gain for the tracking error of the multirotor angular velocity.
The derivative R can be obtained by introducing the current attitude R into
while R inherits from the results of the Gram-Schmidt process. We choose the value
O ref, D et = 0 and @3 ref = Wrer — Weurrent fOr the reference and current yaw attitude v,

and Ry, hence, can be solved via Eq. [(5.15¢)

5.3.4 Disturbance Estimation

In this section, we extend the control approach discussed in the previous subsections
with the inclusion of a nonlinear force/torque external wrench observer using the Fault
Detection and Isolation (FDI) method [Takakura et al.|(1989). The observer estimates all
the system offsets, parameter uncertainties and external disturbances, and passes the esti-
mates to the controller for compensation. The detailed introduction and the experimental
validation on a multirotor UAV can be found in our previous work [Liu ef al.| (2017)).

The technical details have been fully given in[3.4] the stability proof has been shown in
and the implementation of the nonlinear observer with MPC has been presented in
Therefore, we here only show the control laws of the complete control-observation
system.

Following the notations in Chapter[3|and [}, we can write the estimated external wrench
as

Ao = [bf ] —r, (5.22)
bt
where A indicates the estimated value of the variable.
With the inclusion of the external wrench estimate, the position control law in |(5.19)
is given by N N
RF 2 —bp +F' = —bp 4+ mii[0], (5.23)

while the attitude control law in[(5.21)]becomes

—~ K . . . .
T=—b4+JO! ( —Koeo— [RrTefR +RLR—R Ryt — RTRref]

_R;E:eref - Rr—le—:eref - 2R£fR> +oxJo.

(5.24)

The Eq[(5.23)|and Eq[(5.24)] plus the final mapping from desired thrust/torque to mo-
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tor speeds, provide the multirotor with a robust model predictive control method for
high-speed waypoint navigation, path following, and formation tasks.

5.4 Verification

We carried out two stages of experiments, with a connection of human-swarm-interaction
via the finger tracking device, to validate the performance of the proposed distributed
control approach, including simulations and real-world experiments.

At the simulation stage, we validated the presented formation algorithm combined
with the robust MPC method via ROS/Gazebo physical simulations of multiple (up to 6)
multirotor UAV models with artificial parametric mismatch and disturbances. Since the
computational cost of MPC is quite critical for the multirotor UAVs with limited compu-
tational capability in actual experiments, we have set up hardware-in-the-loop (HIL) sim-
ulations using low-power onboard computational units, which ensure that our proposed
control approach can be executed properly at S0Hz within real-world experiments.

At the real-world experiment stage, we have implemented the complete formation
control framework onto up to 4 quadrotor UAV's with onboard computational units (same
as those used in HIL simulations) and carried out a series of experiments on triangular,
rectangular and circular formation.

We tested our proposed approach via circular, triangular and rectangular formations
in a 2D environment, as well as via a spherical formation in a 3D environment. In
this section, we will introduce the detailed configuration of our experimental and HIL
simulation platform, and then demonstrate the results for various shapes, respectively.
For the sake of brevity, we hereby mainly report the results from real-world experiments
if we have tested one formation in both experimental stages. We additionally report
several selected results of the HIL simulation where more than 4 multirotor UAVs are
required.

5.4.1 Human-Swarm Interaction

Since our proposed formation algorithm relies on a prescribed shape instead of relative
distance of targets, which enables a human operator to decide a target formation by
simply “drawing” a geometrical shape. To realize the interaction between human and
multiple aerial robots, a Leap Motion 3D gesture device has been implemented into our
formation control framework, so that the formation shapes for the multirotor UAVs can
be generated via finger/palm motions (shown in Fig. [5.6). In order to command the UAVs
to generate the required formation in a safe and practical way, an end-user (human) needs
to draw the formation shape, e.g. circle, triangle, rectangle, sphere, etc., and also provide
auxiliary information, i.e. the geometric center and the radius (when giving a circle
shape) or the position of vertices (when providing a polygonal shape).

