6,292 research outputs found

    The application of virtual reality and augmented reality in oral & maxillofacial surgery

    Get PDF
    Background: Virtual reality is the science of creating a virtual environment for the assessment of various anatomical regions of the body for the diagnosis, planning and surgical training. Augmented reality is the superimposition of a 3D real environment specific to individual patient onto the surgical filed using semi-transparent glasses to augment the virtual scene.. The aim of this study is to provide an over view of the literature on the application of virtual and augmented reality in oral & maxillofacial surgery. Methods: We reviewed the literature and the existing database using Ovid MEDLINE search, Cochran Library and PubMed. All the studies in the English literature in the last 10 years, from 2009 to 2019 were included. Results: We identified 101 articles related the broad application of virtual reality in oral & maxillofacial surgery. These included the following: Eight systematic reviews, 4 expert reviews, 9 case reports, 5 retrospective surveys, 2 historical perspectives, 13 manuscripts on virtual education and training, 5 on haptic technology, 4 on augmented reality, 10 on image fusion, 41 articles on the prediction planning for orthognathic surgery and maxillofacial reconstruction. Dental implantology and orthognathic surgery are the most frequent applications of virtual reality and augmented reality. Virtual planning improved the accuracy of inserting dental implants using either a statistic guidance or dynamic navigation. In orthognathic surgery, prediction planning and intraoperative navigation are the main applications of virtual reality. Virtual reality has been utilised to improve the delivery of education and the quality of training in oral & maxillofacial surgery by creating a virtual environment of the surgical procedure. Haptic feedback provided an additional immersive reality to improve manual dexterity and improve clinical training. Conclusion: Virtual and augmented reality have contributed to the planning of maxillofacial procedures and surgery training. Few articles highlighted the importance of this technology in improving the quality of patients’ care. There are limited prospective randomized studies comparing the impact of virtual reality with the standard methods in delivering oral surgery education

    Augmented reality in clinical dental training and education

    Get PDF
    Dentistry is a profession that requires coordinated motor skills in addition to acquired knowledge for ideal execution of any treatment plan for patients. Learning experiences have been modified over a period of time for students as well as for the healthcare providers. Conventional pre-clinical training employed the use of cadavers, but financial, ethical and supervisory constraints have become a major shortcoming. With the adaptation of technology in dentistry, pre-clinical training has now employed simulation. It provides the opportunity for students to develop psychomotor skills for procedures by practising pre-clinical, standardised learning competencies before they engage in patient-management. Simulation involves computer-aided learning, augmented reality and virtual reality, which are largely taking over pre-clinical teaching. Augmented reality is commonly being employed in maxillofacial, restorative, tooth morphology learning and mastering technique for administering local anaesthesia in dentistry. Virtual reality is being employed particularly in pre-treatment implant planning and dental education for students. Use of haptic technology, like robotics, is also gaining popularity, and facilitates a two-way communication between the user and the environment to better simulate the clinical setting for learning purposes

    Use of virtual reality in dentistry: Literature review

    Get PDF
    Virtual reality (VR) allows its application in different fields, such as healthcare. In dentistry, this technology has enormous potential, in the educational and clinical setting. Its applications are of growing interest and importance in dentistry, especially in teaching, since it offers interactivity and high effectiveness in learning. In the treatment of dental treatment phobia, this technology is also promising, as it shows satisfactory results, and in the surgical area it has a high potential for complex treatments, allowing predictable and safe results. However, future studies should focus on establishing technological standards with high data quality and on the development of approved applications for clinical routine. Therefore, the aim of this literature review was to provide clarifications on the knowledge and scientific development of VR in dentistry

    Clinical Computing in Dentistry

    Get PDF
    Machines can seldom replace dentists in rightly handling the patients with optimistic human insight, considerations, creative planning and the monitoring of psychological acceptance and comfort experienced by any patient with the rehabilitation done. Intelligent computer related armamentarium with software can still help dental practitioners detect typical medical and dental signs and classify them according to certain rules more effectively. Based on image analysis algorithms, CAD systems can be used to look for signs of any tooth pathology that can be spotted in dental X-ray or cone beam computed tomography (CBCT) images. Applying computer vision algorithms to high-resolution CBCT slices helps to a great extent in diagnosing periapical lesions like granulomas, cysts, etc., and can help creating 3-D model of a root canal that reflects its shape with sufficient precision facilitating an optimum endodontic treatment planning. Hence, computer vision systems are already able to speed up the diagnostic process and provide a valuable second opinion in doubtful cases. This can lead a dentist and the patient thoroughly experience an optimistic acceptance and satisfaction of the treatment done

    Haptic-Enhanced Learning in Preclinical Operative Dentistry

    Get PDF
    Background: Virtual reality haptic simulators represent a new paradigm in dental education that may potentially impact the rate and efficiency of basic skill acquisition, as well as pedagogically influence the various aspects of students’ preclinical experience. However, the evidence to support their efficiency and inform their implementation is still limited. Objectives: This thesis set out to empirically examine how haptic VR simulator (Simodont®) can enhance the preclinical dental education experience particularly in the context of operative dentistry. We specify 4 distinct research themes to explore, namely: simulator validity (face, content and predictive), human factors in 3D stereoscopic display, motor skill acquisition, and curriculum integration. Methods: Chapter 3 explores the face and content validity of Simodont® haptic dental simulator among a group of postgraduate dental students. Chapter 4 examines the predictive utility of Simodont® in predicting subsequent preclinical and clinical performance. The results indicate the potential utility of the simulator in predicting future clinical dental performance among undergraduate students. Chapter 5 investigates the role of stereopsis in dentistry from two different perspectives via two studies. Chapter 6 explores the effect of qualitatively different types of pedagogical feedback on the training, transfer and retention of basic manual dexterity dental skills. The results indicate that the acquisition and retention of basic dental motor skills in novice trainees is best optimised through a combination of instructor and visualdisplay VR-driven feedback. A pedagogical model for integration of haptic dental simulator into the dental curriculum has been proposed in Chapter 7. Conclusion: The findings from this thesis provide new insights into the utility of the haptic virtual reality simulator in undergraduate preclinical dental education. Haptic simulators have promising potential as a pedagogical tool in undergraduate dentistry that complements the existing simulation methods. Integration of haptic VR simulators into the dental curriculum has to be informed by sound pedagogical principles and mapped into specific learning objectives
    corecore