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High efficiency video coding- (HEVC-) based 3D video coding (3D-HEVC) developed by joint collaborative team on 3D video
coding (JCT-3V) for multiview video and depth map is an extension of HEVC standard. In the test model of 3D-HEVC, variable
coding unit (CU) size decision and disparity estimation (DE) are introduced to achieve the highest coding efficiency with the cost
of very high computational complexity. In this paper, a fast mode decision algorithm based on variable size CU and DE is proposed
to reduce 3D-HEVC computational complexity. The basic idea of the method is to utilize the correlations between depth map and
motion activity in prediction mode where variable size CU and DE are needed, and only in these regions variable size CU and
DE are enabled. Experimental results show that the proposed algorithm can save about 43% average computational complexity of
3D-HEVC while maintaining almost the same rate-distortion (RD) performance.

1. Introduction

With the development of the technology of 3D television
(3DTV) and free viewpoint television (FTV), 3D video
coding attracts more and more attention. The typical 3D
video is represented using the multiview video plus depth
(MVD) format [1], in which few captured texture videos as
well as associated depth maps are used. The depth maps
provide per-pixel with depth corresponding to the texture
video that can be used to render arbitrary virtual views
by using depth image based rendering (DIBR) [2, 3]. In
recent years, high efficiency video coding- (HEVC-) based
3D video coding (3D-HEVC) technology [4, 5] is now being
standardized by joint collaborative team on 3D video coding
(JCT-3V) as an extension to HEVC [6, 7]. From the JCT-
3V meetings, the developed coding schemes for 3D-HEVC
mainly use HEVC together with exploiting temporal and
interview correlation. Thus, many coding tools applied in
3D-HEVC are based on the hybrid coding scheme and
highly related to HEVC. Different from single-view video
coding, 3D-HEVC uses disparity estimation (DE) to reduce
the interview redundancy. The test model of 3D-HEVC uses
the variable size coding unit (CU) and DE to exploit both
temporal and view correlation within temporally successive
pictures and neighboring views. This technique achieves the
highest possible coding efficiency, but it results in extremely

large encoding time which obstructs it from practical use.
Therefore, it is necessary to develop a method that can
reduce complexity of 3D-HEVC with minimal loss of image
quality. Fast CU size andDEdecision algorithms for encoding
multiview video plus depth are extremely necessary.

Recently, a number of efforts have been proposed to
reduce the computational complexity for the HEVC encoder.
An effective CU size decision method is proposed in [8] to
reduce encoding complexity of HEVC. Besides, a fast mode
decision method is proposed based on the direction infor-
mation of the spatially adjacent CUs in [9]. Fast intramode
decision method [10] uses edge information of the current
prediction unit (PU) to choose a reduced set of candidate
prediction directions. A complexity control method [11]
is proposed based on fast mode decision algorithm that
dynamically adjusts the depth of the CU defined by quadtree-
based structures. A fast CU splitting and pruningmethod [12]
is presented based on early CU split and pruning decision
for HEVC intracoding. All these methods are efficient in
reducing computational complexity with small degradation
in coding performance. However, these methods are not
directly applicable to the 3D-HEVC, where high computa-
tional complexity is intrinsically related to the use of new
prediction coding structures for depth-enhanced multiview
formats.
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Figure 1: The simple example for recursive CU.

To the best of our knowledge, studies devoted to inves-
tigation of complexity reduction of the 3D-HEVC are rarely
found in the literatures. To this end, this paper proposes a
fast CU size and DE mode decision algorithm to reduce 3D-
HEVC computational complexity. Our algorithm exploits the
correlation between depthmap andmotion activity to reduce
the 3D-HEVC computational complexity. Since the depth
maps can efficiently describe the actual 3D information, the
potential of utilizing depth map for fast CU size and DE
algorithm is promising. The proposed algorithm consists of
two approaches: fast CU size decision and selective disparity
estimation. Based on these two criteria, the number of
candidate modes in a view is reduced, the disparity search
is selectively enabled, and the search range of CU size
is adaptively determined. Experimental results demonstrate
that the proposed algorithm can significantly reduce the
computational complexity of 3D-HEVC while maintaining
almost the same rate-distortion (RD) performance as the
original encoder.

The rest of the paper is organized as follows. In Section 2,
we analyze the correlation of depth maps among motion
activities and propose a fast CU size and DE algorithm based
on depth map. Experimental results and conclusions are
given in Sections 3 and 4, respectively.