94



5.4 Verification

Figure 5.6: Screenshot from the progress of prescribing a formation shape via human-
robot-interaction. Left: The user draws a circular trajectory via the Leap Motion device.
Right: The trajectory of finger motions is then fitted and matched as a circular shape and
mapped as the target formation for the group of multirotor UAVs.

More specifically, the human-swarm interaction between the operator and a group of
UAVs can be achieved by the following procedures:

1. The “drawing” from the operator through the figure tracking device is first col-
lected as a set of trajectory;

2. The trajectory is passed into a customized curve-fitting program, where the draw-
ing from Leap Motion will be filtered and described in the form of one 2"“-order
polynomial, or a cluster of several 1*'-order polynomials;

3. The polynomials are paired with the geometric shapes: we naively map a 2"%-
order polynomial into a circle, a group of 3 1¥-order polynomials including one
with near-zero slope as triangle, and a group of 4 1%-order polynomials including
two with near-zero slopes as rectangle, etc.;

4. The fitted shape is mapped to the experimental area with proper 3D positions and
implemented onto the group of multirotor UAVs for the target formation.

5.4.2 Experimental Configuration

Up to 4 quadrotor UAVs with 10inch propellers have been set as the platform for a series
of the real-world experiments. Each quadrotor is equipped with an Odroid-XU4 board
with CortexT™-A15 CPUs. Thus all the computations are carried out onboard during the
experiments. We also have carried out several HIL simulations using the Odroid boards
in the same model as implemented on the quadrotors. The complete control approach we
proposed in previous sections has been implemented within a ROS-based framework,
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Figure 5.7: Screenshot on the real-world formation experiment. A group of 4 multirotor
UAVs were commanded to generate a prescribed rectangular formation.

which continuously passes the required motor speed messages at each time step in the
feedback system.

In the cases of real-world, indoor experiments (e.g. in Fig.[5.7), the position data of
a multirotor are passed via the external motion capture system (e.g. Vicon) at 100Hz,
while the attitude data are filtered using an extended Kalman filter from the raw angular
velocity data collected by a low-cost onboard Inertial Measurement Unit (IMU). The
linear acceleration data are also collected by the IMU and then filtered into linear velocity
data at each time step. The motor speeds are computed and passed to the open-loop
brushless motor controllers at the frequency of the proposed attitude controller and finally
to the embedded motors.

Meanwhile, in HIL simulations, the motor speed messages obtained from the proposed
controller are passed into the built multirotor models in Gazebo. Differently from the
real experiments, we have employed the hexarotor models in the virtual tests, thus the
desired thrust/torque computed from Eq[(5.23)] and Eq[(5.24)] are mapped into 6 motor
speed values at each time step. The position data of each multirotor are generated with
no noise, since in real experiments we regard the position data from the motion capture
system as “ground truth”. The IMU data are generated with artificial gaussian noises,
drift and initial bias to simulate a practical onboard IMU. In the simulations of multiple
hexarotor UAVs, each UAV is able to obtain its own position, (raw) linear acceleration
and (raw) angular velocity data, as well as the position data of its two neighbors at 100Hz.

The average computational cost of our robust MPC approach is approximate 0.0149s.
Therefore, each Odroid board is set to execute the MPC position controller at S0Hz, with
a receding horizon of 15 steps. The attitude controller computes the motor speed com-
mands at 100Hz with the usage of collected and filtered data. The decision on the present
formation is also made at a S0Hz frequency. All the control parameters on each multiro-
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tor are kept identical and fixed with no change during the whole series of experiments,
i.e. the real-world experiments and simulations.

In the real-world experiments, the disturbances due to the hardware, the delay on wire-
less communication, and the external disturbances, e.g. winds generated from the group
of multirotors and from the ventilation system, highly affect the control performance.
The resulting trajectories, therefore, would not be as perfect as the results in simula-
tions. However, the convergence of our proposed approach has still been experimentally
validated.

