3,724 research outputs found

    A framework concept for data visualization and structuring in a complex production process

    Get PDF
    This paper provides a concept study for a visual interface framework together with the software Sequence Planner for implementation on a complex industrial process for extracting process information in an efficient way and how to make use of a lot of data to visualize it in a standardized human machine interface for different user perspectives. The concept is tested and validated on a smaller simulation of a paint booth with several interconnected and supporting control systems to prove the functionality and usefulness in this kind of production system.The paper presents the resulting five abstraction levels in the framework concept, from a production top view down to the signal exchange between the different resources in one production cell, together with additional features. The simulation proves the setup with Sequence Planner and the visual interface to work by extract and present process data from a running sequence

    The cyber-physical e-machine manufacturing system : virtual engineering for complete lifecycle support

    Get PDF
    Electric machines (e-machines) will form a fundamental part of the powertrain of the future. Automotive manufacturers are keen to develop emachine manufacturing and assembly knowledge in-house. An on-going project, which aims to deliver an e-machine pilot assembly line, is being supported by a set of virtual engineering tools developed by the Automation Systems Group at the University of Warwick. Although digital models are a useful design aid providing visualization and simulation, the opportunity being exploited in this research paper is to have a common model throughout the lifecycle of both the manufacturing system and the product. The vision is to have a digital twin that is consistent with the real system and not just used in the early design and deployment phases. This concept, commonly referred to as Cyber Physical Systems (CPS), is key to realizing efficient system reconfigurability to support alternative product volumes and mixes. These tools produce modular digital models that can be rapidly modified preventing the simulation, test, and modification processes forming a bottleneck to the development lifecycles. In addition, they add value at more mature phases when, for example, a high volume line based on the pilot is created as the same models can be reused and modified as required. This research paper therefore demonstrates how the application of the virtual engineering tools support the development of a CPS using an e-machine assembly station as a case study. The main contribution of the work is to further validate the CPS philosophy by extending the concept into practical applications in pilot production systems with prototype products

    Validating a reconfigurable assembly system utilizing virtual commissioning

    Get PDF
    Published ArticleSouth African manufacturing companies today need to be more sophisticated technologically to compete for global markets. The latest trend in automation and manufacturing emerges in the form of reconfigurable systems. The aim of this paper is to show the development of a reconfigurable assembly system and using virtual commissioning to plan, validate and optimize it. To achieve this "DELMIA" software was used to create a virtual simulation environment to verify an assembly cell from such a system as a case study. Simulations were conducted to verify software functions, device movements and operations, and the control software of the system. As a result, it was found that virtual commissioning is an excellent tool for predicting how the system will function, verifying system code early, and rectifying design flaws. This will enable manufacturing companies to be more competitive, ensure increased productivity, save time and ensure them an advantage over their competition

    Towards narrowing the reality gap in electromechanical systems: error modeling in virtual commissioning

    Get PDF
    Digital factories and smart manufacturing systems have been increasingly researched and multiple concepts were developed to cope with prevailing ever-shortening life-cycles. The ubiquitous digital twin, despite many definitions, is often praised for accurate virtual models. One key idea to improve manufacturing through such virtual models is virtual commissioning\textit{virtual commissioning} (VC), aiming at early machine code validation. VC and its virtual models are still lacking behind their real counterparts. This gap between reality and its virtual model, commonly termed reality gap\textit{reality gap}, increases the complexity of creating cyber-physical systems. An especially stark contrast is visible between the idealized virtual model and a real machine encountering errors. While error simulations exist in other fields of research, a thorough investigation in VC is missing. Thus, this paper addresses the task of narrowing the reality gap in VC based on two steps. First, a comprehensive body of research of possible errors encountered in virtual commissioning is analyzed. Secondly, the feasibility of error implementation is discussed. This paper lays the foundation for narrowing the reality gap and enabling test automation and digital twin-based control

    Implementation of Digital Twin-based Virtual Commissioning in Machine Tool Manufacturing

