6 research outputs found

    Who is who at different cameras: people re-identification using depth cameras

    Full text link
    This study proposes the concept of bodyprints to perform re-identification of people in surveillance videos. Bodyprints are obtained using calibrated depth-colour cameras such as kinect. The author's results on a database of 40 people show that bodyprints are very robust to changes of pose, point of view and illumination. Potential applications include tracking people with networks of non-overlapping cameras. © 2012 The Institution of Engineering and Technology.The work presented in this paper has been funded by the Spanish Ministry of Science and Technology under the CICYT contract TEVISMART, TEC2009-09146.Albiol Colomer, AJ.; Albiol Colomer, A.; Oliver Moll, J.; Mossi García, JM. (2012). Who is who at different cameras: people re-identification using depth cameras. IET Computer Vision. 6(5):378-387. https://doi.org/10.1049/iet-cvi.2011.0140S37838765Dee, H. M., & Velastin, S. A. (2007). How close are we to solving the problem of automated visual surveillance? Machine Vision and Applications, 19(5-6), 329-343. doi:10.1007/s00138-007-0077-zhttp://www.pointclouds.org/Zhang, Z., & Troje, N. F. (2005). View-independent person identification from human gait. Neurocomputing, 69(1-3), 250-256. doi:10.1016/j.neucom.2005.06.002Bazzani, L., Cristani, M., Perina, A., Farenzena, M., & Murino, V. (2010). Multiple-Shot Person Re-identification by HPE Signature. 2010 20th International Conference on Pattern Recognition. doi:10.1109/icpr.2010.349Doretto, G., Sebastian, T., Tu, P., & Rittscher, J. (2011). Appearance-based person reidentification in camera networks: problem overview and current approaches. Journal of Ambient Intelligence and Humanized Computing, 2(2), 127-151. doi:10.1007/s12652-010-0034-yBk, S., Corvee, E., Bremond, F., & Thonnat, M. (2010). Person Re-identification Using Spatial Covariance Regions of Human Body Parts. 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance. doi:10.1109/avss.2010.34Da-Jinn Wang, Chao-Ho Chen, Tsong-Yi Chen, & Chien-Tsung Lee. (2009). People Recognition for Entering & Leaving a Video Surveillance Area. 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC). doi:10.1109/icicic.2009.293Bird, N. D., Masoud, O., Papanikolopoulos, N. P., & Isaacs, A. (2005). Detection of Loitering Individuals in Public Transportation Areas. IEEE Transactions on Intelligent Transportation Systems, 6(2), 167-177. doi:10.1109/tits.2005.848370Oliveira, I. O. de, & Pio, J. L. de S. (2009). People Reidentification in a Camera Network. 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing. doi:10.1109/dasc.2009.33Hamdoun, O., Moutarde, F., Stanciulescu, B., & Steux, B. (2008). Person re-identification in multi-camera system by signature based on interest point descriptors collected on short video sequences. 2008 Second ACM/IEEE International Conference on Distributed Smart Cameras. doi:10.1109/icdsc.2008.4635689Office, U.H.: ‘i-LIDS multiple camera tracking scenario definition’, 2008)http://www.gpiv.upv.es/kinect_data/http://www.primesense.com/http://www.openni.org/http://opencv.willowgarage.com/http://www.ros.org/http://kinectforwindows.org/Grimaud, M. (1992). New measure of contrast: the dynamics. Image Algebra and Morphological Image Processing III. doi:10.1117/12.60650Beucher, S., and Meyer, F.: ‘The morphological approach to segmentation: the watershed transformation’, (Marcel-Dekker 1992), p. 433–4

