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Leveraging Mixed-Strategy Gaming to Realize
Incentive-Driven VNF Service Chain Provisioning
in Broker-based Elastic Optical Inter-Datacenter

Networks [Invited]
Xiaoliang Chen, Zuqing Zhu, Jiannan Guo, Sheng Kang, Roberto Proietti, Alberto Castro, and S. J. B. Yoo

Abstract—This paper investigates the problem of how to
optimize the provisioning of virtual network function service
chains (VNF-SCs) in elastic optical inter-datacenter networks
(EO-IDCNs) under EON and DC capacity constraints. We take
advantage of the broker-based hierarchical control paradigm for
the orchestration of cross-stratum resources and propose to real-
ize incentive-driven VNF-SC provisioning with a noncooperative
mixed-strategy gaming approach. The proposed gaming model
enables tenants to compete for VNF-SC provisioning services
due to revenue and quality-of-service incentives and therefore can
motivate more reasonable selections of provisioning schemes. We
detail the modeling of the game, discuss the existence of the Nash
equilibrium states and design an auxiliary graph based heuristic
algorithm for tenants to compute approximate equilibrium solu-
tions in the games. A dynamic resource pricing strategy, which
can set the prices of network resources in real time according to
the actual network status, is also introduced for EO-IDCNs as a
complementary method to the game-theoretic approach. Results
from extensive simulations that consider both static network
planning and dynamic service provisioning scenarios indicate
that the proposed game-theoretic approach facilitates both higher
tenant and network-wide profits and improves the network
throughput as well compared with the baseline algorithms, while
the dynamic pricing strategy can further reduce the request
blocking probability with a factor of ∼ 2.4×.

Index Terms—Virtual network function service chain (VNF-
SC), Broker-based elastic optical inter-datacenter networks (EO-
IDCNs), Mixed-strategy gaming, Dynamic resource pricing.

I. INTRODUCTION

THE rapidly expanding datacenter (DC) networks and
ubiquitous cloud-driven applications are driving the

needs for intelligent service provisioning paradigms for inter-
DC networks that can support high-capacity end-to-end ser-
vices with flexible service requirements [1], [2]. Among all
the recently devised technologies, network function virtual-
ization (NFV), especially when coupled with software-defined
networking (SDN), provides an unprecedented opportunity for
network operators to customize their infrastructures adapting
to the actual application profiles [3]. In particular, NFV can im-
prove the flexibility and cost-efficiency of service provisioning
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by replacing proprietary hardware deployments with virtual
network functions (VNFs, e.g., firewalls, load balancer etc.)
implemented based on generalized network and IT resources
such as bandwidth, CPU cycles and memories. As one of the
most important application scenarios of NFV, VNF service
chaining (VNF-SC) steers user traffic through service function
chains formed by sequences of VNFs instantiated in DCs
to meet diverse service requirements [4]. Therefore, how
to coordinate the configurations of VNFs and service paths
to realize joint optimizations of network and IT resources
becomes the key problem of VNF-SC [5]–[8].

Meanwhile, elastic optical networking (EON) [9], [10] has
emerged as a promising technique for building DC inter-
connections, realizing elastic optical inter-DC networks (EO-
IDCNs) [11], [12]. The problem of optimizing VNF-SC provi-
sioning in EO-IDCNs becomes especially important due to the
unique spectrum allocation schemes in EONs [13]. In [14] and
[15], Xia et al. for the first time studied the problem of forming
optical service function chains in wavelength-switched optical
DC networks, and proposed a binary integer programming
model as well as an alternative heuristic algorithm to optimize
the usages of optical-to-electrical-to-optical (O/E/O) conver-
tors. The provisioning algorithms for realizing multicast NFV
trees in EO-IDCNs was investigated in [13], where the authors
designed both mixed integer linear programming model and
heuristic algorithms to jointly optimize the placement of VNFs
and the routing and spectrum assignment of multicast trees.
The same authors then formulated an optimization model for
VNF-SC provisioning in EO-IDCNs to minimize the amount
of deployed spectrum and VNF resources for the given traffic
model [16]. More recently, Wang et al. further extended the
concepts of service function chains and trees to consider the
provisioning of VNF graphs with arbitrary topologies in multi-
domain EO-IDCNs [17]. Nevertheless, the aforementioned
studies all assumed centralized network control and manage-
ment for EO-IDCNs, i.e., optimizing the allocation of network
and IT resources jointly by assuming the global visibility
of DCs and EONs, which violates the autonomy of each
administrative domain. Such a centralized network control and
management architecture is unrealistic for the global Internet
spanning many autonomous systems or domains [18]–[21].
Meanwhile, incentives from users, e.g., heterogeneous quality-
of-service requirements and service budgets, have not been
addressed for VNF-SC provisioning in EO-IDCNs so far.
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In this paper, we extend our work in [22] to investigate how
to realize efficient incentive-driven VNF-SC provisioning in
broker-based EO-IDCNs, where a broker plane lies on top of
the domain manager plane to orchestrate the configurations of
network and IT resources. We model the problem as a nonco-
operative game, in which tenants compete with each other for
VNF-SC provisioning services. Specifically, we assume that
the profit of each tenant is related to the resource consumption
cost and the achieved end-to-end service latency, and propose
a mixed-strategy game-theoretic approach for tenants to find
approximate equilibrium solutions in the games. In order to
motivate tenants to use network resources more reasonably,
we further design a dynamic resource pricing strategy for
EO-IDCNs which can set the prices of network resources in
real time according to the actual network status. Extensive
simulations that consider both static networking planning and
dynamic service provisioning scenarios are performed, and
simulation results verify the effectiveness of the proposed
game-theoretic approach and the dynamic pricing strategy.