2. Low Complexity Mode Decision Algorithm

2.1. Fast CU Size Decision Based on Depth Map. 3D-HEVC
inherits an advanced quadtree-based coding approach from
HEVC, wherein a picture is divided into coding tree units
(CTUs) [13]. Those are equivalent to macroblocks (MBs) in
previous video coding standards such as H.264/AVC. The
CTU can then be split into four CUs, and the CU is the basic
unit of region splitting used for inter-/intraprediction, which
allows recursive subdividing into four equally sized blocks.
This process gives a content-adaptive coding tree structure
comprised of CU blocks that may be as large as a treeblock
or as small as 8 × 8 pixels. Figure 1 shows the architecture
of tree structured CUs. A specified maximum depth level
is set to limit the CU split recursion. At each depth level

(CU size), 3D-HEVC performsmotion estimation (ME) with
different sizes including 2𝑁 × 2𝑁, 2𝑁 × 𝑁, 𝑁 × 2𝑁, and
𝑁×𝑁. Similar to the jointmodel ofHEVC, themode decision
process in 3D-HEVC is performed using all the possible CU
sizes (depth levels) and prediction modes to find the one
with the least RD cost using Lagrange multiplier [8]. This
achieves the highest coding efficiency but requires a very high
computational complexity. In this paper, we propose a fast
CU size decision algorithm for 3D-HEVC. Since the optimal
depth level is highly content-dependent, it is not efficient to
use all levels. We can determine CU depth range (including
the minimum depth level and the maximum depth level)
and skip some specific depth levels rarely used in the mode
decision process.

3D-HEVC usually allows amaximumCU size that equals
64, and the depth level range is from0 to 3.TheCUdepth level
has a fixed range for a whole video sequence in 3D-HEVC
reference software [15]. In fact, small depth level values tend
to be chosen for CUs in small global motion or homogeneous
texture region, and large depth level values are chosen for
CUs with large global motion or rich texture region. We can
see from experiments of 3D-HEVC coding that the depth
value of “0” occurs very frequently for large homogeneous
texture region. On the other hand, the depth value of “0” is
rarely chosen for treeblockswith activemotion or rich texture
region. These results show that CU depth level range should
be adaptively determined based on the motion and texture
property of treeblocks. In 3D video coding, a depth map
represents a relative distance from a camera to an object in the
3D space, it can be regarded as a grayscale image using dark
and bright values to represent far and close object, and the
object depth not only represents the physical object position
in 3D space but also indicates themotion activity of the object
itself on the image plane. Under the condition that cameras
are set up in a close parallelized structure, the depth maps are
correlated to the texture video motion fields. Consequently,
the optimal depth value level of current treeblock may have
a strong correlation with its associated depth maps. Based
on this concept, we can make use of depth map and motion
activity correlations to analyze region properties and skipME
on unnecessary CU sizes.
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In 3D space, the motion of the close object in depth
map is usually higher than that of the far object in depth
map [16]; the major interesting ratio of the video object
should be put in the middle region. To achieve great saving
in coding time whileminimizing the loss in coding efficiency,
the depth level of a treeblock having limited contribution
to coding efficiency should be skipped. So we use depth
information to filter out the unsuitable mode candidates to
speed up the encoding process. Since the depthmap indicates
the physical position of the object in the 3D space, the
potential of utilizing depth map for fast CU size decision
is promising. In a nature video test sequence, the degree of
motion activity for the object with near region from the 3D
space will usually be higher than that of the object with far
region. Based on this observation, the depth map can be
used to classify the motion activities of video objects by this
property. Thus, we first classify the objects motion activities
into three regions: near region, middle region, and far region
according to the depth map value. Near region represents a
medium local motion or a smooth texture on the 3D space
plane, middle region represents a large global motion or rich
texture on the 3D space plane, and far region represents a
small global motion or a homogeneous texture on the 3D
space plane. Considering that the optimal CU depth level
is highly dependent on object motion activities and texture
characteristic mentioned above (small depth level values are
suitable for CUs in small global motion or homogeneous
texture region, and large depth level values are reasonable
for CUs with large global motion or rich texture region),
we can establish a relationship between the depth level and
the depth map. By utilizing the depth map, we can classify
scenes according to the corresponding depth map value and
assign the suitable CU depth level candidates. Based on the
aforementioned analysis, the 3D video space is classified into
three regions based on the depth information: near region,
middle region, and far region; the treeblocks classification
based on depth map can be represented by the following
equations:

