315 research outputs found

    Using Tangible Interaction and Virtual Reality to Support Spatial Perspective Taking Ability

    Get PDF
    According to several large-scale and longitudinal studies, spatial ability, one of the primary mental abilities, has been shown as a significant predictor for STEM learning (Science, Technology, Engineering, and Mathematics) and career success. Frameworks in HCI (Human-Computer Interaction) and TEI (Tangible and Embodied Interaction) also indicated how the spatial-related aspects of interaction are a common design theme for interfaces using emerging technologies. However, currently only very few interactive systems (using TEI) are designed around a target spatial ability. TEI’s direct effects on spatial ability are also not well-investigated. Meanwhile, a growing body of research from cognitive sciences, such as embodied cognition and Common Coding Theory, shows that physical movements can enhance cognition in aspects that involve spatial thinking. Also, virtual reality (VR) affords better 3D perception for digital environments, and provides design opportunities to engage users with spatial tasks that may not be otherwise imagined or achieved in the real world. This research describes how we designed and built the system TASC (Tangibles for Augmenting Spatial Cognition), which combines body movement tracking and tangible objects with VR. We recap our design process and design rationales, along with how the finalized system was designed to enhance embodiment as a means to activate, support, engage, and hopefully augment spatial perspective taking ability. We conducted a user study with qualitative and quantitative evaluation methods. Respectively, the qualitative evaluation aimed to understand how the participants used the system; the quantitative evaluation was a multi-condition experiment with pre-tests and post-tests used to investigate if and how the system could improve spatial perspective taking ability. We built the digital pre/post-tests based on PTSOT (Perspective Taking/Spatial Orientation Test) (Hegarty, Kozhevnikov, & Waller, 2008). The study in total involved 52 participants: 6 participants (3M/3F) in the pilot study, 46 in the main study (3 conditions, around 15 per condition, each condition was overall gender-balanced). The qualitative analysis focused on the VR-TEI condition (the “main system”). Using thematic analysis with the video clips and written notes (both taken during the participants’ interaction), and audio clips (recorded during the post-interaction interview), we synthesized the qualitative results into 4 themes: (1) Spatial strategies: akin but unique; (2) The use of gestures & verbalization; (3) Positive experience with the system; (4) The potentials of the system. The quantitative statistical analysis, using ANOVA and t-test for the 3-condition experiment, showed that every condition yielded perspective taking improvement from taking the test twice. However, only the VR-TEI condition led to statistically significant improvement. We conclude the research with discussion and future possibilities in these themes of: (a) The role of embodiment; (2) Further explorations of intermediate conditions; (3) A deeper look at sample size and validity; (4) Designing & evaluating TEIs for other spatial abilities; (5) Integration with STEM curriculum. The main contribution of this dissertation is that it reports how a VR-TEI system can be designed, built, and evaluated for a target spatial ability. We hope this research also contributes to bridging some knowledge gaps between interaction design, cognitive science, and STEM learning

    Microcosm

    Get PDF
    Microcosm explores the potential of responsive, evolving games through the lenses of play theory and cybernetics. It aims to provide an engaging play experience while supporting the exploration of dynamic networks. It is inspired by biological models of cell signalling and neural networks. Building on the framework of play theorist James Carse, microcosm is an attempt to create an infinite game that is played not to be won, but to keep all participants in play by continually shifting the relationships and boundaries that constitute the game. Microcosm is populated by virtual organisms that play with the boundaries between organic and artificial, component and whole, human and non-human

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Olfactory Imagery and Emotional Control

    Get PDF
    Olfaction and gustation are important survival mechanisms. These sensory modalities also have an impact on memory and emotions. Olfactory stimulation has recently been used in virtual reality environments to treat emotional distress. There is evidence that olfactory and gustatory stimuli reach the insula, where they influence a number of other brain networks. There is little research on the use of smell and taste during mindfulness, but it will be shown that they can foster balanced emotional responses. In this chapter, we will look at how to incorporate olfactory and gustatory memory-based experiences during mindfulness exercises to bring about emotional homeostasis