The rest of the paper is organized as follows. Section II
elaborates on the operation principle of broker-based EO-
IDCNs and formally defines the problem of incentive-driven
VNF-SC provisioning. Sections III and IV present the detailed
designs for the mixed-strategy game-theoretic approach and
the dynamic resource pricing strategy respectively. Section V
shows the simulation results and Section VI summarizes this
paper.
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Fig. 1. Block diagram of a broker-based EO-IDCN.

II. INCENTIVE-DRIVEN VNF-SC PROVISIONING
FRAMEWORK

A. Operation Principle

Fig. 1 shows the block diagram of a broker-based EO-IDCN
enabling incentive-driven VNF-SC provisioning. In the EO-
IDCN, a number of geographically distributed DCs are inter-
connected by the EON, each of which provides the services
for different types of VNFs. Above the data plane, EON and
DC managers operate their substrate networks through SDN
controllers (e.g., OpenFlow controller, OpenStack etc.), while
the broker interacts with domain managers to coordinate the
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Fig. 2. An example for incentive-driven VNF-SC provisioning in EO-IDCNs,
(a) topology and provisioning schemes and (b) spectrum allocation for VNF-
SCs.

cross-stratum resource (i.e., network and IT resources) alloca-
tions. Specifically, upon receiving tenant VNF-SC requests, the
broker can collect abstractions regarding network connectivity
and resource utilization from domain managers and calculate
provisioning schemes accordingly. Note that, the broker may
provide multiple provisioning schemes to each tenant while
tenants select the most appropriate ones to use. Once the
provisioning schemes have been confirmed by tenants, the
broker informs related domain managers to configure the
corresponding VNFs and elastic lightpaths.

Fig. 2 presents an illustrative example for the aforemen-
tioned VNF-SC provisioning paradigm. Here, the broker calcu-
lates two provisioning schemes labeled by the solid and dashed
lines respectively for each request. The potential spectrum al-
locations for paths 1→3→6→9 and 1→4→7→9 are depicted
in Fig. 2(b), with an O/E/O conversion being performed in
each intermediate node where VNFs are configured. We can
see that the frequency slot (FS) and O/E/O consumptions can
vary significantly with the different placement of VNFs. This
is because the placement of VNFs can divide an end-to-end
path into several lightpaths where the modulation and spectrum
assignment can be performed independently. For the sake of
simplicity, we assume that the resource cost for using each
provisioning scheme in this example equates to the sum of
the weights of all the traversed links. It is interesting to notice
that although the provisioning schemes labeled by dashed lines
offer lower cost, tenants will not unalterably select them due
to the fact that the sharing of the processing of VNFs in node
4 may introduce prolonged service latencies or even service
blocks.