5.4.3 Triangular Formation

In the first case, several quadrotor UAVs were commanded to take off from random
initial positions and generate a 2D triangular formation at 1m height. We employed 3
quadrotors in the experiments for an intuitive visualization. The switch of experimental
tasks on each UAV was operated together via a joystick. Once the formation task was
launched, the UAVs started to decide upon their motions online and subsequently moved
using the distributed MPC approach that we have presented in previous sections.

The shape of the UAV formation was first decided before the formation task started. In
this case, the end-user provided a triangular shape through the finger movement detected
via the VR device and then defined the position of vertices. During the experiment, a
triangle with vertices of (0,1.2,1)7, (#,—Oﬁ,l)i and (—%5,—0.6, DT, wrt. the
prescribed target center, was generated. Despite that our formation control algorithm is
theoretically convergent for an arbitrary triangle, we set the formation shape not overly
blunt or sharp so that the collisions among multirotors can be avoided.

We carried out 10 trials on the triangular formation, where the initial conditions of
multirotors were randomly set. The formation approach successfully converged in all
the trials during the experiments. For the sake of brevity, we hereby only illustrate one
trial of the triangular formation in Fig. The multirotors were commanded to start
the formation task from the initial condition of one line array. The UAVs converged to
three equilibrium positions (the red bubbles in Fig.[5.8)) on the edges of the prescribed
triangle whose horizontal projections are the calculated retraction points on the edge of
the triangle shape. The velocity reference of each multirotor passed to the MPC was
computed negligible at the equilibrium position, thus each multirotor kept hovering.

In the real-world experiments, the UAVs sometimes oscillated due to the external dis-
turbance and the loss of measurements due to the delay of wireless communication.
There were also slight drifts during the hovering (within a error ranging in £5cm).
Largely, the 3 multirotors are seen to retract into the target triangle and converge to
their equilibrium position. Compared to the auxiliary triangle (solid black lines), the 3
multirotors are seen to retract into a tilted triangle, since in our formation approach the
multirotors are commanded to the configuration with equal geodesics on the submanifold
rather than to reach the vertice.
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Figure 5.8: Real-robot-experiment result: mutlirotor trajectories of a triangular forma-
tion. The assembly of solid black lines represent the prescribed triangle shape. The blue
bubbles show the initial position where the multirotors hovered before the start of forma-
tion task. The solid blue lines represent the flight trajectories of each multirotor. The red
bubbles are the stable positions of UAVs in the target triangular formation. The green
dashed line visualizes the geodesic between two multirotors.

In addition, our proposed approach has no limits that the number of a group of robots
should be equal to the number of edges on the target polygon to form. An intuitive
instance can be seen in Fig.[5.9] In this case, 5 multirotors were commanded to form a
triangle from a line initial condition. One of the multirotors converged to the vertex of
the target triangle while other 4 UAVs at the end converged to somewhere at the edges,
where each agent kept the equal-geodesic condition.
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Figure 5.9: Simulation result: mutlirotor trajectories of a triangular formation with 5
UAVs. The assembly of solid black lines represent the prescribed triangle shape. The
blue bubbles show the initial position where the multirotors hovered before the start of
formation task. The red bubbles are the stable positions of UAVs in the target triangular
formation. The solid blue lines represent the flight trajectories of each multirotor.

5.4.4 Rectangular Formation

In the second case, we employed 4 hexarotors to form a rectangle shape. The resulting
trajectories of UAVs in a simulation can be found in Fig. [5.10] The shape is decided as a
rectangle with vertices of (—1,—1,1)", (=1,1,1)T, (1,1,1)", and (1,—1,1) " w.r.t. the
prescribed target center. In this trial, the multirotors started the formation task from the
hovering points (—1.5,—0.6,1)", (=1.5,1,1)7, (1.5,0.6,1)7, and (1.5,—1,1)". Each
multirotor converged to an equilibrium position whose horizontal projection is a cal-
culated retraction point on one edge of the rectangle and hovered keeping equivalent
distances (on the submanifold) with both of its neighbor UAVs.

