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Abstract

This thesis proposes a framework for easy development of static analyses, whose
results are incrementalized to provide instantaneous feedback in an integrated
development environment (IDE).

Today, IDEs feature many tools that have static analyses as their foundation to
assess software quality and catch correctness problems. Yet, these tools often fail to
provide instantaneous feedback and are thus restricted to nightly build processes.
This precludes developers from fixing issues at their inception time, i.e., when the
problem and the developed solution are both still fresh in mind.

In order to provide instantaneous feedback, incrementalization is a well-known
technique that utilizes the fact that developers make only small changes to the
code and, hence, analysis results can be re-computed fast based on these changes.
Yet, incrementalization requires carefully crafted static analyses. Thus, a manual
approach to incrementalization is unattractive. Automated incrementalization can
alleviate these problems and allows analyses writers to formulate their analyses
as queries with the full data set in mind, without worrying over the semantics of
incremental changes.

Existing approaches to automated incrementalization utilize standard technolo-
gies, such as deductive databases, that provide declarative query languages, yet
also require to materialize the full dataset in main-memory, i.e., the memory is
permanently blocked by the data required for the analyses. Other standard tech-
nologies such as relational databases offer better scalability due to persistence, yet
require large transaction times for data. Both technologies are not a perfect match
for integrating static analyses into an IDE, since the underlying data, i.e., the code
base, is already persisted and managed by the IDE. Hence, transitioning the data
into a database is redundant work.

In this thesis a novel approach is proposed that provides a declarative query
language and automated incrementalization, yet retains in memory only a necessary
minimum of data, i.e., only the data that is required for the incrementalization.
The approach allows to declare static analyses as incrementally maintained views,
where the underlying formalism for incrementalization is the relational algebra with
extensions for object-orientation and recursion. The algebra allows to deduce which
data is the necessary minimum for incremental maintenance and indeed shows that
many views are self-maintainable, i.e., do not require to materialize memory at all.
In addition an optimization for the algebra is proposed that allows to widen the
range of self-maintainable views, based on domain knowledge of the underlying
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data. The optimization works similar to declaring primary keys for databases, i.e.,
the optimization is declared on the schema of the data, and defines which data is
incrementally maintained in the same scope. The scope makes all analyses (views)
that correlate only data within the boundaries of the scope self-maintainable.

The approach is implemented as an embedded domain specific language in a
general-purpose programming language. The implementation can be understood as
a database-like engine with an SQL-style query language and the execution semantics
of the relational algebra. As such the system is a general purpose database-like
query engine and can be used to incrementalize other domains than static analyses.
To evaluate the approach a large variety of static analyses were sampled from real-
world tools and formulated as incrementally maintained views in the implemented
engine.
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Zusammenfassung

Diese Arbeit schlägt ein neuartiges System zur einfachen Entwicklung statischer
Analysen vor, deren Ergebnismenge inkrementell neu berechnet wird, um eine unmit-
telbare Rückmeldung der Ergebnisse in einer integrierten Entwicklungsumgebung
(IDE) zu ermöglichen.

IDEs beinhalten eine Vielzahl an Werkzeugen die mit Hilfe statischer Analysen
Probleme in Hinsicht auf die Qualität und Korrektheit von Softwaresystemen auf-
decken. Allerdings sind diese Werkzeuge oftmals nicht imstande eine unmittelbare
Rückmeldung der Ergebnisse zu liefern. Daher ist der Einsatz dieser Werkzeuge oft
auf nächtliche Build-Prozesse beschränkt. Dies verhindert, dass Entwickler Probleme
sofort bei deren Auftreten beseitigen können, also zu einem Zeitpunkt, an dem
das Problem und die entwickelte Lösung noch gedanklich griffbereit sind. Um eine
unmittelbare Rückmeldung zu ermöglichen, bietet sich die Technik der Inkremen-
talisierung an. Diese Technik nutzt die Tatsache, dass Entwickler meist nur kleine
Änderungen am Quelltext der Software vornehmen. Daher können Analyseergebnis-
se schnell aufgrund dieser kleinen Änderungen neuberechnet werden.