𝑍treeblock ≤ 𝑍0 treeblock ∈ Near region mode,

𝑍
0
< 𝑍treeblock ≤ 𝑍1 treeblock ∈ Middle region mode,

𝑍treeblock > 𝑍1 treeblock ∈ Far region mode,
(1)

where 𝑍treeblock is the depth map value of current treeblocks
and 𝑍

0
and 𝑍

1
are chosen based on the sequence character-

istics and set to 0 and 255, respectively. The selection of the
thresholds 𝑍

0
and 𝑍

1
should greatly reduce the 3D-HEVC

computational complexity while keeping a high accuracy
in CU size decision. Based on extensive experiments, the
thresholds 𝑍

0
and 𝑍

1
are, respectively, set to 200 and 30,

which achieve a good and consistent performance on a
variety of test sequences with different texture characteristics
and motion activities.

Extensive simulations have been conducted on 8 video
sequences with different resolutions to analyze the depth
level distribution for these three types of treeblocks. Among
these test sequences, Kendo, Balloons, and Newspaper are

in 1024 × 768 resolution, while Undo Dancer, GT Fly, Poz-
nan Street, Poznan Hall2, and Shark are in 1920 × 1088
resolution. The test conditions are as follows: there is I-B-P
view structure, there is test of 200 frames for each sequence,
quantization parameter (QP) is chosen with 26, 31, 36, and
41, group of pictures (GOP) size is 8, treeblock size is 64, and
context-adaptive binary arithmetic coding (CABAC) is used
for entropy coding. By exploiting the exhaustive intramode
decision in HTM under the aforementioned test conditions,
we investigate the depth level distribution for these three
types of treeblocks.

Table 1 shows the depth level distribution for each type
of treeblocks, where “level 0,” “level 1,” “level 2,” and “level
3” are the depth levels of treeblocks. It can be seen that,
for treeblocks with near region mode, about 70% of total
treeblocks choose the optimal depth level with “0” and about
21% treeblocks choose the optimal depth value with “1.” In
other words, if the maximum depth level is set to be “1,” it will
most likely cover about 91% of treeblocks. For treeblocks with
middle region mode, about 96% of treeblocks choose depth
levels with “1,” “2,” and “3.” If the minimum depth level is set
to be “1” and the maximum depth level is set to be “2,” it will
most likely cover about 96% of treeblocks. On the other side,
the probability of choosing the depth level with “0” is very
low, less than 4%, and thus intraprediction on depth level of
“0” (CU size 64 × 64) can be skipped. For treeblocks with
far region mode, the probability of choosing the depth levels
of “0” is more than 90%, and thus intraprediction on depth
levels of “1,” “2,” and “3” (CU sizes 32 × 32, 16 × 16, and 8 ×
8) can be skipped. Based on the above analysis, the candidate
depth levels that will be tested using RD optimization (RDO)
for each treeblock are summarized in Table 2. With the
proposed fast CU size decision, most of treeblocks can skip
one to three tested depth levels. A flowchart of the proposed
fast CU size decision is given in Figure 2.

2.2. Selective Disparity Estimation Based on Depth Map. One
of the most important aspects for efficient MVD coding is
the redundancy reduction among different views at the same
time instance, for which the content is usually rather similar
and only varies by a slightly different viewing position. As a
coding tool for dependent views, the concept of disparity esti-
mation has been involved as an alternative to motion estima-
tion in 3D-HEVC encoders. Here, ME refers to interpicture
prediction that uses already coded pictures of the same view
at different time instances, while DE refers to interpicture
prediction that uses already coded pictures of other views at
the same time instance [17]. DE is also used in the multiview
video coding (MVC) extension of H.264/MPEG-4 AVC and
similarly the coding treeblock syntax and decoding process
of HEVC remain unchanged when adding DE to 3D-HEVC
codec. Only the high-level syntax has been modified so that
already coded video pictures of the same access unit can be
inserted into the reference picture lists [1]. Thus, in the joint
mode of 3D-HEVC, both ME and DE are included in the
encoding process. This achieves the highest coding efficiency
but requires a very high computational complexity. Disparity
estimation is to search the best matched block in frames from
neighbor views. As mentioned above, disparity prediction
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Table 2: Candidate depth levels for three treeblocks types.