In the real-robot experiments, we commanded 4 quadrotors to achieve a rectangular
formation. Still, 10 trials have been carried out. The resulting trajectories of UAVs in one
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Figure 5.10: Simulation result: mutlirotor trajectories of a rectangular formation. The
assembly of solid black lines represent the prescribed rectangle shape. The initial posi-
tion (blue bubbles) of multirotors are (—1.5,-0.6,1)", (=1.5,1,1)T, (1.5,0.6,1) ", and
(1.5,—1,1)7, respectively. The solid blue lines represent the flight trajectories. The red
bubbles are the positions of UAVs when the formation task ends.

of the trials can be found in Fig. [5.11] The shape is decided as a rectangle with vertices
of (=1,—1,1)", (=1,1,1)T, (1,1,1)T, and (1,—1,1)" relative to the shape center. In
this trial, the UAVs started the formation task from 3 hovering points on one side of the
target rectangle, and the rest from the opposite side. Each multirotor converged to an
equilibrium position whose horizontal projection is a calculated retraction point on one
edge of the rectangle and hovered with equal distances (on the submanifold) to both of
its neighbor UAVs.

Without the auxiliary rectangle (solid black lines), the 4 UAVs are seen to converge to
a tilted and smaller rectangular shape, since the euclidian distances between the neigh-
bouring multirotors are shorter than the geodesics on the submanifold.
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Figure 5.11: Real-robot-experiment result: mutlirotor trajectories of a rectangular for-
mation. The assembly of solid black lines represent the prescribed rectangle shape. The
blue bubbles show the initial position where the multirotors hovered before the start of
formation task. The solid blue lines represent the flight trajectories of each multirotor.
The red bubbles are the stable positions of UAVs in the target rectangular formation. The
green dashed line visualizes the geodesic between two multirotors.

5.4.5 Circular Formation

In the third case, 3 quadrotors were employed to form a circle. Similarly as in the cases
we presented in the previous sections, the end-user drew a circle and set up the circular
center for the group of UAVs. 10 successful trials have been carried out. The resulting
trajectories in one circular formation case are displayed in Fig.[5.12]

It can be inferred from the results that the 3 quadrotors enabled to form the prescribed
circle in convergence. Thus the quadrotors kept hovering at the arc on the circle in a
balanced configuration (equidistant when measured with geodesic arc length).

We hereby study three more simulation cases on circular formation. More specifically,
we employed up to 6 onboard computers (with the same configurations as in the real-
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Figure 5.12: Real-robot-experiment result: mutlirotor trajectories of a circular formation.
The assembly of solid black lines represent the prescribed circular shape. The blue bub-
bles show the initial position where the multirotors hovered before the start of formation
task. The solid blue lines represent the flight trajectories of each multirotor. The red bub-
bles are the stable positions of UAVs in the target circular formation. The green dashed
line visualizes the geodesic between two multirotors.

world experiments) to simulate up to 6 multirotor UAVs, and commanded them to fly
through obstacles in a time-varying circular formation.

In the first simulation trial, 5 multirotors were commanded to hover at their start points
(=2,1.5,1)7, (=1,1.5,1)T, (0,1.5,1)T, (1,1.5,1)", and (2,1.5,1)", then they were
required to form a circle shape (as the solid black lines in Fig.[5.13). The resulting
trajectories (solid blue lines) show that the UAVs finally converged to the prescribed
circle, though seen as an equidistant pentagon.

