510 research outputs found

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Low Complexity Mode Decision for 3D-HEVC

    Get PDF
    High efficiency video coding- (HEVC-) based 3D video coding (3D-HEVC) developed by joint collaborative team on 3D video coding (JCT-3V) for multiview video and depth map is an extension of HEVC standard. In the test model of 3D-HEVC, variable coding unit (CU) size decision and disparity estimation (DE) are introduced to achieve the highest coding efficiency with the cost of very high computational complexity. In this paper, a fast mode decision algorithm based on variable size CU and DE is proposed to reduce 3D-HEVC computational complexity. The basic idea of the method is to utilize the correlations between depth map and motion activity in prediction mode where variable size CU and DE are needed, and only in these regions variable size CU and DE are enabled. Experimental results show that the proposed algorithm can save about 43% average computational complexity of 3D-HEVC while maintaining almost the same rate-distortion (RD) performance

    Depth-based Multi-View 3D Video Coding

    Get PDF

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Rate Distortion Analysis and Bit Allocation Scheme for Wavelet Lifting-Based Multiview Image Coding

    Get PDF
    This paper studies the distortion and the model-based bit allocation scheme of wavelet lifting-based multiview image coding. Redundancies among image views are removed by disparity-compensated wavelet lifting (DCWL). The distortion prediction of the low-pass and high-pass subbands of each image view from the DCWL process is analyzed. The derived distortion is used with different rate distortion models in the bit allocation of multiview images. Rate distortion models including power model, exponential model, and the proposed combining the power and exponential models are studied. The proposed rate distortion model exploits the accuracy of both power and exponential models in a wide range of target bit rates. Then, low-pass and high-pass subbands are compressed by SPIHT (Set Partitioning in Hierarchical Trees) with a bit allocation solution. We verify the derived distortion and the bit allocation with several sets of multiview images. The results show that the bit allocation solution based on the derived distortion and our bit allocation scheme provide closer results to those of the exhaustive search method in both allocated bits and peak-signal-to-noise ratio (PSNR). It also outperforms the uniform bit allocation and uniform bit allocation with normalized energy in the order of 1.7–2 and 0.3–1.4 dB, respectively

    Mixed-Resolution HEVC based multiview video codec for low bitrate transmission

    Get PDF
    • …
    corecore