    Using latent features for short-term person re-identification with RGB-D cameras

    Full text link
    This paper presents a system for people re-identification in uncontrolled scenarios using RGB-depth cameras. Compared to conventional RGB cameras, the use of depth information greatly simplifies the tasks of segmentation and tracking. In a previous work, we proposed a similar architecture where people were characterized using color-based descriptors that we named bodyprints. In this work, we propose the use of latent feature models to extract more relevant information from the bodyprint descriptors by reducing their dimensionality. Latent features can also cope with missing data in case of occlusions. Different probabilistic latent feature models, such as probabilistic principal component analysis and factor analysis, are compared in the paper. The main difference between the models is how the observation noise is handled in each case. Re-identification experiments have been conducted in a real store where people behaved naturally. The results show that the use of the latent features significantly improves the re-identification rates compared to state-of-the-art works.The work presented in this paper has been funded by the Spanish Ministry of Science and Technology under the CICYT contract TEVISMART, TEC2009-09146.Oliver Moll, J.; Albiol Colomer, A.; Albiol Colomer, AJ.; Mossi García, JM. (2016). Using latent features for short-term person re-identification with RGB-D cameras. Pattern Analysis and Applications. 19(2):549-561. https://doi.org/10.1007/s10044-015-0489-8S549561192http://kinectforwindows.org/http://www.gpiv.upv.es/videoresearch/personindexing.htmlAlbiol A, Albiol A, Oliver J, Mossi JM (2012) Who is who at different cameras. Matching people using depth cameras. Comput Vis IET 6(5):378–387Bak S, Corvee E, Bremond F, Thonnat M (2010) Person re-identification using haar-based and dcd-based signature. In: 2nd workshop on activity monitoring by multi-camera surveillance systems, AMMCSS 2010, in conjunction with 7th IEEE international conference on advanced video and signal-based surveillance, AVSS. AVSSBak S, Corvee E, Bremond F, Thonnat M (2010) Person re-identification using spatial covariance regions of human body parts. In: Seventh IEEE international conference on advanced video and signal based surveillance. pp. 435–440Bak S, Corvee E, Bremond F, Thonnat M (2011) Multiple-shot human re-identification by mean riemannian covariance grid. In: Advanced video and signal-based surveillance. Klagenfurt, Autriche. http://hal.inria.fr/inria-00620496Baltieri D, Vezzani R, Cucchiara R, Utasi A, BenedeK C, Szirányi T (2011) Multi-view people surveillance using 3d information. In: ICCV workshops. pp. 1817–1824Barbosa BI, Cristani M, Del Bue A, Bazzani L, Murino V (2012) Re-identification with rgb-d sensors. In: First international workshop on re-identificationBasilevsky A (1994) Statistical factor analysis and related methods: theory and applications. Willey, New YorkBäuml M, Bernardin K, Fischer k, Ekenel HK, Stiefelhagen R (2010) Multi-pose face recognition for person retrieval in camera networks. In: International conference on advanced video and signal-based surveillanceBazzani L, Cristani M, Perina A, Farenzena M, Murino V (2010) Multiple-shot person re-identification by hpe signature. In: Proceedings of the 2010 20th international conference on pattern recognition. Washington, DC, USA, pp. 1413–1416Bird ND, Masoud O, Papanikolopoulos NP, Isaacs A (2005) Detection of loitering individuals in public transportation areas. IEEE Trans Intell Transp Syst 6(2):167–177Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, SecaucusCha SH (2007) Comprehensive survey on distance/similarity measures between probability density functions. Int J Math Models Methods Appl Sci 1(4):300–307Cheng YM, Zhou WT, Wang Y, Zhao CH, Zhang SW (2009) Multi-camera-based object handoff using decision-level fusion. In: Conference on image and signal processing. pp. 1–5Dikmen M, Akbas E, Huang TS, Ahuja N (2010) Pedestrian recognition with a learned metric. In: Asian conference in computer visionDoretto G, Sebastian T, Tu P, Rittscher J (2011) Appearance-based person reidentification in camera networks: problem overview and current approaches. J Ambient Intell Humaniz Comput 2:1–25Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition (CVPR 2010). IEEE Computer Society, San Francisco, CA, USAFodor I (2002) A survey of dimension reduction techniques. Technical report. Lawrence Livermore National LaboratoryFreund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting algorithm