342 research outputs found

    Subjectively interpreted shape dimensions as privileged and orthogonal axes in mental shape space

    Get PDF
    The shape of an object is fundamental in object recognition but it is still an open issue to what extent shape differences are perceived analytically (i.e., by the dimensional structure of the shapes) or holistically (i.e., by the overall similarity of the shapes). The dimensional structure of a stimulus is available in a primary stage of processing for separable dimensions, although it can also be derived cognitively from a perceived stimulus consisting of integral dimensions. Contrary to most experimental paradigms, the present study asked participants explicitly to analyze shapes according to two dimensions. The dimensions of interest were aspect ratio and medial axis curvature, and a new procedure was used to measure the participants' interpretation of both dimensions (Part I, Experiment 1). The subjectively interpreted shape dimensions showed specific characteristics supporting the conclusion that they also constitute perceptual dimensions with objective behavioral characteristics (Part II): (1) the dimensions did not correlate in overall similarity measures (Experiment 2), (2) they were more separable in a speeded categorization task (Experiment 3), and (3) they were invariant across different complex 2-D shapes (Experiment 4). The implications of these findings for shape-based object processing are discussed

    Perception of geometrically deformed lines

    Get PDF

    Perception of geometrically deformed lines

    Get PDF

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Crystallization and demixing: morphological structure analysis in many-body systems