Inkrementalisierung erfordert allerdings eine sorgsame Entwickelung der sta-
tischen Analysen. Daher ist die manuelle Entwicklung inkrementeller Analysen
unattraktiv. Automatisierte Inkrementalisierung hilft dieses Problem zu beseitigen
und ermöglicht es den Entwicklern solcher Analysen diese als Abfragen über die
Gesamtmenge der Daten zu formulieren, ohne sich Gedanken um die Semantik der
Inkrementalisierung zu machen.

Existierende Ansätze zur automatisierten Inkrementalisierung nutzen Standard-
technologien, wie deduktive Datenbanken. Diese bieten deklarative Abfragespra-
chen, benötigen aber auch große Mengen an Arbeitsspeicher, um die Gesamtmenge
der Daten vorzuhalten. Diese Menge an Arbeitsspeicher wird permanent durch die
Daten der Analyse belegt. Eine andere Standardtechnologie, die besser skaliert da sie
wenig Arbeitsspeicher benötigt, sind relationale Datenbanken. Diese persistieren die
Daten und nutzen nur wenig Arbeitsspeicher, um aktuelle Berechnungen durchzu-
führen. Allerdings benötigen relationale Datenbanken viel Zeit für Transaktion, die
Auftreten wenn Daten in die Datenbank überführt werden. Die beiden Vorgestellten
Technologien sind per-se nicht sonderlich geeignet, um statische Analysen in eine
IDE zu integrieren, da die IDE bereits die Gesamtmenge der Daten vorzuhält und
verwaltet. Eine Überführung der Daten in ein Fremdsystem ist daher ein unnötiger
Arbeitsschritt.
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Der in dieser Arbeit vorgestellte Ansatz bietet eine deklarative Abfragesprache
und automatisierte Inkrementalisierung, benötigt allerdings nur das Minimum an
Arbeitsspeicher, welches für die Inkrementalisierung vonnöten ist. Der Ansatz ermög-
licht es statische Analysen als inkrementell gewartete Sichten zu deklarieren. Der
zugrundeliegende Formalismus zur Inkrementalisierung ist die relationale Algebra
mit Erweiterungen für Objektorientierung und Rekursion. Die Algebra erlaubt es
das nötige Minimum an Daten zu bestimmen und zeigt auch, dass viele Sichten
ohne das Vorhalten von Daten im Arbeitsspeicher wartbar sind. Diese Sichten wer-
den “self-maintainable” (selbstwartbar) genannt. Um Selbstwartbarkeit für eine
möglichst große Vielzahl an Sichten zu ermöglichen, wird eine Optimierung inner-
halb der Algebra vorgeschlagen. Diese Optimierung nutzt Wissen aus der Domäne
der zugrundeliegenden Daten. Die Optimierung arbeitet in ähnlicher Weise wie
Primärschlüssel in Datenbanken, d.h., die Optimierung wird mit dem Schema der
Daten spezifiziert und definiert welche Daten inkrementell in einem gemeinsamen
Bezugsrahmen gewartet werden können. Dieser Bezugsrahmen ermöglicht Selbst-
wartbarkeit für alle Analysen (Sichten), die nur Daten innerhalb des gemeinsamen
Rahmens korrelieren.

Der Ansatz ist als domänenspezifische Sprache in eine universelle Programmier-
sprache eingebettet. Die Implementierung kann als datenbank-ähnliches System
aufgefasst werden, welches eine SQL-ähnliche Abfragesprache mit der Ausführungs-
semantik der relationalen Algebra besitzt. Das System als solches ist universell
einsetzbar und nicht auf die Domäne der statischen Analysen beschränkt. Um den
Ansatz zu evaluieren wurde eine Vielzahl unterschiedlicher statischer Analysen,
aus bestehenden Werkzeugen, mithilfe unseres Systems als inkrementell gewartete
Sichten nachimplementiert.
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1 Introduction

