61 research outputs found

    Towards data exchange formats for learning experiences in manufacturing workplaces

    Get PDF
    Manufacturing industries are currently transforming, most notably through the introduction of advanced machinery and increasing degrees of au- tomation. This has caused a shift in skills required, calling for a skills gap to be filled. Learning technology needs to embrace this change and with this contri- bution, we propose a process model for learning by experience to understand and explain learning under these changed conditions. To put this process into practice, we propose two interchange formats for capturing, sharing, and re- enacting pervasive learning activities and for describing workplaces with in- volved things, persons, places, devices, apps, and their set-up

    3D-LIVE : live interactions through 3D visual environments

    Get PDF
    This paper explores Future Internet (FI) 3D-Media technologies and Internet of Things (IoT) in real and virtual environments in order to sense and experiment Real-Time interaction within live situations. The combination of FI testbeds and Living Labs (LL) would enable both researchers and users to explore capacities to enter the 3D Tele-Immersive (TI) application market and to establish new requirements for FI technology and infrastructure. It is expected that combining both FI technology pull and TI market pull would promote and accelerate the creation and adoption, by user communities such as sport practitioners, of innovative TI Services within sport events

    Exploring Mixed-methods Instruments for Performance Evaluation of Immersive Collaborative Environments

    Get PDF
    Presently, there is a clear trend for both businesses and public institutions to move towards open or collaborative innovation. Nevertheless, engaging all stakeholders, especially users, for cocreating innovative solutions and usage scenarios is, as revealed in previous studies, not so obvious. We do believe that Immersive and Collaborative Environments (ICEs) based on the use of Virtual, Augmented and Mixed Reality technologies would be the right place for co-creating, exploring, experimenting and evaluating innovative ideas and concepts in order to quickly reach a common understanding. However, there is a need to design a proper method and instruments that would allow evaluating and comparing ICEs. Our previous paper presented the outcomes of an investigation to identifying and disentangling factors characterising a group immersion and collaboration in the context of co-creation. As a step further, this paper reports about our exploratory study towards the design of mixed methods quantitative and qualitative instruments for the evaluation of Immersive and Collaborative Environments (ICE) based on previously identified factors

    3D-LIVE : live interactions through 3D visual environments

    Get PDF
    This paper explores Future Internet (FI) 3D-Media technologies and Internet of Things (IoT) in real and virtual environments in order to sense and experiment Real-Time interaction within live situations. The combination of FI testbeds and Living Labs (LL) would enable both researchers and users to explore capacities to enter the 3D Tele-Immersive (TI) application market and to establish new requirements for FI technology and infrastructure. It is expected that combining both FI technology pull and TI market pull would promote and accelerate the creation and adoption, by user communities such as sport practitioners, of innovative TI Services within sport events

    Innovative User eXperience approach for the design of a multi-sided platform

    Get PDF
    Industry 4.0 seeks both to digitalize SMEs and to bring companies closer to their market. One of the responses is the Do-it-together (DIT) concept, which combines co-creation, and open-manufacturing. This concept is transposed in the form of a physical and digital INEDIT demonstrator (EU project). This study analyses the design modalities of multimodal interfaces and multi-platform (web app, AR mobile app, VR app) supporting the DIT process. The study focuses on the realization of an original UX design protocol allowing to design and evaluate by use this potential “multi-sided” platform. The results allow us to better understand the modalities of implementation of such an approach mixing Action Research and Living Lab for industry. We can appreciate over time the commitment of the stakeholders and their ability to co-create such a platform. This work allows us to draw recommendations for the development of support technologies for socialmanufacturing and provides argument for a Multi-UX scale

    Multimodal teaching, learning and training in virtual reality: a review and case study

    Get PDF
    It is becoming increasingly prevalent in digital learning research to encompass an array of different meanings, spaces, processes, and teaching strategies for discerning a global perspective on constructing the student learning experience. Multimodality is an emergent phenomenon that may influence how digital learning is designed, especially when employed in highly interactive and immersive learning environments such as Virtual Reality (VR). VR environments may aid students' efforts to be active learners through consciously attending to, and reflecting on, critique leveraging reflexivity and novel meaning-making most likely to lead to a conceptual change. This paper employs eleven industrial case-studies to highlight the application of multimodal VR-based teaching and training as a pedagogically rich strategy that may be designed, mapped and visualized through distinct VR-design elements and features. The outcomes of the use cases contribute to discern in-VR multimodal teaching as an emerging discourse that couples system design-based paradigms with embodied, situated and reflective praxis in spatial, emotional and temporal VR learning environments