B. Problem Definition

We model the EO-IDCN topology as G(V,E, VD), with V
and E representing the sets of links and nodes and VD being a
subset of V which contains the nodes where DCs locate. The
set of VNFs instantiated in DC n (n ∈ VD) is denoted as Θn.
We denote a VNF-SC request as r(s, d, b, T,Γ), where s and
d are the source and destination nodes, b is the bandwidth
requirement, T is the service duration and Γ conveys the
demanded VNFs. Given the set of provisioning schemes Pi
by the broker, the objective of each request ri is to select a
scheme Pi,k ∈ Pi that maximizes its profit defined as,

Uψ
−i

i,k =
βi − ci,k
τi +Dψ−i

i,k

, (1)
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where βi is the budget of ri for the service, ci,k is the
resource consumption cost, τi is a parameter representing ri’s
sensitivity to latency, and Dψ−i

i,k is the achieved end-to-end
service latency (that is, the total time it takes per bit of data to
traverse the service chain) given the other requests’ strategies
ψ−i (ψ−i = ψ \ψi). Here, ψ denotes the strategy profile that
contains the provisioning schemes used by all the requests,
e.g., ψi = Pi,k if ri uses Pi,k. Eq. 1 actually indicates
that each request will try to jointly optimize the resource
consumption and the achieved quality-of-service (i.e., latency).
We assume that ci,k is determined by the usages of FS’s (χi,k

FS
),

O/E/O converters (χi,k
OEO

) and IT resources (χi,k
IT

), i.e.,

ci,k =
(
χi,k

FS
· pFS + χi,k

OEO
· pOEO + χi,k

IT
· pIT

)
· Ti, (2)

where p
FS

, p
OEO

and p
IT

are the unit prices per provisioning
period for FS, O/E/O and IT resource usages, respectively.
Meanwhile, to obtain Dψ−i

i,k , we can calculate the signal
propagation time li,k and the processing time of VNFs on
Pi,k. While li,k can easily be derived according to the path
length, we can model the processing of tenant traffic in each
VNF as an M/M/1 queue by assuming the tenant traffic as the
input queue and the processing core of the VNF as the single
server. Consequently, Dψ−i

i,k is obtained as,

Dψ−i

i,k = li,k +
∑
n∈VD

∑
m∈Θn

gn,mi,k
ςn,m − φi(bi)−

∑
Pt,j∈ψ−i

gn,mt,j φt(bt)
,

(3)

s.t. ςn,m − gn,mi,k

φi(bi) +
∑

Pt,j∈ψ−i

gn,mt,j φt(bt)

 > 0,∀n,m,

(4)
where ςn,m is the capacity limit of the m-th VNF in DC
n, gn,mi,k is a boolean parameter indicating whether Pi,k uses
the related VNF, and function φi(·) maps the data rate of
ri to its requirement on VNF processing capacity. Note that,
we introduce the capacity limit ςn,m corresponding to the
processing rate of each VNF to avoid infinite processing
time of VNFs1. In case Eq. 4 is not satisfied or collisions
of spectrum utilization occur among the tenants, we assume
that the EO-IDCN determines its provisioning strategy by
optimizing the network-wide revenue gains, i.e.,

U =
∑
Pi,k∈ψ

yi · ci,k, (5)

where yi indicates whether the EO-IDCN admits the service
of ri.

III. MIXED-STRATEGY GAME-THEORETIC APPROACH

A. Game Modeling

The problem of incentive-driven VNF-SC provisioning es-
sentially can be modeled as a noncooperative game, i.e., tenant
game, where tenants act as players and try to maximize their
profits by selecting the most appropriate provisioning schemes
(i.e., strategies). We apply the Nash equilibrium (NE) method,

1According to the M/M/1 model, the average time a job stays in the system
equates to 1/ (µ− λ), where µ is the processing rate of the server and λ is
the arrival rate of the queue.

TABLE I
TENANT PROFITS UNDER DIFFERENT STRATEGY PROFILES.

ψ1

(U1, U2) ψ2 P2,1 P2,2

P1,1 (80, 80) (80, 140)
P1,2 (140, 80) (60, 60)

which is one of the most important tools for noncooperative
games, for analyzing the tenant game. Conceptually, NE of
a game refers to strategy profiles with which no player
can increase its profit by unilaterally deviating from them.
Specifically for the tenant game, a strategy profile ψ∗ is a
pure-strategy NE if and only if for any provisioning scheme
Pi,k ∈ ψ∗,

U
(ψ∗)−i

i,k ≥ U (ψ∗)−i

i,j , ∀j 6= k. (6)

Let us continue with the example in Fig. 2 and assume that
β1 = β2 = 100, c1,1 = c2,1 = 60 (labeled by solid lines),
c1,2 = c2,2 = 30, φ1(b1) = φ2(b2) = 4, τi + li,k = 1/6 and
ςn,m = 10,∀i, k, n,m, we can calculate tenant profits under
different strategy profiles in Table I and easily verify with
Eq. 6 that {P1,1,P2,2} and {P1,2,P2,1} are the two pure-
strategy NE of the game. However, these equilibrium points
actually can hardly be achieved in noncooperative operations
as they are always biased to one of the tenants. Moreover, it
is often difficult to calculate or even prove the existence of
pure-strategy NE, especially for the case when the strategy
space is discrete as in our problem [23].