Static analyses are the foundation of many tools that enhance integrated develop-
ment environments (IDEs) to catch software quality and correctness problems. Yet,
they often fail to provide instantaneous feedback, making them unattractive for
daily use by developers. Thus, many tools are restricted to nightly build processes
and developers can not fix issues at their inception time, i.e., when the developed
solution is still fresh in mind. Instantaneous feedback requires carefully crafted
static analyses and is impeded by large amounts of analyzed data as well as the
complexity of the analyses. This thesis proposes a framework for easy development
of static analyses that are fit for daily use in an IDE.

The term static analysis refers to the processes of verifying (semantic) properties
of a program based only on the knowledge of the source code (or compiled pro-
gram), i.e., without executing the program. Traditionally, static analyses are found
in compilers [AU77] and are concerned with optimizations for the compiled code,
but also with error-checking using static type systems. Today the field of software
engineering features a large variety of approaches that incorporate static analyses
for defect assessment, including, but not limited to, detecting faults in languages
with pointers and dynamic storage [DRS98], finding common bugs [HP04], check-
ing style rules or coding conventions [Joh78], checking API usage rules [BR02],
detecting architectural erosion [MNS95], or deriving (object-oriented) metrics for
complexity [CK94].

Static analyses have been found to be good indicators for fault-proneness of
software systems [NB05], i.e., for the probability of the occurrence of faults in
the software [ZWN+06]. Key findings are that static analysis defect density can
be used as early indicators of pre-release defect density (i.e., estimates of system
reliability) at statistically significant levels and can be used to discriminate between
components of high and low quality.

Instantaneous feedback is a factor for increasing productivity in the software
engineering process. Studies in industrial software practice find that faults are
more costly to remove the later they are identified in the development process
[BB01, BLS02]. In addition they find that (depending on the process maturity) up
to 40 to 50 percent of effort in software projects can be spent on avoidable work, such
as developers re-examining the relevant code and/or re-running expensive test cycles
[SBB+02]. Many software faults can be fixed at a lower cost or avoided altogether if
detected earlier. Hence, instantaneous feedback can significantly improve software
development productivity.
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In an effort to move error detection into the earliest stages of the development
process, many commercial and open-source static analyses tools provide feedback to
developers inside the IDE, e.g., Checkstyle [Che13], FindBugs [Fin13], Hammurapi
[Ham13], PMD [PMD13], and SemmleCode [Sem13]. Similar, many academic
approaches feature an IDE integration [FLL+02, HP04, YTB05, GYF06] or discuss
integration as ongoing effort (e.g., [NB05, AHM+08]). To achieve the best developer
productivity, these tools should provide instantaneous feedback in real-time in the
sense of “perceived without delay”. Current IDE compilers typically provide feedback
in real-time. Yet static analyses tools, in general, are not en-par with the real-time
feedback an IDE compiler provides.

To achieve real-time feedback in the presence of large code bases, tools must
use an incremental (re-)computation strategy of analysis results. An incremental
computation utilizes the principle of inertia [GM99a], i.e., small changes in the
input have only small impacts on the output. Thus, an incrementalized compu-
tation can deduce changes in the results very fast (for small input changes), in
comparison to a re-computation over the full code base. Static analyses in an IDE
favor incrementalization, since developers usually follow a manual edit-compile(-
run/test) cycle that changes only small portions of the analyzed code base. Previous
works on incremental program analysis have reported considerable performance
improvements. A large amount of work has been done in the field of data flow
analyses; a comparison is provided in [BR90]. To a smaller extent work has been
performed in providing incrementalized pointer aliasing analyses [YRL99, VR01].
However, all the above works are manually written incrementalizations with special-
ized algorithms and data structures for incremental maintenance of the targeted
problem. Manual incrementalization can be an acceptable approach for standard
analyses. However, tools such as FindBugs or PMD feature many static analyses, e.g.,
Findbugs detects over 400 “bug patterns”, and incrementalizing them all manually
is a very time consuming and error prone process. Hence, an approach that provides
automated incrementalization has considerable benefits when writing analyses,
especially analyses that are specific to particular domains or frameworks.