for combining preferences. J Mach Learn Res 4:933–969Gandhi T, Trivedi M (2006) Panoramic appearance map (pam) for multi-camera based person re-identification. Advanced Video and Signal Based Surveillance, IEEE Conference on, p. 78Garcia J, Gardel A, Bravo I, Lazaro J (2014) Multiple view oriented matching algorithm for people reidentification. Ind Inform IEEE Trans 10(3):1841–1851Gheissari N, Sebastian TB, Hartley R (2006) Person reidentification using spatiotemporal appearance. CVPR 2:1528–1535Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of IEEE international workshop on performance evaluation for tracking and surveillance (PETS)Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Proceedings of the 10th european conference on computer vision: part I. Berlin, pp. 262–275 (2008)Ilin A, Raiko T (2010) Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res 99:1957–2000Javed O, Shafique O, Rasheed Z, Shah M (2008) Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views. Comput Vis Image Underst 109(2):146–162Kai J, Bodensteiner C, Arens M (2011) Person re-identification in multi-camera networks. In: Computer vision and pattern recognition workshops (CVPRW), 2011 IEEE computer society conference on, pp. 55–61Kuo CH, Huang C, Nevatia R (2010) Inter-camera association of multi-target tracks by on-line learned appearance affinity models. Proceedings of the 11th european conference on computer vision: part I, ECCV’10. Springer, Berlin, pp 383–396Lan R, Zhou Y, Tang YY, Chen C (2014) Person reidentification using quaternionic local binary pattern. In: Multimedia and expo (ICME), 2014 IEEE international conference on, pp. 1–6Loy CC, Liu C, Gong S (2013) Person re-identification by manifold ranking. In: icip. pp. 3318–3325Madden C, Cheng E, Piccardi M (2007) Tracking people across disjoint camera views by an illumination-tolerant appearance representation. Mach Vis Appl 18:233–247Mazzon R, Tahir SF, Cavallaro A (2012) Person re-identification in crowd. Pattern Recogn Lett 33(14):1828–1837Oliveira IO, Souza Pio JL (2009) People reidentification in a camera network. In: Eighth IEEE international conference on dependable, autonomic and secure computing. pp. 461–466Papadakis P, Pratikakis I, Theoharis T, Perantonis SJ (2010) Panorama: a 3d shape descriptor based on panoramic views for unsupervised 3d object retrieval. Int J Comput Vis 89(2–3):177–192Prosser B, Zheng WS, Gong S, Xiang T (2010) Person re-identification by support vector ranking. In: Proceedings of the British machine vision conference. BMVA Press, pp. 21.1–21.11Roweis S (1998) Em algorithms for pca and spca. In: Advances in neural information processing systems. MIT Press, Cambridge, pp. 626–632 (1998)Pedagadi S, Orwell J, Velastin S, Boghossian B (2013) Local fisher discriminant analysis for pedestrian re-identification. In: CVPR. pp. 3318–3325Satta R, Fumera G, Roli F (2012) Fast person re-identification based on dissimilarity representations. Pattern Recogn Lett, Special Issue on Novel Pattern Recognition-Based Methods for Reidentification in Biometric Context 33:1838–1848Tao D, Jin L, Wang Y, Li X (2015) Person reidentification by minimum classification error-based kiss metric learning. Cybern IEEE Trans 45(2):242–252Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat Soc Ser B 61:611–622Tisse CL, Martin L, Torres L, Robert M (2002) Person identification technique using human iris recognition. In: Proceedings of vision interface, pp 294–299Vandergheynst P, Bierlaire M, Kunt M, Alahi A (2009) Cascade of descriptors to detect and track objects across any network of cameras. Comput Vis Image Underst, pp 1413–1416Verbeek J (2009) Notes on probabilistic pca with missing values. Technical reportWang D, Chen CO, Chen TY, Lee CT (2009) People recognition for entering and leaving a video surveillance area. In: Fourth international conference on innovative computing, information and control. pp. 334–337Zhang Z, Troje NF (2005) View-independent person identification from human gait. Neurocomputing 69:250–256Zhao T, Aggarwal M, Kumar R, Sawhney H (2005) Real-time wide area multi-camera stereo tracking. In: IEEE computer society conference on computer vision and pattern recognition. pp. 976–983Zheng S, Xie B, Huang K, Tao D (2011) Multi-view pedestrian recognition using shared dictionary learning with group sparsity. In: Lu BL, Zhang L, Kwok JT (eds) ICONIP (3), Lecture notes in computer science, vol 7064. Springer, New York, pp. 629–638Zheng WS, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance comparison. In: Computer vision and pattern recognition (CVPR), 2011 IEEE conference on. pp. 649–65