Treeblock type Candidate depth levels Depth range, [Depthmin,Depthmax]

Near region mode 0, 1 [0, 1]

Middle region mode 1, 2, 3 [1, 2, 3]

Far region mode 0 [0, 0]

Start

Current treeblock is
classified into three regions

based on the depth map

Treeblock with
far region mode?

“0” and “1”
Test depth levels

Test depth levels

Treeblock with
near region mode?

Decide the best CU size

End

Yes

YesNo

No

Test depth level “0”

“1”, “2”, and “3”

Figure 2: Flowchart of the proposed fast CU size decision algorithm.

is used to exploit interview dependence. Although temporal
prediction is generally the most efficient prediction mode in
3D-HEVC, it is sometime necessary to use both DE and ME
rather than only use ME to achieve better predictions. In
general, temporalmotion cannot be characterized adequately,
especially for regions with nonrigid motion and regions with
motion boundaries. For the former, ME based on simple
translation movement usually fails and thus produces a poor
prediction. For the latter, regions with motion boundaries
are usually predicted using small mode sizes with larger
magnitude of motion vectors and higher residual energy. As
mentioned above, the depth map indicates the motion activ-
ity of the object itself. Normally, areas with homogeneous

motion probably belong to the far depth region, and areas
with complex motion probably belong to the middle depth
region. Since, for a normal parallelized camera setting, the
major objectmotion should be put in themiddle region, thus,
the regions with far depth region are more likely to choose
temporal prediction, and regions with middle depth region
are more likely to choose interview prediction.

Table 3 shows probabilities of choosing interview pre-
diction and temporal prediction for each type of treeblocks
classified based on depth map. For treeblocks with near
region mode, the average probabilities of choosing temporal
prediction and interview prediction are 87% and 13%, respec-
tively. For treeblocks with middle region, they are 69% and
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Table 3: Analysis of view prediction and temporal prediction distributions for three treeblocks types.

Sequences Treeblocks in near region mode Treeblocks in middle region mode Treeblocks in far region mode
T (%) V (%) T (%) V (%) T (%) V (%)

Kendo 87.4 12.6 62.3 37.7 98.1 1.9
Balloons 82.9 17.1 71.2 29.8 96.3 3.7
Newspaper 91.2 8.8 76.5 23.5 99.5 0.5
Shark 83.6 16.4 72.1 27.9 97.4 2.6
Undo Dancer 91.3 8.7 64.2 35.8 96.8 3.2
GT Fly 87.7 12.3 62.3 37.7 94.3 5.7
Poznan Street 85.6 14.4 67.6 32.4 96.1 3.9
Poznan Hall2 90.2 9.8 77.3 22.7 94.9 5.1
Average 87.4 12.5 69.2 30.9 96.7 3.3
“T” and “V” represent temporal prediction and view prediction, respectively.

Start

Current treeblock is
classified into three regions

based on the depth map

Treeblock with
far region mode?

End

Yes

Yes

Yes No

No

No

Compare RDCOSTmvp
with RDCOSTdvp

RDCOSTmvp larger
than RDCOSTdvp

Disable
disparity search

Disable
disparity search

Enable
disparity search

Enable
disparity search

Treeblock with
middle region mode?

Figure 3: Flowchart of the proposed selective disparity estimation algorithm.

31%. For treeblocks with far region mode, they are 97% and
3%. We can see from Table 3 that treeblocks with far region
mode are much more likely to choose temporal prediction.
Thus, for far region mode treeblocks, the procedure of the
interview prediction can be skipped with only a very low
miss detection ratio, by using the optimal prediction mode
chosen by the full interview and temporal prediction modes.

But, for middle regionmode treeblocks (treeblocks with near
regionmode), the average probabilities of choosing interview
prediction are 31% (13%). Although the test sequences such
as “Poznan Hall2” and “Newspaper” contain large area of
the homogeneous textures and low-activity motion, which
are more likely to be encoded with temporal prediction,
the probability of interview prediction for treeblock with
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Table 5: Results of the proposed overall algorithm compared with 3DV-HTM.