The main benefit of automated incrementalization – not only for domain specific
analyses – is a reduction in the complexity of developing the analyses. The developer
only has to provide data structures and algorithms written with the full data set
in mind. Hence, there is no need to manually design data structures that contain
intermediate results of the previous computation. Intermediate results become a
problem quite quickly. For example, an analysis that reasons over subtyping in an
object-oriented program must maintain a data structure for the inheritance hierarchy
or an analysis for inter-procedural data flow must maintain a data structure for
the call graph, i.e., the calls between procedures where an edge represents a call
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and a node represents a procedure. Such data structures must be kept up-to-date
which adds additional complexity and is error prone, since there incrementalization
can require a specific order of updates for correctness, i.e., some intermediate
results may depend on others. This problem becomes larger still, when using
multiple incrementalized analyses that also depend on one another. For example
if many static analyses require the inheritance hierarchy, the latter should only be
computed once and then all dependent analyses should re-use the results. In a
manual incrementalization approach such dependencies must be captured by some
form of scheduling that runs each analysis at the right point in time, i.e., when
all prerequisite analyses or intermediate results have concluded. An automated
solution can alleviate the burden of scheduling from the analysis developers.

There are two distinct approaches to automated incrementalization, which have
different qualities. The first utilizes a declarative specification (or query) of the
static analysis, which can then automatically be executed with an incremental
semantics instead of a full computation of the query (e.g., [EKS+07]). The second
is a rewriting technique that takes as input an imperative non-incremental program
and tries to find an equivalent incremental program, which is also known under
the term dynamic programming ([LT94]). In the following the term automated
incrementalization is used to denote the first approach. The main benefit of the
declarative specifications is that the primitives in a query have a distinct non-
incremental semantics, which can automatically be translated to an equivalent
incremental semantics. In contrast, the dynamic programming approach must find
incremental semantics for arbitrary imperative programs. An additional benefit of
the declarative specification is the easy applicability of query optimizations.

A first step towards automated incrementalization of static analyses was done
in [SR05a] and [EKS+07] on the basis of using incremental tabled logic programs
[SR03]. The programs operate on a logic representation of the source code and
analyses are defined as predicates over this representation. The authors of [SR05a]
describe an implementation of incrementalized pointer aliasing analyses, while the
authors of [EKS+07] consider a broader range of incrementalized analyses. Note
that logic programs are considered a valuable technique for declarative specification
of static analyses in their own rights, i.e., apart from incrementalization [DRW96].

Logic language implementations (e.g., XSB1) have been noted for lacking scala-
bility to larger code bases by Hajiyev et al. [HVdM06], since they require the logic
representation of the source code to be completely in main memory. Large in this
context means “> 10000” classes to be analyzed, which for example applies to the
standard Java class library (JDK) or the code base of the Eclipse IDE2, but also

1 http://xsb.sourceforge.net/
2 http://www.eclipse.org
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to smaller projects that are analyzed together with required libraries. For such
code bases a large amount of main memory is required simply for the base logic
representation, e.g., over 1 gigabyte for the JDK. Even more memory is required
to run the analysis, e.g., a machine with 4GB main memory was required for an
analyses on the Eclipse code base in [HVdM06] and they considered only a subset
of the whole program (concretely the parts that deal with dependencies). Hajiyev et
al. propose to use standard relational database management systems (RDBMS), to
overcome the scalability issue. An RDBMS can handle large representations, since
relations are persisted and only a subset of the data – relevant for evaluating the
current analysis – resides in main memory. Yet, this introduces a new bottleneck,
since an RDBMS requires considerable transaction time for storing data in the
database. Bottlenecks in transaction processing of RDBMSs have, for example, been
discussed in [SMA+07] (especially for the traditional off-the-shelf RDBMS systems,
such as Oracle, DB2, etc.). The impact for static analysis can be exemplified based
on numbers reported in [HVdM06]. In these experiments transition of the data to
an off-the-shelf RDBMS can take several seconds for a single class. Note that in
[HVdM06] the fastest performing RDBMS requires approx. 45 minutes (and the
slowest 1.5 hours) to store approx. 10000 classes. Thus the average transaction
time per class is already 270 milliseconds and the work in [HVdM06] does not store
the entire code base.