On the other hand, mixed-strategy gaming, where players
select game strategies with certain probability distributions,
provides a more practical insight for designing incentive-
driven VNF-SC provisioning paradigms. Specifically, let
xi,k ∈ [0, 1] denote the probability with which ri selects Pi,k,
we can model a mixed-strategy game as,

max
x

Ui (x) =
∑
Pi,k

xi,k
∑
ψ−i

Uψ−i

i,k

∏
Pt,j∈ψ−i

xt,j

 , ∀ri (7)

s.t.
∑
Pi,k

xi,k = 1, (8)

where Ui (x) is the expected profit of ri. Similarly, we can
study the game by looking into the mixed-strategy Nash
equilibrium (MSNE), which is defined as,

Ui (x∗) ≥ Ui
(
xi, (x

∗)−i
)
, ∀ri, xi 6= x∗i , (9)

where (x∗)−i = x∗ \ x∗i . Let Si = {Pi,k,∀xi,k > 0} and
Ui,k (x) =

∑
ψ−i

(
Uψ
−i

i,k

∏
Pt,j∈ψ−i xt,j

)
, the following con-

ditions for MSNE then can be deduced,

Ui,k (x∗) = Ui,j (x∗) , ∀Pi,k,Pi,j ∈ Si. (10)

Eq. 10 actually implies that every provisioning scheme that
tenants select with non-zero probabilities has the same profit
expectation. This is because if there exists any provisioning
scheme belonging to Si that is with a different profit ex-
pectation, then provisioning schemes with lower profits will
definitely be assigned zero probabilities according to Eq. 7,
which is in conflict with the definition of the support set Si.
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Algorithm 1: Iterated Dominance Approach.

1 set S = P , Ŝ = ∅;
2 while S 6= Ŝ do
3 Ŝ = S;
4 for each ri do
5 get all ψ−i with S;
6 calculate max

x
Ui,k (x) and min

x
Ui,k (x), ∀Pi,k ∈ Si;

7 delete Pi,j from Si if
max
x

Ui,j (x) ≤ min
x
Ui,k (x) ,∃Pi,k;

8 end
9 end

One good property of mixed-strategy gaming is that every
game with a finite number of players and strategy space is
ensured to have at least one MSNE [24]. Formally, we can
calculate these MSNE by applying the iterated dominance
approach [25] in Algorithm 1 and solving Eqs. 8 and 10. Recall
the example in Fig. 2 and the assumptions made for Table I, we
first obtain two support sets, each containing two provisioning
schemes, as neither of the two schemes of each request can
dominant the other one. For example, U1,1 (x) > U1,2 (x)
when x2,1 < 0.25 and otherwise, U1,1 (x) ≤ U1,2 (x). Then,
by solving the equation set (1) 80 · x2,1 + 80 · x2,2 = 140 ·
x2,1+60·x2,2, (2) 80·x1,1+80·x1,2 = 140·x1,1+60·x1,2, (3)
x1,1+x1,2 = 1 and (4) x2,1+x2,2 = 1, we compute the MSNE
as x1,1 = x2,1 = 0.25 and x1,2 = x2,2 = 0.75. Note that, since
each equation yielded from Eq. 10 contains multiple terms of
the production of decision variables, i.e., Uψ

−i

i,k

∏
Pt,j∈ψ−i xt,j ,

the problem of calculating MSNE becomes intractable when
the number of requests is larger than three [26]. Therefore, in
this work, we aim to design time-efficient heuristic algorithms
to assist tenants in finding approximate equilibrium solutions,
and the detail of the design will be presented in the next
section.