Sequences
Overall algorithm

Texture Rendered
BDBR (%) BDPSNR (dB) Dtime (%) BDBR (%) BDPSNR (dB) Dtime (%)

Kendo 1.92 −0.04 −45 1.21 −0.03 −45
Balloons 1.78 −0.06 −39 0.84 −0.02 −39
Newspaper 1.27 −0.03 −46 1.27 −0.04 −46
Shark 2.34 −0.06 −48 1.29 −0.03 −48
Undo Dancer 1.12 −0.09 −37 0.58 −0.02 −37
GT Fly 1.54 −0.03 −41 1.82 −0.06 −41
Poznan Street 1.45 −0.08 −36 1.29 −0.07 −36
Poznan Hall2 1.76 −0.05 −53 0.96 −0.04 −53
Average 1.65 −0.055 −43 1.16 −0.039 −43

middle region and near region is still the highest. Thus, if
we disable interview prediction in middle region and near
region, the coding efficiency loss is not negligible. Based on
the aforementioned analysis, we propose a selective disparity
estimation algorithm in which disparity search is selectively
enabled. For treeblockswith far regionmode, disparity search
is skipped, while, for treeblocks with middle region mode,
disparity search is enabled. For treeblocks with near region
mode, the RD cost of the motion vector predictor (MVP) is
compared with that of the disparity vector predictor (DVP).
If the RD cost of MVP is larger than that of DVP, disparity
search is enabled; otherwise it is disabled. A flowchart of the
scheme is given in Figure 3.

3. Experimental Results

In order to evaluate the performance of the proposed fast
algorithms, the fast CU size decision and selective disparity
estimation algorithms are implemented on the recent 3D-
HEVC reference software (3DV-HTM 4.1) [18]. All the
simulations are defined under the common test conditions
(CTC) [19] defined by JCT-3V. We have tested the proposed
algorithms on eight sequences defined in the CTC with
two resolutions (1024 × 768 and 1920 × 1088). The encoder
configuration is as follows: there are 3 view cases, the
GOP length is 8 with an intraperiod of 24, HEVC codecs
are configured with 8-bit internal processing, the coding
treeblock has a fixed size of 64 × 64 pixels and a maximum
CU depth level of 4, resulting in a minimum CU size of
8 × 8 pixels, and CABAC is used as the entropy coder. The
proposed algorithm is evaluated with QP combinations for
texture video and depth map (25, 34), (30, 39), (35, 42), and
(40, 45). The experiments test 200 frames for each sequence.
Each sequence is composed of three texture videos and
three depth map views: the center-the left-the right views
(in coding order). After encoding, the intermediate rendered
views were synthesized between all views. The intermediate
rendered views are generated at the receiver using view
synthesis reference software (VSRS) algorithm provided by
MPEG [20].

3.1. Individual Performance Results of the Proposed Algorithm.
Table 4 gives the individual evaluation results of the proposed
algorithm compared with the original 3DV-HTM algorithm,
that is, fast CU size decision (FCUS) and selective disparity
estimation (SDE), respectively. The Bjontegaard delta PSNR
(BDPSNR) [21] represents the average PSNR gain, bitrate
(BDBR) represents the improvement of total bitrates for
3D video coding, and “Dtime (%)” represents the entire
coding time change in percentage. The “texture” represents
average PSNR for coded texture video views. The “rendered”
represents average PSNR for rendered views. Rendered PSNR
on rendered view distortion can be measured by comparing
the coded rendered view with the image rendered with
uncompressed texture videos and depthmap [22].The bitrate
under consideration is the sum of the bitrates of the three
coded texture videos and depth map views.

The proposed two approaches can greatly reduce the
coding time with similar coding efficiency for all sequences.
FCUS can save about 35% coding time over all sequences.
The coding efficiency loss is very negligible with 0.02 dB–
0.08 dB PSNR drop for average texture videos and 0.01 dB–
0.04 dB PSNR drop for average rendered views. This result
indicates that FCUS can efficiently skip unnecessary depth
levels in CU size decision. As far as the SDE algorithm is
concerned, 13% coding time has been reduced. And, for
average texture videos coding, the average PSNR drop is
0.03 dB, or the bitrate increases about 0.84% on average.
For average rendered views coding, the average PSNR drop
is 0.015 dB, or the increase of bitrate is about 0.24% on
average, which is negligible. The foregoing result analysis
indicates that SDE can efficiently reduce the coding time
while maintaining almost the same coding performance as
the 3D-HEVC encoder.