    Get PDF
    The description and analysis of spatial data is an omnipresent task in both science and industry: In the food industry the distribution and size of pores in baked goods plays a role in their taste. In chemistry, biology and physics spatial data arises in manifold disciplines and on all length scales. On large scales one finds them in the structure of the universe or in earth surveillance data. On small scales one observes highly structured data in inner bones or on minute scales in the deformation of nucleons in nuclear pasta, which is theorized to form during the cooling of a neutron star. In particular in statistical physics many-body-systems have a tendency to collectively form complex structures by self-organization. These complex structures often allow to draw conclusions about the underlying physics. In order to formulate a quantitative relation between the physics of many-body-systems and their morphology, i.e. the spatial structure they assume, a quantitative description of this structure is essential. In this dissertation the spatial structure of phase transitions (crystallization and demixing) in many-body-systems is quantitatively described and analyzed in order to achieve an improved understanding of the physics involved. Regarding the analysis methods applied in this thesis we go beyond conventional linear measures based on two-point correlation functions or the power spectrum. Instead, the aim is a full nonlinear morphological characterization of the spatial data with measures derived from the family of Minkowski functionals and tensors. They are additive, morphological measures related to, not only geometrical concepts like volume, area and curvature, but also to topological aspects such as connectivity and are sensitive to higher order correlation. Complex plasmas (dielectric microparticles immersed in a plasma) are a well suited model system for the particle resolved investigation of many-body processes. Their optical thinness allows for the optical imaging and tracking of the fully resolved trajectories of hundreds of particle layers. Additionally interactions can be tuned over a large range allowing to manipulate the shape and magnitude of the interparticle potential. Since the gas density is typically very low, the particle motion is practically undamped resulting in a direct analogy to the atomistic dynamics in solids or fluids. Liquid-solid phase transition have been considered impossible for a long time since the Mermin-Wagner theorem forbids long-range order in two (or less) dimensions. However, Kosterlitz and Thouless (Nobel prize 2016) circumvented this by replacing the long-range order with a quasi-long-range order and by introducing a topological phase transition mediated by defects. The well accepted KTHNY theory predicts an intermediate anisotropic phase, the hexatic phase. In the first part of this thesis the KTHNY theory is tested for experiments and a simulation of the crystallization of two-dimensional complex plasma sheets. For the same experiments the hypothesis and prediction of the recently developed fractal-domain-structure (FDS) theory is tested. The FDS theory is based on the Frenkel kinetic theory of melting. It postulates a fractal relationship between crystalline domains separated by boundaries of defect lines and predicts a scale-free relation between the system energy and the defect fraction. It is found that the KTHNY theory is not applicable to the liquid-solid phase transition in complex plasmas. The FDS theory however, is validated. The other focus of this thesis is the morphological characterization of fluid-fluid demixing dynamics. The generally accepted mechanism for fluid-fluid demixing is spinodal decomposition. Spinodal decomposition is achieved by a quench deep inside the spinodal curve of the phase diagram. It is characterized by the exponential growth of longwavelength density fluctuations. However the mean-field theory predictions of spinodal decomposition are not consistent with experiments and simulations. This shows the need for particle resolved studies with tunable interactions. To this end complex plasma simulations in flat three-dimensional space and density-functional theory calculations on the two-dimensional sphere are analyzed. In both cases different stages of demixing are identified with distinct domain growth rates during spinodal decomposition. Most importantly, universal demixing behavior is found for different interaction potentials, respectively for different mixture fractions and sphere sizes. These universal features could only be resolved by applying nonlinear measures, going beyond conventional methods based on the power spectral density. This suggests that nonlinear features in the demixing kinetics play an important role and that it is crucial to address this issue in future works.Räumliche Daten zu beschreiben und zu analysieren ist eine allgegenwärtige Problemstellung sowohl in der Wissenschaft als auch in der Industrie: So spielt beispielsweise in der Nahrungsmittelindustrie die räumliche Verteilung und die Größe von Poren in Backwaren eine Rolle für deren Geschmack. In den wissenschaftlichen Gebieten der Chemie, Biologie und der Physik liefern räumlich strukturierte Systeme Grundlage vieler Forschungsbereiche und sind in allen Größenordnungen aufzufinden: Auf großen Skalen z.B. bei der Struktur des Universums oder bei Erdbeobachtungsdaten. Auf kleinen Skalen bei der Struktur im inneren von Knochen oder im kleinsten bei der Verformung von Nukleonen zu nuklearer Pasta, die z.B. beim Abkühlen von Neutronensternen entstehen soll. Insbesondere in der statistischen Physik neigen Vielteilchensysteme dazu, sich in komplexen Strukturen selbst anzuordnen. Diese komplexen räumlichen Strukturen lassen oft Rückschlüsse auf die zugrunde liegende Physik zu. Um einen quantitativen Zusammenhang zwischen der Physik von Vielteilchensystemen und ihrer Morphologie, also der Struktur die diese annehmen, herzustellen, ist eine quantitative Beschreibung dieser Struktur unerlässlich. In dieser Dissertation werden daher die räumlichen Strukturen bei Phasenübergängen (Kristallisation und Entmischung) in Vielteilchensystemen beschrieben und analysiert, um damit Rückschlüsse auf die zugrundeliegende Physik ziehen zu können. Im Hinblick auf die Methoden, die zur Analyse der in dieser Dissertation untersuchten Systeme genutzt werden, gehen wir über konventionelle Methoden, die auf dem Leistungsspektrum oder auf zwei-Punkt Korrelationsfunktionen beruhen, hinaus. Das Ziel ist es die räumlichen Daten vollständig morphologisch zu charakterisieren. Zu diesem Zweck werden Metriken basierend auf der Familie der Minkowski Funktionale und Tensoren abgeleitet. Das sind additive morphologische Maße, die auch Korrelationen höherer Ordnung detektieren können. Sie sind nicht nur mit geometrischen Konzepten wie Volumen, Fläche und Krümmung verwandt, sondern stellen auch Aspekte der Topologie wie z.B. Verbundenheit dar. Komplexe Plasmen (dielektrische Mikropartikel eingebracht in ein Plasma) stellen ein überaus geeignetes Modellsystem für die Untersuchung von Vielteilchenprozessen auf der kinetischen Ebene individueller Teilchen dar, da durch ihre optische Dünnheit die Bildgebung mehrerer hundert Lagen von Teilchen und die volle Auflösung der Teilchentrajektorien ermöglicht wird. Darüber hinaus können die Teilchenwechselwirkungen in Komplexen Plasmen auf vielfältige Art und Weise manipuliert werden. Da der Gasdruck meist sehr gering ist, sind die Teilchenbewegungen praktisch ungedämpft. Dies stellt eine direkte Analogie zur Dynamik von Atomen in Flüssigkeiten oder Festkörpern dar. Flüssig-fest Phasenübergänge in zwei-dimensionalen Systemen wurden lange Zeit als unmöglich erachtet, da das Mermin-Wagner Theorem langreichweitige Ordnung in zwei (oder weniger) Dimensionen verbietet. Kosterlitz und Thouless umgingen diese Problem jedoch, indem sie die langreichweitige Ordnung durch eine quasi-langreichweitige Ordnung ersetzten und einen topologischen Phasenübergang vorstellten, der durch Interaktionen von Kristalldefekten vonstatten geht. Diese allgemein akzeptierte KTHNY Theorie sagt eine anisotrope Zwischenphase vorher, die so genannte hexatische Phase. Im ersten Teil dieser Dissertation werden die Vorhersagen der KTHNY Theorie, anhand von Experimenten und einer Computer Simulation an einzelnen zwei-dimensionalen Komplexen Plasma Kristall-Lagen getestet. Anhand selbiger Experimente wird eine kürzlich neu entwickelte fraktale-Domänen-Struktur (FDS) Theorie getestet. Die FDS Theorie basiert auf der kinetischen Theorie des Schmelzens von Frenkel. Sie postuliert einen fraktalen Zusammenhang zwischen der eingeschlossenen Fläche von kristallinen Domänen und der Länge deren Begrenzung durch Linien aus Kristalldefekten. Es wird gezeigt, dass die KTHNY Theorie nicht auf flüssig-fest Phasenübergänge in zwei-dimensionalen Komplexen Plasmen angewandt werden kann. Die FDS Theorie wird hingegen validiert. Desweiteren wird in dieser Dissertation die morphologische Beschreibung der Entmischungsdynamik von Flüssigkeiten behandelt. Der allgemein anerkannte Mechanismus, der für die Flüssigkeitsentmischung verantwortlich ist, ist die spinodale Dekomposition. Diese wird durch das quenchen (z.B. abkühlen) in den inneren Bereich der spinodalen Kurve im Phasendiagramm ausgelöst. Das charakteristische Merkmal der spinodalen Dekomposition ist der Beginn der Entmischung durch das exponentielle Wachstum von Dichtefluktuationen mit großen Wellenlängen. Die Vorhersagen der Molekularfeldtheorie der spinodalen Dekomposition sind jedoch nicht mit experimentellen Beobachtungen und Simulationen vereinbar. Diese Tatsache zeigt den Bedarf an Studien auf, die es vermögen einzelnen Teilchen zu folgen und bei denen man die Interaktionen zwischen den Teilchen beeinflussen kann. Deshalb werden in dieser Doktorarbeit sowohl Simulationen von Komplexen Plasmen (in drei-dimensionaler Euklidscher Geometrie) als auch Dichtefunktionaltheorie Berechnungen auf der zwei-dimensionalen Sphäre untersucht. In beiden Fällen können verschiedene Stadien in der Dynamik der Entmischung unterschieden werden. Das interessanteste Ergebnis ist die Entdeckung von universellem Verhalten im Entmischungsprozess. Universalität kann in dieser Arbeit im Hinblick auf verschiedene Interaktionspotentiale, bzw. im Hinblick auf verschiedene Mischungsverhältnisse und Sphärenradien gezeigt werden. Um diese universellen Eigenschaften zu entdecken, ist die Anwendung nicht-linearer Maße zwingend erforderlich, konventionelle auf dem Leistungsspektrum basierende Maße sind hierfür unzureichend. Dies zeigt, dass die nicht-linearen Eigenschaften des Entmischungsprozesses eine wichtige Rolle spielen und ist deshalb ein Fokus künftiger Arbeitenzu diesem Thema