B. Heuristic Algorithm

We first introduce an auxiliary graph (AG) that facilitates
the algorithm design. Fig. 3(a) shows an example of the AG.
In particular, each node in the AG represents a provisioning
scheme, and two nodes are connected if the corresponding
provisioning schemes share the processing of the same VNFs
in the same DCs. Note that, we do not connect two nodes that
belong to the same request. Each node is assigned a weight that
is equal to the expected profit of the provisioning scheme, i.e.,
Ui,k (x). With the AG, the basic idea of our heuristic design
is to iteratively adjust the probability of each provisioning
scheme so as to approximate the conditions for MSNE defined
by Eq. 10. Algorithm 2 shows the detailed procedures for
calculating approximate MSNE for the game. First of all, Lines
1-3 are for initialization, where we calculate the support set S,
construct an AG based on the provisioning schemes in it and
set a uniform initial probability distribution. The while-loop
covering Lines 4-24 corresponds to the iterative optimization
process, consisting of multiple optimization episodes (the for-
loop from Line 5 to 20, where θ0 is a preset parameter).

(a) (b)

Fig. 3. Examples for (a) AG and (b) the case when MSNE does not exist.

Specifically, within each episode, Line 6 first calculates the
estimated profit expectation of each provisioning scheme as,

Ũi,k (x) =
βi − ci,k

τi + li,k +
∑

n∈VD

∑
m∈Θn

g
n,m
i,k

ςn,m−φi(bi)−ς̃in,m(x)

,∀Pi,k,

(11)
where

ς̃in,m (x) =
∑

Pt,j∈S\Si

xt,j · gn,mt,j · φt(bt), (12)

is the expected VNF capacity usage in each DC by provision-
ing schemes from S \Si. The reason why we adopt Ũi,k (x) is
that calculating the exact values of profit expectations involves
enumerating all possible game outcomes (i.e., ψ, see Eq. 7)
whose complexity will increase exponentially with the scale
of the problem. Line 7 calculates the mean value of Ũi,k (x)
for each request as Ai. Then, for each provisioning scheme,
Lines 12-18 compare Ũi,k (x) with Ai and increase/decrease
the probabilities of all its adjacent nodes in the AG if Ũi,k (x)
is larger/smaller than Ai. Here, the step sizes of adjusting
probabilities are adapted based on the distances with the
equilibrium point, i.e.,

∣∣∣Ũi,k (x)−Ai
∣∣∣ = 0,∀Pi,k, and ε0 and

α0 are both parameters. Line 19 is for normalization. Note
that, the iterated dominance approach in Algorithm 1 does not
necessarily generate a support set that ensures the convergence
of our optimization method. Take the AG in Fig. 3(b) as an
example, where all the six provisioning schemes are included
in S initially. However, in order to make Ũ1,1 (x) = Ũ1,2 (x)
and Ũ3,1 (x) = Ũ3,2 (x), x2,1 has to be set as 0.3 and 0.8,
respectively, which is obviously contradictory. In fact, no
MSNE exists with such a support set. Therefore, in Line 21, if
the algorithm cannot converge after an optimization episode,
we adjust S by deleting the provisioning scheme that has the
largest profit difference with the best scheme of the same
request from it 2. The rationale behind this operation is that
by preferentially removing provisioning schemes with lower
profits, we can potentially generate an equilibrium solution
with higher request profit. With Lines 22-23, the algorithm
recalculates the support set and normalizes the probabilities to
prepare for the next optimization episode. Finally, as shown
by Lines 8-11, the algorithm converges when the maximum
profit difference among provisioning schemes of every request
is lower than a preset threshold η0 (e.g., 0.5%). The complexity
of Algorithm 2 is O

(
θ0 |V | |Θ| |P|3

)
, where Θ =

⋃
n∈VD

Θn.

2To get the optimal support set, we need to check all the subsets of S
which is impractical when the scale of the problem is large. Therefore, we
focus on designing heuristic approaches in this work
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Algorithm 2: Procedures of Calculating Approximate
MSNE.

1 calculate S with Algorithm 1;
2 construct an AG based on S;
3 set xi,k = 1/ |Si| , ∀Pi,k ∈ S;
4 while 1 do
5 for θ = 1 : θ0 do
6 calculate Ũi,k (x) , ∀Pi,k ∈ S with Eqs. 11-12;

7 calculate Ai =

∑
Pi,k∈Si

Ũi,k(x)

|Si|
, ∀ri;

8 calculate ηi = max
Pi,k∈Si

|Ũi,k(x)−Ai|
Ai

,∀ri;

9 if ηi ≤ η0, ∀ri then
10 return;
11 end
12 for each Pi,k ∈ S do
13 if Ũi,k (x) > Ai then