    Human gait identification and analysis

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Human gait identification has become an active area of research due to increased security requirements. Human gait identification is a potential new tool for identifying individuals beyond traditional methods. The emergence of motion capture techniques provided a chance of high accuracy in identification because completely recorded gait information can be recorded compared with security cameras. The aim of this research was to build a practical method of gait identification and investigate the individual characteristics of gait. For this purpose, a gait identification approach was proposed, identification results were compared by different methods, and several studies about the individual characteristics of gait were performed. This research included the following: (1) a novel, effective set of gait features were proposed; (2) gait signatures were extracted by three different methods: statistical method, principal component analysis, and Fourier expansion method; (3) gait identification results were compared by these different methods; (4) two indicators were proposed to evaluate gait features for identification; (5) novel and clear definitions of gait phases and gait cycle were proposed; (6) gait features were investigated by gait phases; (7) principal component analysis and the fixing root method were used to elucidate which features were used to represent gait and why; (8) gait similarity was investigated; (9) gait attractiveness was investigated. This research proposed an efficient framework for identifying individuals from gait via a novel feature set based on 3D motion capture data. A novel evaluating method of gait signatures for identification was proposed. Three different gait signature extraction methods were applied and compared. The average identification rate was over 93%, with the best result close to 100%. This research also proposed a novel dividing method of gait phases, and the different appearances of gait features in eight gait phases were investigated. This research identified the similarities and asymmetric appearances between left body movement and right body movement in gait based on the proposed gait phase dividing method. This research also initiated an analysing method for gait features extraction by the fixing root method. A prediction model of gait attractiveness was built with reasonable accuracy by principal component analysis and linear regression of natural logarithm of parameters. A systematic relationship was observed between the motions of individual markers and the attractiveness ratings. The lower legs and feet were extracted as features of attractiveness by the fixing root method. As an extension of gait research, human seated motion was also investigated.This study is funded by the Dorothy Hodgkin Postgraduate Awards and Beijing East Gallery Co. Ltd

    The utility of gait as a biological characteristic in forensic investigations – An empirical examination of movement pattern variation using biomechanical and anthropological principles

    Get PDF
    Forensic gait analysis is generally defined as the analysis of gait features from video footage to assist in criminal investigations. Although an attractive means to detect suspects since data can be collected from a distance without their knowledge, forensic gait analysis presently lacks method validation and quality standards, not only due to insufficient research, but also because certain scientific foundations, such as the assumption of gait uniqueness, have not been adequately addressed. To test the scientific basis of this premise, a suitable dataset replicating an ideal forensic gait analysis scenario was compiled from the Karlsruhe Institute of Technology (Germany) database. Biomechanical analysis of sagittal plane human motion in the bilateral shoulder, elbow, hip, knee, and ankle joints was conducted across complete gait cycles of twenty participants, to investigate the degree to which intraindividual variation impacts interindividual variation, according to the following aims: (1) to better understand the relationship between form (anatomy) and function (physiology) of human gait, (2) to investigate the basis of gait uniqueness by examining similarities and differences in joint angles, and (3) to build upon current theoretical foundations of gait-based human identification. The findings indicate different degrees of movement asymmetry given body region and gait sub-phase, thereby challenging previous methods employing interchangeable use of bilateral motion data, and the use of ‘average’ gait cycles to represent the gait of an individual irrespective of body side. Furthermore, interindividual variability in all five joints is influenced by body side to different extents depending on gait sub-phase and body region, thereby challenging the claim of holistic uniqueness of gait features across all body regions and gait events. Given the findings of this thesis and paucity regarding empirical basis to support expertise, exerting caution when evaluating gait-based evidence admissibility is highly recommended, since the utility of gait in identification is currently limited

    View-independent person identification from human gait

    No full text
    corecore