In summary, standard database technologies, such as RDBMS’ or deductive
databases (i.e., logic languages), are an ill match for incrementalized static analyses
in an IDE; the RDBMS’ for their high transaction time and the deductive databases
for the high amount of memory required. In essence, there are only two properties
of these systems that we wish to keep: (i) the declarative query language, for its ease
of defining the analyses and allowing automated incrementalization and (ii) the
in-memory computation model, for its speed in computing analyses results. In par-
ticular there is no need to retain an in-memory representation of the whole program,
or move the representation of the whole program into a relational database. The
IDE manages source code files or compiled bytecode files that already contain all the
necessary information. Moving all the data into main memory – or to a relational
database – (i) duplicates the information and (ii) maintains more information than
is strictly necessary, since many changes are easily re-computed by re-analyzing the
underlying source code files.

Thesis

The goal of this thesis is to provide a comprehensive approach for automatically
incrementalized static analyses that can produce answers in real-time and overcomes
the scalability issue for main memory. The main contributions of this thesis are
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the definition and implementation of a database-like system and the definition of
static analyses as a set of composable views in the system. The views are defined
via declarative database queries and their results are incrementally maintained
in-memory. However, the system retains in-memory only the nominally necessary
information to incrementally maintain the views results.

The proposed approach defines views via relational algebra, which allows us to
derive minimal measures for the information required to maintain the views by
studying previous works. For example, the concepts of incrementally maintained
views in relational and deductive databases [GMS93] and self-maintainable rela-
tional views [BCL89, GJSM96] provide a solid background. These works show that
certain views can be maintained without storing any information at all.

Addressing the problem of incremental computation via relational algebra has a
number of other advantages: (i) it bases the definition of incrementally updated
analyses on a formal basis that is suitable for optimizations; (ii) it provides a
compositional language for formulating and reusing incrementally maintained
analyses; (iii) it allows to reason about performance issues – time as well as memory
– on a “per operator” basis; and, (iv) it provides an extensible framework via the
addition of new operators.

We implemented the proposed system as an embedded domain specific language
(EDSL) inside a general purpose programming language (Scala3). The analyzed code
base is represented as relations (defined in the EDSL), which contain objects that
represent the entities in the code base, e.g., classes, methods or instructions. The
representation is directly defined via classes in the host language, hence, no external
specifications must be provided. Concretely, we implemented a representation
of Java bytecode, over which we define static analyses. However, the results
easily apply to static analyses of other programming languages and source code
representations.

Using an EDSL has many advantages: (i) source code (and Java bytecode) parsers
are written in general purpose languages and usually produce a suitable object
representation of the entities in the code base. This representation can be reused
with minimal integration, i.e., arranging them as relations in the EDSL, without
transactional overhead for transferring entities to a different system; (ii) computa-
tions on objects can be performed by functions declared in the host programming
language, hence, the EDSL retains the full expressivity and execution speed of an
object-oriented programming language; (iii) the embedding can be made type-safe
by reusing the type checking facilities provided by the host language.

3 http://www.scala-lang.org/
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1.1 Contributions of this Thesis

Previous works have considered incrementally maintained static analyses for the
sake of increased runtime performance. This thesis is the first work to consider
an automated incremental maintenance approach not only for runtime aspects,
i.e., producing results in the shortest possible time, but also for the suitability
in a real developer environment, i.e., the analyses may not excessively consume
main memory in a developer’s IDE. The following list gives an overview of the
contributions of this thesis, which are then each discussed in detail in the following
sections:

• The concept of incremental maintained database views is applied to the
domain of static analyses, with the focus on self-maintainable views to allow
scalable in-memory computations.