14 set xt,j = xt,j + ε0α

|Ũi,k(x)−Ai|
Ai

0 for each
adjacent node Pt,j of Pi,k in the AG;

15 else if Ũi,k (x) < Ai then

16 set xt,j = max

0, xt,j − ε0α
|Ũi,k(x)−Ai|

Ai
0


for each adjacent node Pt,j of Pi,k in the
AG;

17 end
18 end
19 set xi,k =

xi,k∑
Pt,j∈Si

xt,j
, ∀Pi,k ∈ S;

20 end

21 delete Pi,k = arg max
Pt,j

{
max{Ũt,j′ (x),∀Pt,j′∈St}−Ũt,j(x)

max{Ũt,j′ (x),∀Pt,j′∈St}

}
from S;

22 set P = S, recalculate S with Algorithm 1 and update the
AG accordingly;

23 set xi,k =
xi,k∑

Pt,j∈Si
xt,j

, ∀Pi,k ∈ S;

24 end

IV. DYNAMIC RESOURCE PRICING

The design of tenant game in Section III motivates tenants
to use VNFs with higher residual processing capacities (thus
lower latencies), facilitating more balanced IT resource uti-
lizations across DCs. On the other hand, as the tenants have
neither the knowledge about network topology and spectrum
utilization nor the incentive to use network resources in a more
reasonable way, their decisions may lead to severer resource
bottlenecking or spectrum fragmentation and thus result in
decreased network throughput. Therefore, in this work on
EO-IDCNs, we propose a dynamic resource pricing strategy
that can regulate the network resource utilization by affecting
tenants behaviors.

The dynamic pricing strategy sets the unit prices for per FS
and O/E/O usages per provisioning period (i.e., pe

FS
,∀e ∈ E

and pn
OEO

,∀n ∈ VD respectively) in real-time according to
the actual network status. Specifically, the optimal prices can
be determined by solving the following optimization problem

that maximizes the network-wide profit.

max U =
∑
Pi,k∈ψ

yi · ci,k, (13)

where yi has the same definition with that in Eq. 5 and,

ci,k =

∑
e∈E

pe
FS

∑
f∈[1,F ]

ze,fi,k +
∑
n∈VD

πni,k · pnOEO
+ χi,k

IT
· pIT

·Ti,
(14)

where ze,fi,k and πni,k are boolean variables indicating the
spectrum and O/E/O allocations for Pi,k if it is selected by ri,
i.e., ze,fi,k and πni,k equate to 1 if the f -th FS on link e or an
O/E/O in node n is allocated. The resource constraints are,∑

Pi,k∈ψ

yi · ze,fi,k ≤ 1, ∀e ∈ E, f ∈ [1, F ] , (15)

∑
Pi,k∈ψ

yi · πni,k ≤Mn, ∀n ∈ VD, (16)

∑
Pi,k∈ψ

yi · gn,mi,k · φi(bi) < ςn,m, ∀n ∈ VD,m ∈ Θn, (17)

where Mn is the number of available O/E/O in node n.
Nevertheless, solving Eqs. 13-17 requires calculating ψ for

every possible pricing strategy, which makes the problem
intractable. Hence, we propose to realize dynamic pricing
with a simple µ0-percentile resource utilization based heuristic
approach in this work. In particular, let µnOEO,∀n ∈ VD
denote the O/E/O utilization ratio in node n, the EO-IDCN
sets pn

OEO
as,

pn
OEO

=

 p0
OEO

, µnOEO < µ0
OEO,

p0
OEO

(
1 + ε0

(
µnOEO − µ0

OEO

)σ0) , µnOEO ≥ µ0
OEO,

(18)
where p0

OEO
is the base price, ε0 and σ0 are positive parame-

ters. Note that, usually σ0 should be set larger than 1 so that
pn

OEO
increases faster as µnOEO goes up closer to 100%. The

situation for determining pe
FS
,∀e ∈ E is more complicated as

we need to consider not only the FS utilization ratio but also
the sizes of available FS-blocks due to the unique spectrum
allocation mechanism in EONs, e.g., spectrum continuity and
contiguity constraints [27]–[29]. Instead of using pe