    Embodied geosensification-models, taxonomies and applications for engaging the body in immersive analytics of geospatial data

    Get PDF
    This thesis examines how we can use immersive multisensory displays and body-focused interaction technologies to analyze geospatial data. It merges relevant aspects from an array of interdisciplinary research areas, from cartography to the cognitive sciences, to form three taxonomies that describe the senses, data representations, and interactions made possible by these technologies. These taxonomies are then integrated into an overarching design model for such "Embodied Geosensifications". This model provides guidance for system specification and is validated with practical examples

    Usability of Two New Interactive Game Sensor-Based Hand Training Devices in Parkinson's Disease.

    Get PDF
    This pilot cross-sectional study aimed to evaluate the usability of two new interactive game sensor-based hand devices (GripAble and Smart Sensor Egg) in both healthy adults as well as in persons with Parkinson's Disease (PD). Eight healthy adults and eight persons with PD participated in this study. Besides a standardised usability measure, the state of flow after one training session and the effect of cognitive abilities on flow were evaluated. High system usability scores (SUS) were obtained both in healthy participants (72.5, IQR = 64.375-90, GripAble) as well as persons with PD (77.5, IQR = 70-80.625, GripAble; 77.5, IQR = 75-82.5, Smart Sensor Egg). Similarly, high FSSOT scores were achieved after one training session (42.5, IQR = 39.75-50, GripAble; 50, IQR = 47-50, Smart Sensor Egg; maximum score 55). Across both groups, FSSOT scores correlated significantly with SUS scores (r = 0.52, p = 0.039). Finally, MoCA did not correlate significantly with FSSOT scores (r = 0.02, p = 0.9). The present study shows high usability for both interactive game sensor-based hand training devices, for persons with PD and healthy participants

    Vibrotactile Sensory Augmentation and Machine Learning Based Approaches for Balance Rehabilitation

    Full text link
    Vestibular disorders and aging can negatively impact balance performance. Currently, the most effective approach for improving balance is exercise-based balance rehabilitation. Despite its effectiveness, balance rehabilitation does not always result in a full recovery of balance function. In this dissertation, vibrotactile sensory augmentation (SA) and machine learning (ML) were studied as approaches for further improving balance rehabilitation outcomes. Vibrotactile SA provides a form of haptic cues to complement and/or replace sensory information from the somatosensory, visual and vestibular sensory systems. Previous studies have shown that people can reduce their body sway when vibrotactile SA is provided; however, limited controlled studies have investigated the retention of balance improvements after training with SA has ceased. The primary aim of this research was to examine the effects of supervised balance rehabilitation with vibrotactile SA. Two studies were conducted among people with unilateral vestibular disorders and healthy older adults to explore the use of vibrotactile SA for therapeutic and preventative purposes, respectively. The study among people with unilateral vestibular disorders provided six weeks of supervised in-clinic balance training. The findings indicated that training with vibrotactile SA led to additional body sway reduction for balance exercises with head movements, and the improvements were retained for up to six months. Training with vibrotactile SA did not lead to significant additional improvements in the majority of the clinical outcomes except for the Activities-specific Balance Confidence scale. The study among older adults provided semi-supervised in-home balance rehabilitation training using a novel smartphone balance trainer. After completing eight weeks of balance training, participants who trained with vibrotactile SA showed significantly greater improvements in standing-related clinical outcomes, but not in gait-related clinical outcomes, compared with those who trained without SA. In addition to investigating the effects of long-term balance training with SA, we sought to study the effects of vibrotactile display design on people’s reaction times to vibrational cues. Among the various factors tested, the vibration frequency and tactor type had relatively small effects on reaction times, while stimulus location and secondary cognitive task had relatively large effects. Factors affected young and older adults’ reaction times in a similar manner, but with different magnitudes. Lastly, we explored the potential for ML to inform balance exercise progression for future applications of unsupervised balance training. We mapped body motion data measured by wearable inertial measurement units to balance assessment ratings provided by physical therapists. By training a multi-class classifier using the leave-one-participant-out cross-validation method, we found approximately 82% agreement among trained classifier and physical therapist assessments. The findings of this dissertation suggest that vibrotactile SA can be used as a rehabilitation tool to further improve a subset of clinical outcomes resulting from supervised balance rehabilitation training. Specifically, individuals who train with a SA device may have additional confidence in performing balance activities and greater postural stability, which could decrease their fear of falling and fall risk, and subsequently increase their quality of life. This research provides preliminary support for the hypothesized mechanism that SA promotes the central nervous system to reweight sensory inputs. The preliminary outcomes of this research also provide novel insights for unsupervised balance training that leverage wearable technology and ML techniques. By providing both SA and ML-based balance assessment ratings, the smart wearable device has the potential to improve individuals’ compliance and motivation for in-home balance training.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143901/1/baotian_1.pd

