8 research outputs found

    Materialized View Replacement using Markovs Analysis

    Full text link
    Materialized view is used in large data centric applications to expedite query processing. The efficiency of materialized view depends on degree of result found against the queries over the existing materialized views. Materialized views are constructed following different methodologies. Thus the efficacy of the materialized views depends on the methodology based on which these are formed. Construction of materialized views are often time consuming and moreover after a certain time the performance of the materialized views degrade when the nature of queries change. In this situation either new materialized views could be constructed from scratch or the existing views could be upgraded. Fresh construction of materialized views has higher time complexity hence the modification of the existing views is a better solution.Modification process of materialized view is classified under materialized view maintenance scheme. Materialized view maintenance is a continuous process and the system could be tuned to ensure a constant rate of performance. If a materialized view construction process is not supported by materialized view maintenance scheme that system would suffer from performance degradation. In this paper a new materialized view maintenance scheme is proposed using markovs analysis to ensure consistent performance. Markovs analysis is chosen here to predict steady state probability over initial probability

    Continuous Queries and Real-time Analysis of Social Semantic Data with C-SPARQL

    Get PDF
    Abstract. Social semantic data are becoming a reality, but apparently their streaming nature has been ignored so far. Streams, being unbounded sequences of time-varying data elements, should not be treated as persistent data to be stored “forever ” and queried on demand, but rather as transient data to be consumed on the fly by queries which are registered once and for all and keep analyzing such streams, producing answers triggered by the streaming data and not by explicit invocation. In this paper, we propose an approach to continuous queries and realtime analysis of social semantic data with C-SPARQL, an extension of SPARQL for querying RDF streams

    Relational subscription middleware for Internet-scale publish-subscribe

    Get PDF
    The nonlinear inverse problem of electromagnetic induction to recover electrical conductivity is examined. As this is an ill-posed problem based on inaccurate data, there is a strong need to find the reliable features of the models of electrical conductivity. By using optimization theory for an all-at-once approach to inverting frequency-domain electromagnetic data, we attempt to make conclusions about Earth structure under assumptions of one-dimensional and two-dimensional structure. The forward modeling equations are constraints in an optimization problem solving for the fields and the conductivity simultaneously. The computational framework easily allows additional inequality constraints to be imposed.Under the one-dimensional assumption, we develop the optimization approach for use on the magnetotelluric inverse problem. After verifying its accuracy, we use our method to obtain bounds on Earth's average conductivity that all conductivity profiles must obey. There is no regularization required to solve the problem. With the emplacement of additional inequality constraints, we further narrow the bounds. We draw conclusions from a global geomagnetic depth sounding data set and compare with laboratory results, inferring temperature and water content through published Boltzmann-Arrhenius conductivity models.We take the lessons from the 1-D inverse problem and apply them to the 2-D inverse problem. The difficulty of the 2-D inverse problem requires that we first examine our ability to solve the forward problem, where the conductivity structure is known and the fields are unknown. Our forward problem is designed such that we are able to directly transfer it into the optimization approach used for the inversion. With the successful 2-D forward problem as the constraints, a one-dimensional 2-D inverse problem is stepped into a fully 2-D inverse problem for testing purposes. The computational machinery is incrementally modified to meet the challenge of the realistic two-dimensional magnetotelluric inverse problem. We then use two shallow-Earth data sets from different conductivity regimes and invert them for bounded and regularized structure

    Automatic physical database design : recommending materialized views

    Get PDF
    This work discusses physical database design while focusing on the problem of selecting materialized views for improving the performance of a database system. We first address the satisfiability and implication problems for mixed arithmetic constraints. The results are used to support the construction of a search space for view selection problems. We proposed an approach for constructing a search space based on identifying maximum commonalities among queries and on rewriting queries using views. These commonalities are used to define candidate views for materialization from which an optimal or near-optimal set can be chosen as a solution to the view selection problem. Using a search space constructed this way, we address a specific instance of the view selection problem that aims at minimizing the view maintenance cost of multiple materialized views using multi-query optimization techniques. Further, we study this same problem in the context of a commercial database management system in the presence of memory and time restrictions. We also suggest a heuristic approach for maintaining the views while guaranteeing that the restrictions are satisfied. Finally, we consider a dynamic version of the view selection problem where the workload is a sequence of query and update statements. In this case, the views can be created (materialized) and dropped during the execution of the workload. We have implemented our approaches to the dynamic view selection problem and performed extensive experimental testing. Our experiments show that our approaches perform in most cases better than previous ones in terms of effectiveness and efficiency

    Window Queries Over Data Streams

    Get PDF
    Evaluating queries over data streams has become an appealing way to support various stream-processing applications. Window queries are commonly used in many stream applications. In a window query, certain query operators, especially blocking operators and stateful operators, appear in their windowed versions. Previous research work in evaluating window queries typically requires ordered streams and this order requirement limits the implementations of window operators and also carries performance penalties. This thesis presents efficient and flexible algorithms for evaluating window queries. We first present a new data model for streams, progressing streams, that separates stream progress from physical-arrival order. Then, we present our window semantic definitions for the most commonly used window operators—window aggregation and window join. Unlike previous research that often requires ordered streams when describing window semantics, our window semantic definitions do not rely on physical-stream arrival properties. Based on the window semantic definitions, we present new implementations of window aggregation and window join, WID and OA-Join. Compared to the existing implementations of stream query operators, our implementations do not require special stream-arrival properties, particularly stream order. In addition, for window aggregation, we present two other implementations extended from WID, Paned-WID and AdaptWID, to improve excution time by sharing sub-aggregates and to improve memory usage for input with data distribution skew, respectively. Leveraging our order-insenstive implementations of window operators, we present a new architecture for stream systems, OOP (Out-of- Order Processing). Instead of relying on ordered streams to indicate stream progress, OOP explicitly communicates stream progress to query operators, and thus is more flexible than the previous in-order processing (IOP) approach, which requires maintaining stream order. We implemented our order-insensitive window query operators and the OOP architecture in NiagaraST and Gigascope. Our performance study in both systems confirms the benefits of our window operator implementations and the OOP architecture compared to the commonly used approaches in terms of memory usage, execution time and latency