FS
, we

make the EO-IDCN price the FS usage for each provisioning
scheme Pi,k separately, i.e.,

pi,k
FS

=


p0
FS
, µi,kFS < µ0

FS ,

p0
FS

(
1 + ε̂0

(
µi,kFS − µ

0
FS

)σ̂0)
, µi,kFS ≥ µ

0
FS ,

(19)

where ε̂0 and σ̂0 are positive parameters, and µi,kFS is calculated
as,

µi,kFS = 1−
∑
h

(
Fh
F

)δ̂0
, (20)

where Fh is the size of the h-th available FS-block on Pi,k
and δ̂0 > 1 is a parameter to differentiate the weights of FS-
blocks with different sizes. Eq. 20 in fact takes into account
the impact of spectrum fragmentation. For instance, a service
path with large number of small pieces of available spectra
is associated with a large µi,kFS (thus high pi,k

FS
) although the

actual spectrum utilization ratio is only moderate.
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V. SIMULATION RESULTS

We evaluate the performance of the proposed game-theoretic
approaches with numerical simulations in this section and
Table II summarizes the simulation setup.

A. Static Network Planning

We first conduct static network planning simulations to
investigate the behaviors of tenants. In the simulations, the
processing capacity of each type of VNF (i.e., ςn,m) is set as
1800 units, each tenant receives 10 provisioning schemes from
the broker and its budget βi is given based on the estimation
of the resource consumption cost on the longest service path.
Note that, since all the requests are known in advance and
served simultaneously in static network planning problems,
we do not incorporate the designed dynamic resource pricing
strategy in the simulations and the unit prices for IT, FS
and O/E/O usages are set to be equal to

{
p

IT
, p0

FS
, p0

OEO

}
which are given by Table II. The baseline algorithms are VNF-
SC-LC and VNF-SC-Random, where each tenant selects the
provisioning scheme with the least resource cost or randomly,
while our proposed game-theoretic approach is denoted as
VNF-SC-Game.

TABLE II
SIMULATION SETUP.

G(V,E) 14-node NSFNET Topology [29]
VD {1,4,6,7,9,11,14}
Θn {VNF-1,VNF-2,...,VNF-6}
{F,Mn} {350, 40}
Traffic Model Uniform & Poisson
φi(bi) = bi [25, 250] Gb/s
|Γi| 2
τi [0.01, 0.10] sec
{θ0, η0, ε0, α0} {300, 0.5%, 0.008, 20}{
pIT , p

0
FS
, p0

OEO

}
{1, 5, 25} units{

µ0
OEO, ε0, σ0

}
{80%, 35, 1}{

µ0
FS , ε̂0, σ̂0, δ̂0

}
{50%, 5, 2, 2}

Fig. 4(a) shows the results on average request profit
achieved by tenants, and we can see that VNF-SC-Game
outperforms both VNF-SC-LC and VNF-SC-Random while
the profits from VNF-SC-Random are the lowest. Meanwhile,
the advantage from VNF-SC-Game gets larger when the
number of requests increases. The rationale behind this is
that the proposed game-theoretic approach assists tenants to
intelligently select provisioning schemes that achieve the best
balance between the resource consumption cost and service la-
tency, which is especially critical when the EO-IDCN becomes
more saturated (the service latencies become more sensitive
the changes of residual VNF processing capacities when they
approach 0 according to Eq. 3). The above analysis can be
verified by the results on average service latency and resource
consumption cost shown in Figs. 4(b) and 4(c), respectively.
We can observe that VNF-SC-Game always achieves the
lowest service latencies among the three algorithms and only
slightly higher resource consumption costs than VNF-SC-LC.
As expected, the service latencies from VNF-SC-LC increase
rapidly with the number of requests. The performance of VNF-
SC-Random is much worse than those of the rest algorithms

TABLE III
RESULTS ON THE CONVERGENCE OF VNF-SC-GAME (|R| = 100).

ςn,m 2200 2000 1800 1600 1400
Iterations

9600 37200 73800 94800 111300to Converge

due to its frequent use of long-distance and congested service
paths. Fig. 4(d) plots the results on the maximum VNF capac-
ity utilization ratio in the EO-IDCN, which further consolidate
the analysis. It can be seen that VNF-SC-Game facilitates
the most balanced utilization of VNFs, while the maximum
utilization from VNF-SC-LC can reach as high as 95%. This
implies that VNF-SC-LC may incur resource collisions among
requests (thus service blocking) when we further increase
the traffic load, clearly demonstrating the disadvantage of
VNF-SC-LC. Also notice that, the fixed strategy used by
VNF-SC-LC is actually not a stable solution in real network
operations as one tenant can easily recognize this strategy
from its competitors and improve its profit by switching to
a better strategy. We also conduct simulations with different
ςn,m setup, with which we can observe the similar trends as
those discussed above.