In the second simulation, a group of 6 UAVs were commanded to generate a circular
formation. Similarly as in the real experiments, the communication between neighbor-
ing UAVs is based on the circle graph. The trajectories of multirotors are displayed in
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Figure 5.13: Simulation result: mutlirotor trajectories of a circular formation. The as-
sembly of solid black lines represent the prescribed circle shape. The initial position
(blue bubbles) of multirotors are (—2,1.5,1)", (=1,1.5,1)T, (0,1.5,1)7, (1,1.5,1) T,
and (2,1.5,1)7, respectively. The solid blue lines represent the flight trajectories. The
red bubbles are the positions of UAVs when the formation task ends.

Fig.

The multirotors succeeded in converging to a balanced circular shape from arbitrary
initial positions.

In additional, by utilizing the characteristic of the time-varying formation shape, we
prescribed a trajectory of the center and the radius of the shape (or vertices for polygonal
shapes). In this case (shown in Fig.[5.15)), the 3 multirotors were first commanded to
retract into a circle of 1.3m radius and then were required to fly (in a balanced, circular
configuration) through a 2m-wide gap between two gateposts. Since the circle of 1.3m
radius is too large for the gatepost obstacles, we prescribed a time-varying (virtual) target
that shrinks into a circle of 0.5m radius when the obstacles are approaching, and expands
back to a circle of 1.2m radius after the multirotors fly through the obstacles (as shown
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Figure 5.14: Simulation result: mutlirotor trajectories of a circular formation. The assem-
bly of solid black lines represent the prescribed circle shape. The initial position (blue
bubbles) of multirotors are (—1.5,—1,1)", (-=1.5,0,1)T, (=1.5,1,1)T, (1.5,1,1)7,
(1.5,0,1)T, and (1.5,—1,1) T, respectively. The solid blue lines represent the flight tra-
jectories. The red bubbles are the positions of UAVs when the formation task ends.

in Fig. [5.16).

5.4.6 Spherical Formation

Apart from the experiments on the cases of the formation in R?, we extended our con-
trol algorithm and adapted it to formation maneuvers in a 3D environment. We hereby
demonstrate a case study on a spherical formation in R via a simulation of 5 hexarotor
UAVs. Differently from the R? cases, the communication between the multirotors in R
is based on the complete graph as we have briefly introduced in Sec. [5.2.5] The resulting
trajectories of the group of 5 UAVs are illustrated in Fig.

In the experiment, the multirotors all took off and hovered at 1m height. They were
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Figure 5.15: Screenshot of the “Moving formation through obstacles” simulation. 3 mul-
tirotor UAVs shrank to a circle of 0.5m radius at 1m height in order to fly through the
obstacles.

then commanded to form a sphere in a 3D environment. Although the geometry and the
radius of the formation shape is usually decided offline, it is not necessary to keep the
target shape static. In this case, the center and the radius of the target sphere was set
changing.

In the first stage, the target sphere (the color meshed sphere in Fig. [5.174) was center-
ing at (0,1,2) " with a radius of Im. The UAVs succeeded in converging to the target
sphere from their initial positions (the blue bubbles). In the coming second stage, the
center of the target sphere was kept but we expanded the radius to 1.3m. In Fig. [5.17b]
we see that the UAVs reached balanced positions (the red bubbles) and converged to the
surface of the expanded sphere. The multirotors were finally commanded to form a 1m-
radius sphere centered at (0, —0.2,1.6) " (the color meshed sphere in Fig. in the
last stage.