    Get PDF
    Virtual commissioning is not a new concept; However, it is all the rage with the introduction of Industry 4.0, in the field of product lifecycle management, computer-aided design (CAD), computer-aided manufacturing (CAM), and within the industrial automation programming frameworks. Although, this is a very active area of research and innovation, these technologies have little implementation in the machine tool industry [11]. There is still no integrated simulation environment for virtual commissioning in the market. In this context, digitalisation is a key driver. The aim of this paper is to describe the practice of virtual commissioning in the machine tool manufacturing industry by identifying available solutions in the market and addressing the challenges faced within the machine tool sector. As a result, a digital twin based virtual commissioning solution has been developed at Danobatgroup, the leading machine tool builder in Spain, which is a step forward towards the digitalisation of machine tool manufacturing

    Engineering methods and tools for cyber–physical automation systems

    Get PDF
    Much has been published about potential benefits of the adoption of cyber–physical systems (CPSs) in manufacturing industry. However, less has been said about how such automation systems might be effectively configured and supported through their lifecycles and how application modeling, visualization, and reuse of such systems might be best achieved. It is vitally important to be able to incorporate support for engineering best practice while at the same time exploiting the potential that CPS has to offer in an automation systems setting. This paper considers the industrial context for the engineering of CPS. It reviews engineering approaches that have been proposed or adopted to date including Industry 4.0 and provides examples of engineering methods and tools that are currently available. The paper then focuses on the CPS engineering toolset being developed by the Automation Systems Group (ASG) in the Warwick Manufacturing Group (WMG), University of Warwick, Coventry, U.K. and explains via an industrial case study how such a component-based engineering toolset can support an integrated approach to the virtual and physical engineering of automation systems through their lifecycle via a method that enables multiple vendors' equipment to be effectively integrated and provides support for the specification, validation, and use of such systems across the supply chain, e.g., between end users and system integrators

    Engineering Method and Tool for the Complete Virtual Commissioning of Robotic Cells

    Get PDF
    Intelligent robotic manufacturing cells must adapt to ever-varying operating conditions, developing autonomously optimal manufacturing strategies to achieve the best quality and overall productivity. Intelligent and cognitive behaviors are realized by using distributed controllers, in which complex control logics must interact and process a wide variety of input/output signals. In particular, programmable logic controllers (PLCs) and robot controllers must be coordinated and integrated. Then, there is the need to simulate the robotic cells’ behavior for performance verification and optimization by evaluating the effects of both PLC and robot control codes. In this context, this work proposes a method, and its implementation into an integrated tool, to exploit the potential of ABB RobotStudio software as a virtual prototyping platform for robotic cells, in which real robots control codes are executed on a virtual controller and integrated with Beckhoff PLC environment. For this purpose, a PLC Smart Component was conceived as an extension of RobotStudio functionalities to exchange signals with a TwinCAT instance. The new module allows the virtual commissioning of a complete robotic cell to be performed, assessing the control logics effects on the overall productivity. The solution is demonstrated on a robotic assembly cell, showing its feasibility and effectiveness in optimizing the final performance

    A standardization approach to Virtual Commissioning strategies in complex production environments

    Get PDF
    The ongoing industrial revolution puts high demands on the component manufacturers and suppliers to meet the tough requirements set by the development industries to follow the technological advancement of highly digitalized factories with more future-oriented applications as Virtual Commissioning for cyber-physical systems. This paper provides a production system lifecycle assessment regarding the technical specification strategies using Virtual Commissioning for implementation and integration of new systems or plants and its predicted future challenges. With the use of standards and a common language practice between a purchaser/contractor procurement situation and across the different technical disciplines internally and externally, the implementation strategies is reiterated to achieve a new sustainable business model. The paper investigates different types of production systems and how a defined classification framework of different levels of Virtual Commissioning can connect the implementation requirements to a desired solution. This strategy includes aspects of standardization, communication, process lifecycle, and predicted cost parameters
    • …
    corecore