    Neuropharmacological Potential of Diterpenoid Alkaloids

    Get PDF
    This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and diverse biological activities, especially in the central nervous system (CNS). These alkaloids originate through the amination reaction of tetra or pentacyclic diterpenoids, which are classified into three categories and 46 types based on the number of carbon atoms in the backbone structure and structural differences. The main chemical characteristics of DAs are their heterocyclic systems containing ÎČ-aminoethanol, methylamine, or ethylamine functionality. Although the role of tertiary nitrogen in ring A and the polycyclic complex structure are of great importance in drug-receptor affinity, in silico studies have emphasized the role of certain sidechains in C13, C14, and C8. DAs showed antiepileptic effects in preclinical studies mostly through Na+ channels. Aconitine (1) and 3-acetyl aconitine (2) can desensitize Na+ channels after persistent activation. Lappaconitine (3), N-deacetyllapaconitine (4), 6-benzoylheteratisine (5), and 1-benzoylnapelline (6) deactivate these channels. Methyllycaconitine (16), mainly found in Delphinium species, possesses an extreme affinity for the binding sites of α7 nicotinic acetylcholine receptors (nAChR) and contributes to a wide range of neurologic functions and the release of neurotransmitters. Several DAs such as bulleyaconitine A (17), (3), and mesaconitine (8) from Aconitum species have a drastic analgesic effect. Among them, compound 17 has been used in China for decades. Their effect is explained by increasing the release of dynorphin A, activating the inhibitory noradrenergic neurons in the ÎČ-adrenergic system, and preventing the transmission of pain messages by inactivating the Na+ channels that have been stressed. Acetylcholinesterase inhibitory, neuroprotective, antidepressant, and anxiolytic activities are other CNS effects that have been investigated for certain DAs. However, despite various CNS effects, recent advances in developing new drugs from DAs were insignificant due to their neurotoxicity

    Mindfulness practice with a brain‐sensing device improved cognitive functioning of elementary school children:An exploratory pilot study

    Get PDF
    This is the first pilot study with children that has assessed the effects of a brain–computer interface-assisted mindfulness program on neural mechanisms and associated cognitive performance. The participants were 31 children aged 9–10 years who were randomly assigned to either an eight-session mindfulness training with EEG-feedback or a passive control group. Mindfulness-related brain activity was measured during the training, while cognitive tests and resting-state brain activity were measured pre- and post-test. The within-group measurement of calm/focused brain states and mind-wandering revealed a significant linear change. Significant positive changes were detected in children’s inhibition, information processing, and resting-state brain activity (alpha, theta) compared to the control group. Elevated baseline alpha activity was associated with less reactivity in reaction time on a cognitive test. Our exploratory findings show some preliminary support for a potential executive function-enhancing effect of mindfulness supplemented with EEG-feedback, which may have some important implications for children’s self-regulated learning and academic achievement
    • 

    corecore