5.5 Conclusion

In this chapter, we proposed a distributed formation control approach for a group of
multirotor UAVs. The approach enables them to simultaneously achieve a balanced con-
figuration on a prescribed shape, either in 2-dimensional (2D) or 3D. We combined our
formation algorithm with a robust model predictive control method and implemented the
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Figure 5.16: Simulation result: the horizontal projection of the resulting trajectories of
3 multirotor UAVs in the “Moving formation through obstacles” experiment. The blue
bubbles represent the initial positions of UAVs. The dashed blue lines represent the tra-
jectories of multirotors following the moving circular formation maneuvers. The solid
black lines and the red bubbles display the target circle shape submanifold and the posi-
tions of 3 multirotors at 10s, 14s and 18s, respectively. The solid blue boxes represent
the two gatepost obstacles.

complete framework on low-power onboard computational units. Both hardware-in-the-
loop simulations and real-world experiments have validated that the distributed formation
control approach is feasible for arbitrary, time-varying circular, triangular, rectangular or
spherical formations.

A supplementary video demonstration of this work can be found onlineﬂ

Future work could include an extension of the formation algorithm in the 3D scenar-
ios with multiple obstacles. Another potential improvement is to extend the formation

'https://drive.google.com/open?id=0B4QuufsZAdQadEpHRT JORmk3T1U, accessed March-2017
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Figure 5.17: Simulation result: multirotor trajectories in spherical formation in R. The
solid blue lines represent the trajectories of multirotors following the moving spheri-
cal formation maneuvers. The blue bubbles are the initial positions of UAVs. The red
bubbles are the positions of UAVs when they converged to the target sphere.

control approach with a human operator directing the swarm by “drawing” the desired
(time-varying) formation shape and trajectory online.
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Chapter 6

Conclusions

6.1 Summary

This thesis focuses on the control problem for the nontrivial tasks for multirotor UAVs.
The major concerns of this thesis have been i) the feasibility of the multirotor to achieve
complicated tasks, such as aggressive path following, collision-free navigation, and for-
mation, etc., in the complex scenarios with disturbances and obstacles; ii) the efficiency
and the robustness of the onboard implemented flight control approaches. We have
worked on nonlinear control approaches to aggressive quadrotor maneuvers, first im-
plemented them on one quadrotor and later extended to multiple multirotors, in order
to enable a group of UAVs to achieve nontrivial tasks robustly. The proposed nonlinear
control approaches provide versatility and robustness for multiple UAVs to achieve tasks
autonomously in the environment with unknown disturbances and obstacles. Further-
more, these control approaches are sufficiently efficient to be implemented onboard the
UAVs that have limited computational capability and executed in an online fashion.

In Chapter 3] we have started from solving the control problem for the multirotor UAV
to stably achieve aggressive maneuvers during the path following and waypoint naviga-
tion tasks. The resulting control framework consists of a nonlinear attitude controller
based on the solutions to global regulation problems for rigid body rotations SO3, a
backstepping-like position controller, and a model predictive control (MPC) based online
trajectory planner. The proposed control approach enables a quadrotor to autonomously
follow the prescribed path with large tilts over 40°. We have further extended the nonlin-
ear control framework to an improvement with a combination of a 6-dimensional (6D)
force and torque observer, in order to lead the quadrotor to robust flight performance
against unknown, time-varying disturbances, such as wind gusts, model mismatches,
low battery voltage, etc. The complete nonlinear control approach has been validated
not only via theoretical proofs of asymptotic stability, but also via a series of intensive
real-robot experiments.

In Chapter 4, we have improved the versatility of the control for multirotor UAV to
autonomous, collision-free flights in 3D environment. We have proposed a fast MPC
method with nonlinear obstacle avoiding constraints for the multirotor UAV, which en-
ables the multirotor to achieve tasks in the complicated environment. The MPC method
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is onboard implemented on the quadrotor with a low-power computer so that the UAV
can decide the strategy of avoiding obstacles based on the online update of the obstacle
positions. By autonomously choosing to fly over the obstacles that are not too tall, or to
fly around the tall obstacles, the UAV can achieve the waypoint navigation tasks in the
scenarios with multiple obstacles at a speed that is not slow. The proposed MPC method
has been experimentally validated via the trials in the area with randomly located box
obstacles.