• The approach is implemented as an event-driven in-memory database for
incremental view maintenance, which in itself is applicable beyond the scope
of static analyses.

• The traditional database concepts for incremental maintenance are extended
to enlarge the range of self-maintainable operations.

• The approach is evaluated in three different static analyses scenarios:

– Lightweight analyses, i.e., bug and code smell detection based on
heuristics; in addition object-oriented metrics are considered.

– Bug and code smell detection using control and data flow analysis.

– Architecture compliance checking between dependencies in source
code and intended dependencies defined in high level architectural
descriptions.

• The incrementalization of the architecture compliance checking approach
allows us to define a novel modular specification language for the intended
architecture. The modularity is furthered by the ability to incrementally
check affected architectural modules. Without the incrementalization a
modular approach was infeasible, since the changes required extensive re-
computations for many modules. The latter is due to the fact that architecture
compliances checking in itself is a whole program analysis, even when we
modularize the specification into digestible parts that treat the rest of the
program as a black-box.
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1.1.1 Self-maintainable Views for Memory Efficient Static Analyses

Self-maintainable views stem from traditional relational databases and build on
the observation that – for certain views – the result of a maintenance operation,
i.e., insertion/deletion of a resulting tuple, can be determined solely based on the
data contained in the input tuple. An example for a self-maintainable (domain
specific) static analyses is the detection of explicit method calls to Java’s garbage
collection facility. Such calls are, for example, marked as a performance issue in
FindBugs, since memory management can be time consuming (depending on the
implementation garbage collector). The view ranges over all instructions in the
source code, but is self-maintainable due to the fact that all relevant information
resides in an instruction tuple, i.e., whether the instruction is a call and which
method is called. Note, that w.r.t. the called method the analysis is self-maintainable,
since it simply compares the call to a fixed set of methods, e.g., System.gc().

The maintenance of the above exemplified view can be illustrated as follows.
Editing of a method triggers a deletion of outdated instruction tuples and the
insertion of new instruction tuples. Since the above view is self-maintainable, a
deleted tuple can simply be re-checked for satisfying the above declared conditions
of the view. In case of a positive match the tuple is removed from the results, where
it is guaranteed to reside, since deletion always entails that a tuple was added at
some prior point in time. Likewise, an added instruction tuple is checked and added
to the results in the case of a positive match.

The major benefit of self-maintainable views is that they do not require to retain
data of the underlying relation in memory, i.e., the data is not required to be
permanently held in memory for subsequent computations. For example, the above
view is defined over a relation containing – conceptually – all instructions in the
analyzed source code. However, the view never requires to look up data in this
relation, but merely processes added and deleted tuples. Thus, there is no need to
retain the relation over all instructions in memory.

Note, that traditionally view maintenance is used to materialize (store) the
results, which can be regarded as a form of caching for fast subsequent access.
Materialization is traditionally linked to persisting the data in the database. However,
in the course of this thesis we will use the term materialize to convey that the data
is permanently required in memory.

To fully exploit the possibilities of self-maintainable views, the concept is extended
to an event-driven approach that omits materialization of results completely and
merely passes the added or removed results to interested clients. For example, in
the case of an IDE integration the client would be a respective facility for visually
displaying source code errors (or warnings), which in most modern IDEs will feature
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its own storage of the displayed data. Hence, there is no need for the view itself
to provide storage – in terms of memory – and, thus, a self-maintainable view is
completely free of materializations.

Another benefit of using self-maintainable views is that many views, while not
being completely self-maintainable, filter out a large number of elements before
they require any data in memory. Filtering is the general principle in the above
exemplified view and is also in general self-maintainable. Hence, such views
consume only a nominally required amount of memory, i.e., of all the tuples in
the underlying relation only those relevant to the computation are materialized in
memory.