    Proposing an Analysis System to Monitoring Weightlifting Based on Training (Snatch and Clean and Jerk)

    Get PDF
    Analysis system of sports players is very important for individuals in weightlifting. Assessment of player and strength is important for the performance of weightlifting. This paper proposes an analytical method for weightlifters with check-by-frame video. This analysis system can compute the major steps of seven positions in both snatch and clean and jerk methods in frame-video weightlifting monitoring of movements. Each user can compute the major steps of the seven positions of Hu moments among two frames in the video during training, and the Euclidian distance can be computed for the Hu moment values and lifting moment values in the snatch and clean and jerk methods during training. The outcome of the proposed system shows on efficient, accurate results in monitoring movement analysis in weightlifting for playersduring training in this area

    Objects, worlds, and students: virtual interaction in education

    Get PDF
    The main aim of this study is to form a complete taxonomy of the types of interactions that relate to the use of a virtual world for engaging learning experiences, when blended and hybrid learning methods are to be used. In order to investigate this topic more accurately and effectively, we distinguish four dimensions of interactions based on the context in which these occur, and the involved parts: in-world and in-class, user-to-user and user-to-world interactions. In order to conduct investigation into this topic and form a view of the interactions as clear as possible, we observed a cohort of 15 undergraduate Computer Science students while using an OpenSim-based institutionally hosted virtual world. Moreover, we ran a survey where 50 students were asked to indicate their opinion and feelings about their in-world experience. The results of our study highlight that educators and instructors need to plan their in-world learning activities very carefully and with a focus on interactions if engaging activities are what they want to offer their students. Additionally, it seems that student interactions with the content of the virtual world and the in-class student-to-student interactions, have stronger impact on students’ engagement when hybrid methods are used

    Enhanced device-based 3D object manipulation technique for handheld mobile augmented reality

    Get PDF
    3D object manipulation is one of the most important tasks for handheld mobile Augmented Reality (AR) towards its practical potential, especially for realworld assembly support. In this context, techniques used to manipulate 3D object is an important research area. Therefore, this study developed an improved device based interaction technique within handheld mobile AR interfaces to solve the large range 3D object rotation problem as well as issues related to 3D object position and orientation deviations in manipulating 3D object. The research firstly enhanced the existing device-based 3D object rotation technique with an innovative control structure that utilizes the handheld mobile device tilting and skewing amplitudes to determine the rotation axes and directions of the 3D object. Whenever the device is tilted or skewed exceeding the threshold values of the amplitudes, the 3D object rotation will start continuously with a pre-defined angular speed per second to prevent over-rotation of the handheld mobile device. This over-rotation is a common occurrence when using the existing technique to perform large-range 3D object rotations. The problem of over-rotation of the handheld mobile device needs to be solved since it causes a 3D object registration error and a 3D object display issue where the 3D object does not appear consistent within the user’s range of view. Secondly, restructuring the existing device-based 3D object manipulation technique was done by separating the degrees of freedom (DOF) of the 3D object translation and rotation to prevent the 3D object position and orientation deviations caused by the DOF integration that utilizes the same control structure for both tasks. Next, an improved device-based interaction technique, with better performance on task completion time for 3D object rotation unilaterally and 3D object manipulation comprehensively within handheld mobile AR interfaces was developed. A pilot test was carried out before other main tests to determine several pre-defined values designed in the control structure of the proposed 3D object rotation technique. A series of 3D object rotation and manipulation tasks was designed and developed as separate experimental tasks to benchmark both the proposed 3D object rotation and manipulation techniques with existing ones on task completion time (s). Two different groups of participants aged 19-24 years old were selected for both experiments, with each group consisting sixteen participants. Each participant had to complete twelve trials, which came to a total 192 trials per experiment for all the participants. Repeated measure analysis was used to analyze the data. The results obtained have statistically proven that the developed 3D object rotation technique markedly outpaced existing technique with significant shorter task completion times of 2.04s shorter on easy tasks and 3.09s shorter on hard tasks after comparing the mean times upon all successful trials. On the other hand, for the failed trials, the 3D object rotation technique was 4.99% more accurate on easy tasks and 1.78% more accurate on hard tasks in comparison to the existing technique. Similar results were also extended to 3D object manipulation tasks with an overall 9.529s significant shorter task completion time of the proposed manipulation technique as compared to the existing technique. Based on the findings, an improved device-based interaction technique has been successfully developed to address the insufficient functionalities of the current technique
    corecore