Finally in Chapter[5] we have extended our research from control for a single multiro-
tor UAV to the control for a group of UAVs. We have proposed a distributed formation
algorithm for the multi-agent system to retract and converge to a target shape in 2D and
3D environment and implemented the formation control approach onto multiple multi-
rotors. With the combination of an onboard MPC method, the resulting approach leads a
couple of multirotor UAVs to simultaneously converging to a target formation shape. In
addition, by applying the human robot interaction device, the operator is able to “draw”
a target shape, e.g. circle, triangle, rectangle, etc., via the finger motions. The presented
formation control approach has been verified through a series of case studies based on
hardware-in-the-loop simulations and real-robot experiments.

As a conclusion, in this thesis, we have focused on developing and validating the
efficient and robust nonlinear control approaches for the multirotor UAVs to achieve
nontrivial tasks. The control approaches we have proposed enable one multirotor UAV
to perform aggressive waypoint navigation and path following tasks in the scenarios with
disturbances and obstacles. The proposed approaches also enable a group of UAVs to fly
in formation via following the “drawings” by the operator.

6.2 Future Work

Although certain promising results have been obtained, the approaches that we have
proposed in this thesis still have their limitations. Meanwhile, several questions on our
research topics are open and worthwhile to be exploited. Largely, we have discussed
the limitations and potential improvements related to the work in the corresponding con-
clusion sections in individual chapters. We hereby discuss more general questions, and
future research directions related to UAVs.

One open question is the aggressive maneuvers for multirotor UAV's with only onboard
sensors. Since in this thesis we focus on the development and the validation of control
algorithms, we still rely on the external tracking systems to provide the real-time position
data of the UAVs. However, which restricts the flight of the UAVs to the areas that
are equipped with infrared cameras or GPS signals. In order to extend the UAVs to a
full autonomy in those GPS-denied areas, a potential solution is to equip the vision-
based sensors, e.g. monocular and stereo cameras, or light-weight light detection and
ranging (LIDAR) sensors onboard the UAVs for the purpose of self-localization. Much
research has been carried out on the visual SLAM topic, however in most cases the
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accuracy of the position estimates is not high enough to support the aggressive maneuvers
of multirotor UAVs. Therefore, the tuning of flight controller has to be very conservative
for the purpose of safety, which sacrifices the aggressiveness of the UAV maneuvering.
So far, the solutions that combine the vision-based techniques together with the inertial
sensors, i.e. IMU, are promising for the aggressive UAV maneuvers Shen et al.| (2013),
but those methods are still not robust in outdoor environment. Hence, compared to the
implementation of novel control theories onto a single multirotor UAV, interdisciplinary
research on vision-inertial-based aggressive UAV maneuvers is becoming popular.

A second open question can be the development of hybrid aerial robotics. The concept
“hybrid” should not be restricted to a multirotor UAV that is designed waterproof and is
able to dive into the water as a submarine. Instead, an UAV with at least two motion
styles would be impressive. A possible solution can be a modular design of UAV that
consists of two or more independent mobile robots, one multirotor and one wheeled robot
for instance. Meanwhile, bio-inspired designs can be another potential to be exploited.

A third open question that attracts the keen interest from researchers is the cooperative
motion and swarm of a networked robotics system, including the human-robot interaction
among the operators and the networked system, namely human-swarm interaction. The
development and implementation of robust formation control algorithms not only lead
to the impressive demonstrations in air above the audience, but also enable the UAVs to
achieve the complicated tasks that could not be completed separately, such as transport-
ing heavy goods. In this thesis we have carried out early-stage research on distributed
formation control for multiple UAVs and human-swarm interaction, while the improve-
ment on the robustness of formation/swarm algorithms, as well as the closer and more
user-friendly interaction concepts between the operators and UAVs, are two promising
potential topics. It would be worthwhile to exploit these topics, so that in the near future,
the end-user can operate a large group of UAVs to swarm in different shapes among the
skyscrapers, by only using several fingers.
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