3.2. Combined Results. In the following, we will analyze the
experimental result of the proposed overall algorithm, which
incorporates FCUS and SDE. The comparison results of the
overall algorithm are shown in Table 5. The proposed overall
algorithm can greatly reduce coding time for all sequences. It
reduces 43% coding time under average texture videos and
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(b) Balloons
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(e) Undo Dancer
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(f) GT Fly

Figure 4: Continued.
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(g) Poznan Street
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Figure 4: Rate-distortion curves comparison. The 𝑥-axis denotes total bitrate to code three texture videos and three depth maps. The 𝑦-axis
denotes average PSNR of the rendered views.

Table 6: Comparing the proposed overall algorithm with a state-of-the-art fast algorithm in [14].

Sequences Texture Rendered
BDBR (%) BDPSNR (dB) Dtime (%) BDBR (%) BDPSNR (dB) Dtime (%)

Kendo 1.35 −0.09 −12 1.12 −0.08 −12
Balloons 1.54 −0.12 −8 1.38 −0.11 −8
Newspaper 3.12 −0.19 −21 2.59 −0.16 −21
Shark 1.69 −0.14 −15 1.34 −0.11 −15
Undo Dancer 2.71 −0.18 −3 2.16 −0.14 −3
GT Fly 1.89 −0.15 −5 1.54 −0.12 −5
Poznan Street 1.63 −0.13 −6 1.21 −0.09 −6
Poznan Hall2 1.72 −0.14 −22 1.53 −0.12 −22
Average 1.96 −0.14 −12 1.61 −0.12 −12

average rendered views conditions and achieves the better
gain in coding speed compared to FCUS and SDE. Also a
consistent gain in coding speed for all test sequences with
the lowest gain of 36% for “Poznan Street” and the highest
gain for 53% for “Poznan Hall2” is shown. The computation
reduction is particularly high because the exhaustive CU
size decision procedures of a significant number of CUs are
reasonably skipped, and disparity estimation procedures of
a significant number of CUs are not processed by the 3D-
HEVC encoder. On the other hand, the coding efficiency loss
is negligible; specifically, for average texture videos coding,
the average PSNR drop is 0.055 dB, and the increase of bitrate
is about 1.65% on average. For average rendered views coding,
the average PSNR drop is 0.039 dB, and the increase of bitrate
is about 1.16% on average.

Figure 4 gives RD curves of the proposed algorithms
compared to 3D-HEVC, which are the total bitrates for
the multiview texture video and depth map coding and

average PSNR over all virtual views. As shown in Figure 4,
the proposed algorithms (FCUS and SDE and the overall
algorithm) perform almost the same coding efficiency from
low to high bitrate compared to 3D-HEVC. Therefore, the
proposed algorithm can efficiently reduce coding time while
keeping nearly the same RD performance as 3D-HEVC.

3.3. Results of the Proposed Overall Algorithm Comparison
with the State-of-the-Art Fast Algorithm. The comparison
results of the overall algorithm and a state-of-the-art fast
algorithm (content-adaptive complexity reduction scheme,
CACRS [14]) are given in Table 6. Experimental results
shown in Table 6 indicate that the proposed overall algorithm
consistently outperforms CACRS.The proposed overall algo-
rithm can save 12% encoding time on average compared to
CACRS, with the lowest gain of 3% for “Undo Dancer” and
the highest gain of 22% for “Poznan Hall2.” Additionally,
the proposed overall algorithm achieves a better coding
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performance. For average texture videos coding, with 0.14 dB
PSNR increases or 1.96% bitrate decreases compared to
CACRS. For average rendered views coding, with 0.12 dB
PSNR increases or 1.61% bitrate decreases compared to
CACRS. Therefore, the proposed overall algorithm is more
efficient than CACRS with better time saving and fewer bits.
The above experimental results indicate that the proposed
overall algorithm is efficient for all test sequences and
consistently outperforms the recent fast algorithm for 3D-
HEVC.

4. Conclusion

In this paper, we propose a low complexity mode decision
algorithm to reduce the computational complexity of the
3D-HEVC encoder, which includes two fast approaches: fast
CU size decision approach and selective disparity estimation
approach. The recent 3D-HEVC reference software 3DV-
HTM is applied to evaluate the proposed algorithm. The
comparative experimental results show that the proposed
algorithm can significantly reduce the computational com-
plexity of 3D-HEVC while maintaining almost the same RD
performances.
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