218 research outputs found

    Multicast Aware Virtual Network Embedding in Software Defined Networks

    Get PDF
    The Software Defined Networking (SDN) provides not only a higher level abstraction of lower level functionalities, but also flexibility to create new multicast framework. SDN decouples the low level network elements (forwarding/data plane) from the control/management layer (control plane), where a centralized controller can access and modify the configuration of each distributed network element. The centralized framework allows to develop more network functionalities that can not be easily achieved in the traditional network architecture. Similarly, Network Function Virtualization (NFV) enables the decoupling of network services from the underlying hardware infrastructure to allow the same Substrate (Physical) Network (SN) shared by multiple Virtual Network (VN) requests. With the network virtualization, the process of mapping virtual nodes and links onto a shared SN while satisfying the computing and bandwidth constraints is referred to as Virtual Network Embedding (VNE), an NP-Hard problem. The VNE problem has drawn a lot of attention from the research community. In this dissertation, we motivate the importance of characterizing the mode of communication in VN requests, and we focus our attention on the problem of embedding VNs with one-to-many (multicast) communication mode. Throughout the dissertation, we highlight the unique properties of multicast VNs and explore how to efficiently map a given Virtual Multicast Tree/Network (VMT) request onto a substrate IP Network or Elastic Optical Networks (EONs). The major objective of this dissertation is to study how to efficiently embed (i) a given virtual request in IP or optical networks in the form of a multicast tree while minimizing the resource usage and avoiding the redundant multicast tranmission, (ii) a given virtual request in optical networks while minimizing the resource usage and satisfying the fanout limitation on the multicast transmission. Another important contribution of this dissertation is how to efficiently map Service Function Chain (SFC) based virtual multicast request without prior constructed SFC while minimizing the resource usage and satisfying the SFC on the multicast transmission

    Cloud based multicasting using fat tree data confidential recurrent neural network

    Get PDF
    With the progress of cloud computing, more users are attracted by its strong and cost-effective computation potentiality. Nevertheless, whether Cloud Service Providers can efficiently protect Cloud Users data confidentiality (DC) remains a demanding issue. The CU may execute several applications with multicast needs. In Cloud different techniques were used to provide DC with multicast necessities. In this work, we aim at ensuring DC in the cloud. This is achieved using a two-step technique, called Fat Tree Data Confidential Recurrent Neural Network (FT-DCRNN) in a cloud environment. The first step performs the construction of Fat Tree based on Multicast model. The aim to use Fat Tree with Multicast model is that the multicast model propagates traffic on multiple links. With the Degree Restrict Multicast Fat Tree construction algorithm using a reference function, the minimum average between two links is measured. With these measured links, multicast is said to be performed that in turn improves the throughput and efficiency of cloud service. Then, with the objective of providing DC for the multi-casted data or messages, DCRNN model is applied. With the Non-linear Recurrent Neural Network using Logistic Activation Function, by handling complex non-linear relationships, average response time is said to be reduced

    Traffic and Resource Management in Robust Cloud Data Center Networks

    Get PDF
    Cloud Computing is becoming the mainstream paradigm, as organizations, both large and small, begin to harness its benefits. Cloud computing gained its success for giving IT exactly what it needed: The ability to grow and shrink computing resources, on the go, in a cost-effective manner, without the anguish of infrastructure design and setup. The ability to adapt computing demands to market fluctuations is just one of the many benefits that cloud computing has to offer, this is why this new paradigm is rising rapidly. According to a Gartner report, the total sales of the various cloud services will be worth 204 billion dollars worldwide in 2016. With this massive growth, the performance of the underlying infrastructure is crucial to its success and sustainability. Currently, cloud computing heavily depends on data centers for its daily business needs. In fact, it is through the virtualization of data centers that the concept of "computing as a utility" emerged. However, data center virtualization is still in its infancy; and there exists a plethora of open research issues and challenges related to data center virtualization, including but not limited to, optimized topologies and protocols, embedding design methods and online algorithms, resource provisioning and allocation, data center energy efficiency, fault tolerance issues and fault tolerant design, improving service availability under failure conditions, enabling network programmability, etc. This dissertation will attempt to elaborate and address key research challenges and problems related to the design and operation of efficient virtualized data centers and data center infrastructure for cloud services. In particular, we investigate the problem of scalable traffic management and traffic engineering methods in data center networks and present a decomposition method to exactly solve the problem with considerable runtime improvement over mathematical-based formulations. To maximize the network's admissibility and increase its revenue, cloud providers must make efficient use of their's network resources. This goal is highly correlated with the employed resource allocation/placement schemes; formally known as the virtual network embedding problem. This thesis looks at multi-facets of this latter problem; in particular, we study the embedding problem for services with one-to-many communication mode; or what we denote as the multicast virtual network embedding problem. Then, we tackle the survivable virtual network embedding problem by proposing a fault-tolerance design that provides guaranteed service continuity in the event of server failure. Furthermore, we consider the embedding problem for elastic services in the event of heterogeneous node failures. Finally, in the effort to enable and support data center network programmability, we study the placement problem of softwarized network functions (e.g., load balancers, firewalls, etc.), formally known as the virtual network function assignment problem. Owing to its combinatorial complexity, we propose a novel decomposition method, and we numerically show that it is hundred times faster than mathematical formulations from recent existing literature

    Leveraging mixed-strategy gaming to realize incentive-driven VNF service chain provisioning in broker-based elastic optical inter-datacenter networks

    Get PDF
    This paper investigates the problem of how to optimize the provisioning of virtual network function service chains (VNF-SCs) in elastic optical inter-datacenter networks (EO-IDCNs) under elastic optical networking and DC capacity constraints. We take advantage of the broker-based hierarchical control paradigm for the orchestration of cross-stratum resources and propose to realize incentive-driven VNF-SC provisioning with a noncooperative mixed-strategy gaming approach. The proposed gaming model enables tenants to compete for VNF-SC provisioning services due to revenue and quality-of-service incentives and therefore can motivate more reasonable selections of provisioning schemes. We detail the modeling of the game, discuss the existence of the Nash equilibrium states, and design an auxiliary graph-based heuristic algorithm for tenants to compute approximate equilibrium solutions in the games. A dynamic resource pricing strategy, which can set the prices of network resources in real time according to the actual network status, is also introduced for EO-IDCNs as a complementary method to the game-theoretic approach. Results from extensive simulations that consider both static network planning and dynamic service provisioning scenarios indicate that the proposed game-theoretic approach facilitates both higher tenant and network-wide profits and improves the network throughput as well compared with the baseline algorithms, while the dynamic pricing strategy can further reduce the request blocking probability with a factor of ∼2.4×
    corecore