1.1.2 An Event-Driven In-Memory Database for Incremental View
Maintenance

As a technical contribution, we implemented our approach as an event-driven
database-like system. The implementation provides incrementally maintained ver-
sions of all standard relational operators, as well as extensions to deal with complex
objects that contain structured data in collections and extensions for recursion. In
addition an SQL-inspired surface syntax is provided to define views. Such as it is,
the system can be understood from two perspectives: the database perspective or
the programming language perspective.

Form the database perspective we used the term database-like, since our system
does not provide the standard services of traditional databases, e.g., transactionality
for concurrent access. Nevertheless, we will use the term database throughout
this thesis, after clarifying the distinguishing properties of the system here. To
provide maximal memory efficiency, the database is event-driven, i.e., tuples are
inserted or deleted via events and self-maintainable views only process events,
rather than looking up data in stored tables. Data is materialized, i.e., permanently
kept in memory, only when absolutely necessary for the incremental computation
of a view’s results. Due to the event-driven approach, the database is not per-se
developed for ad-hoc queries, i.e., user supplied (SQL) queries that answer specific
“one-time” questions over the relations stored in the database. Such questions
require that any data that is of potential interest to users is available at all times
in the database. Since potential interest allows no careful planning an RDBMS
system stores all data. Instead, the incrementally maintained views can be thought
of as data processors that maintain a fixed set of queries, which allows the database
to plan and optimize the materialization of data in memory. Ad-hoc queries are
still possible and even advantageous for some static analyses scenarios that need
to define queries dynamically, as will be shown in the case study on architecture
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compliance checking. Such queries must, however, be planned during the design
of the database relations, by declaring respective relations as materialized in the
database. Naturally, the planning should also include a careful assessment of the
amount of data necessary to be retained in memory. Furthermore, it is important to
note that we do not require to backup data as traditional in-memory database do.
The data that enters the database, e.g., the source (byte-) code files are already the
backup, which is persisted by the IDE.

From the language perspective the system can be understood as a rich framework
for defining computations over correlated collections, where we use relations as
collections that do not really store the data but only propagate events. Note that from
the end-user perspective the events are not visible, i.e., the SQL-like queries define
how relations (collections) are correlated, but the automated incrementalization
takes care of propagating the right events to obtain the correct results.

Regardless of the perspective, the system can be reused in other contexts than in
static analyses. However, it is tailored towards a specific scenario, i.e., one where
we have a large persisted set of data in a – possibly – domain specific format such as
Java bytecode and want to define incrementalized computations over this data. That
said; the embedded database can be helpful to incrementalize any approach that
receives a large set of structured input data and performs a deductive transformation,
i.e., a query, to structured output data. This can include traditional compilers that
transform abstract syntax trees to compiled programs.

1.1.3 Extension of Self-Maintainable Views

Based on the observation that self-maintainability is enabled when all data required
to compute a result is locally available inside the event for inserting or deleting a
tuple, the approach can be broadened to allow a greater range of self-maintainable
views. The key idea is to utilize domain specific knowledge that guarantees for all
tuples that are relevant to a given view, to be inserted or deleted together. In this
case the extension allows self-maintainability for views that correlate information
across several tuples.

To illustrate the extension consider the Eclipse IDE that features an incremental
compilation process with a granularity of entire classes. One (optional) analysis
performed by the Eclipse compiler is to check that Java classes that implement a
custom equals() method also provide a matching hashcode() method4. For the
granularity of entire classes the results can be computed without any intermediate
data structures, since the new version of the class is passed entirely to the analysis

4 The Java specification states that equal objects must have equal hash codes, which is for example
required for the correctness of using the objects in Java hash maps.
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during an incremental update. Hence, all methods of the class are inserted together
and the analysis can check whether tuples for both custom method implementations
are present.

In the context of manually incrementalized static analyses it is very natural to
perform analyses as the one exemplified above, without storing any intermediate
data. Since the manual incrementalization has knowledge about the extent of
a working unit, e.g., a class and all therein contained information, it can simply
traverse the in-memory representation of the working unit to produce results. The
argument also applies to smaller units, e.g., an intra-procedural data flow analysis
can simply traverse all instructions in a method, since they are all contained in the
same working unit.