    Efficient Incremental Data Analysis

    Get PDF
    Many data-intensive applications require real-time analytics over streaming data. In a growing number of domains -- sensor network monitoring, social web applications, clickstream analysis, high-frequency algorithmic trading, and fraud detections to name a few -- applications continuously monitor stream events to promptly react to certain data conditions. These applications demand responsive analytics even when faced with high volume and velocity of incoming changes, large numbers of users, and complex processing requirements. Developing suitable online analytics engine that meets these requirements is challenging. In this thesis, we study techniques for efficient online processing of complex analytical queries, ranging from standard database queries to complex machine learning and digital signal processing workflows. First, we focus on the problem of efficient incremental computation for database queries. We have developed a system, called DBToaster, that compiles declarative queries into high-performance stream processing engines that keep query results (views) fresh at very high update rates. At the heart of our system is a recursive query compilation algorithm that materializes a set of supporting higher-order delta views to achieve a substantially lower view maintenance cost. We study the trade-offs between single-tuple and batch incremental processing in local execution, and we present a novel approach for compiling view maintenance code into data-parallel programs optimized for distributed execution. DBToaster supports millions of complete view refreshes per second for a broad range of queries and outperforms commercial database and stream engines by orders of magnitude. We also study the incremental computation for queries written as iterative linear algebra, which can capture many machine learning and scientific calculations. We have developed a framework, called LINVIEW, for capturing deltas of linear algebra programs and understanding their computational cost. Linear algebra operations tend to cause an avalanche effect where even very local changes to the input matrices spread out and infect all of the intermediate results and the final view, causing incremental view maintenance to lose its performance benefit over re-evaluation. We develop techniques based on matrix factorizations to contain such epidemics of change and make incremental view maintenance of linear algebra practical and usually substantially cheaper than re-evaluation. We show, both analytically and experimentally, the usefulness of these techniques when applied to standard analytics tasks. Our last research question concerns the integration of general-purpose query processors and domain-specific operations to enable deep data exploration in both online and offline analysis. We advocate a deep integration of signal processing operations and general-purpose query processors. We demonstrate that in-situ processing of tempo-relational and signal data through a unified query language empowers users to express end-to-end workflows more succinctly inside one system while at the same time offering orders of magnitude better performance than existing popular data management systems

    Scalable Automated Incrementalization for Real-Time Static Analyses

    Get PDF
    This thesis proposes a framework for easy development of static analyses, whose results are incrementalized to provide instantaneous feedback in an integrated development environment (IDE). Today, IDEs feature many tools that have static analyses as their foundation to assess software quality and catch correctness problems. Yet, these tools often fail to provide instantaneous feedback and are thus restricted to nightly build processes. This precludes developers from fixing issues at their inception time, i.e., when the problem and the developed solution are both still fresh in mind. In order to provide instantaneous feedback, incrementalization is a well-known technique that utilizes the fact that developers make only small changes to the code and, hence, analysis results can be re-computed fast based on these changes. Yet, incrementalization requires carefully crafted static analyses. Thus, a manual approach to incrementalization is unattractive. Automated incrementalization can alleviate these problems and allows analyses writers to formulate their analyses as queries with the full data set in mind, without worrying over the semantics of incremental changes. Existing approaches to automated incrementalization utilize standard technologies, such as deductive databases, that provide declarative query languages, yet also require to materialize the full dataset in main-memory, i.e., the memory is permanently blocked by the data required for the analyses. Other standard technologies such as relational databases offer better scalability due to persistence, yet require large transaction times for data. Both technologies are not a perfect match for integrating static analyses into an IDE, since the underlying data, i.e., the code base, is already persisted and managed by the IDE. Hence, transitioning the data into a database is redundant work. In this thesis a novel approach is proposed that provides a declarative query language and automated incrementalization, yet retains in memory only a necessary minimum of data, i.e., only the data that is required for the incrementalization. The approach allows to declare static analyses as incrementally maintained views, where the underlying formalism for incrementalization is the relational algebra with extensions for object-orientation and recursion. The algebra allows to deduce which data is the necessary minimum for incremental maintenance and indeed shows that many views are self-maintainable, i.e., do not require to materialize memory at all. In addition an optimization for the algebra is proposed that allows to widen the range of self-maintainable views, based on domain knowledge of the underlying data. The optimization works similar to declaring primary keys for databases, i.e., the optimization is declared on the schema of the data, and defines which data is incrementally maintained in the same scope. The scope makes all analyses (views) that correlate only data within the boundaries of the scope self-maintainable. The approach is implemented as an embedded domain specific language in a general-purpose programming language. The implementation can be understood as a database-like engine with an SQL-style query language and the execution semantics of the relational algebra. As such the system is a general purpose database-like query engine and can be used to incrementalize other domains than static analyses. To evaluate the approach a large variety of static analyses were sampled from real-world tools and formulated as incrementally maintained views in the implemented engine
    corecore