We then study the convergence of VNF-SC-Game and
Table III shows the numbers of iterations (i.e., iterations
that Lines 5-20 of Algorithm 2 are executed) needed for the
algorithm to converge. We can see that more iterations are
required when we reduce ςn,m, which is because provisioning
schemes with higher resource consumption costs are less likely
to be dominated when service latencies begin to play a more
important role in deciding the tenant profits, resulting in a
larger support set S for the algorithm to optimize with. Note
that, the performance of VNF-SC-Game is also associated with
other parameters such as θ0 and η0, and the selections of these
parameters (as depicted in Table II) are already the optimized
ones according to our extensive simulations.

B. Dynamic Service Provisioning

Next, we perform dynamic service provisioning simulations
where VNF-SC requests can come and go on-the-fly. The
processing capacities of VNFs range from 3000 to 3500
units, and the number of provisioning schemes each tenant
receives is still 10. We compare the performance of VNF-
SC-Game with dynamic pricing (namely, VNF-SC-Game-DP)
with those of approaches leveraging fixed pricing, i.e., VNF-
SC-Game-FP, VNF-SC-LC-FP and VNF-SC-Random-FP. For
approaches with fixed pricing, the pricing rate is set as 2.1,
i.e., the unit prices for IT, FS and O/E/O usages equate to
2.1×

{
p

IT
, p0

FS
, p0

OEO

}
. Also, different from that in network

planning simulations, the budget of each request is set based
on the pricing rate being equal to 2.0. Fig. 5(a) shows the
results on request blocking probability, where we can observe
that VNF-SC-Game achieves significant lower blocking prob-
ability than VNF-SC-LC and VNF-SC-Random. Meanwhile,
with the designed dynamic pricing strategy, 2.4× in average
blocking reduction is further achieved by VNF-SC-Game. This
is because our proposed game-theoretic approach as well as
the dynamic pricing strategy make tenants use network and IT
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Fig. 4. Results for static network planning simulations, (a) average request profit, (b) average end-to-end service latency, (c) average resource consumption
cost, and (d) maximum VNF capacity utilization ratio in the EO-IDCN.

resources in a more balanced way, thus effectively relieving
the impacts from resource bottlenecking. We also measure
the profits achieved by the EO-IDCN and tenants when the
traffic load is 500 erlangs with different pricing rate setup
for fixed pricing based approaches, and Figs. 5(b) and 5(c)
show the corresponding simulation results. Firstly, we observe
that among the approaches with fixed pricing, VNF-SC-Game
always achieves both the highest network (EO-IDCN) and
request profits. Being consistent with the results in Fig. 4(a),
the average request profit from VNF-SC-Random is the lowest.
Secondly, as expected, the network profits achieved by fixed
pricing based approaches go up monotonously with the pricing
rate while the results on request profit exhibit the opposite
trend. The network profit from VNF-SC-Game-FP is still
slightly lower than that from VNF-SC-Game-DP when the
pricing rate is 2.1, while the request profit from it at this
moment has been lower than that from VNF-SC-Game-DP.
Note that, we do not evaluate the cases when the pricing
rate is higher than 2.1 as we need to ensure the resource
consumption cost of each request is within its budget. We
also perform simulations with different parameter setup, e.g.,
ςn,m and Mn, and the results confirm our previous conclusion
that the advantage from the proposed game-theoretic approach
gets more distinct when the resource capacity constraints are
tighter.

VI. CONCLUSION

In this paper, we proposed an incentive-driven VNF-SC pro-
visioning framework for broker-based EO-IDCNs. We mod-
eled the problem as a noncooperative mixed-strategy game,
where tenants compete for VNF-SC provisioning services.
An AG-based heuristic algorithm was developed for tenants
to efficiently compute approximate equilibrium solutions in
the games. We also designed a dynamic resource pricing
strategy for EO-IDCNs as a complementary method to the
game-theoretic approach. Simulation results showed that the
proposed game-theoretic approach could facilitate both higher
tenant and network-wide profits and improve the network
throughput as well, while the dynamic pricing strategy further
reduced the request blocking probability with a factor of
∼ 2.4×.
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Fig. 5. Results for dynamic service provisioning simulations, (a) request
blocking probability, (b) network profit from per request and (c) average
request profit.
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