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    The role of local structure in dynamical arrest

    Full text link
    Amorphous solids, or glasses, are distinguished from crystalline solids by their lack of long-range structural order. At the level of two-body structural correlations, glassformers show no qualitative change upon vitrifying from a supercooled liquid. Nonetheless the dynamical properties of a glass are so much slower that it appears to take on the properties of a solid. While many theories of the glass transition focus on dynamical quantities, a solid's resistance to flow is often viewed as a consequence of its structure. Here we address the viewpoint that this remains the case for a glass. Recent developments using higher-order measures show a clear emergence of structure upon dynamical arrest in a variety of glass formers and offer the tantalising hope of a structural mechanism for arrest. However a rigorous fundamental identification of such a causal link between structure and arrest remains elusive. We undertake a critical survey of this work in experiments, computer simulation and theory and discuss what might strengthen the link between structure and dynamical arrest. We move on to highlight the relationship between crystallisation and glass-forming ability made possible by this deeper understanding of the structure of the liquid state, and emphasize the potential to design materials with optimal glassforming and crystallisation ability, for applications such as phase-change memory. We then consider aspects of the phenomenology of glassy systems where structural measures have yet to make a large impact, such as polyamorphism (the existence of multiple liquid states), aging (the time-evolution of non-equilibrium materials below their glass transition) and the response of glassy materials to external fields such as shear.Comment: 70 page

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    corecore