The proposed extension can be thought of as enabling input granularity con-
siderations – found in manually incrementalized approaches – for an automated
incrementalization. In a traditional database approach such information is lost,
since all entities of a certain kind, e.g., all methods or all instructions, are flattened
into a single table to allow a unified reasoning over all said entities. For example
reasoning over all methods, regardless of the class they are contained in.

The extension is provided in a generalized manner and, hence, not only applicable
to static analyses. In short, the granularity can be convened via annotations on
classes that define objects in the database. This treatment is similar to declaring
primary keys on schema entities in a relational database. Any view that correlates
tuples based on at least one annotated property is guaranteed to receive all insertion
events or all deletions events of relevant tuples together.

The extension does not come without a cost. In essence there is a space-time
trade-off. On the one hand, not storing intermediate results saves memory, especially
for static analyses that correlate single instructions. On the other hand, updates to
the database can now only be as fine-grained as the granularity guaranteed to the
self-maintainable views. Coarser granularity means that many, possibly computation
extensive, update operations must be (re-)performed. For example, if the granularity
is at the level of classes, this means that if a single method in a class changed, all
other methods are updated as well. Theoretically, the expense can be quite high, for
example, if data flows for these methods need to be recomputed. However, there is
no empirical data on how this affects performance in a real system, which is, hence,
provided as part of this thesis.

1.1.4 Case Studies of Incrementally Maintained Static Analyses

To evaluate the approach three scenarios are considered that fall under different
categories w.r.t. the characteristics of the analyses, i.e., computational complexity
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of the queries and materialized memory requirements. For all case studies the
following points are evaluated:

Memory Materialization The overall memory consumed by permanently material-
ized data is evaluated for the queries in each case study. Furthermore, to
evaluate the proposed extension for self-maintainable views, the memory
consumption is compared with and without the extension.

Non-incremental runtime The incentive is that incrementalization does not amor-
tize when the initial computation of results is exceedingly more expensive
than a non-incremental computation. To evaluate the approach the incre-
mentalized computation is compared to an implementation of the queries in
the same language (i.e., Scala), yet using a classical traversal over the object
structure of the source code.

Incremental runtime The runtime is measured across a large set of incremental
changes that were recorded in a developer’s IDE over 12 hours of work time.
The measurement provides insight into how the approach behaves in a real-
world setting. In addition the incremental runtime is measured with our
proposed extension for self-maintainable views at the class granularity versus
a method granularity. The incentive being that memory consumption can be
decreased for the coarser granularity, yet the finer granularity – intuitively
– yields better runtime performance. However there is currently no perfor-
mance data that quantifies the degree, i.e., orders of magnitude, of the better
performance and measures whether the coarser granularity is still fit to be
considered real-time, i.e., executable within a bound of (a few) hundred
milliseconds.

Lightweight Analyses

In this category bug finders and code smell detectors utilize simple heuristics that
use structural queries or evaluate simple instruction sequences, without considering
control and data flow. Computationally these analyses are not very complex, since
they largely consists of finding a specific set of elements and computing only a few
correlations to other elements, e.g., finding classes with a custom equals method
determining that a custom hashcode method exists. Another kind of analyses in
this category are metrics, which typically perform structural queries, but have the
additional characteristic of using aggregations, e.g., counting the number of entities
with specific properties, such as incoming dependencies. Concerning memory
requirements the analyses in this category are hard to generalize, since the analyses
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elicit quite diverse behaviors. Yet, as will be shown in the course of this thesis, in
general their materialized memory requirements are quite low.

The lightweight analyses considered in the evaluation perform analyses taken
from real-world tools. A large set of analyses stem from the tool Findbugs, which is a
popular open-source bug-finding tool that analyzes Java bytecode. The metrics are
sampled from the open-source tool Metrics5, which is inspired by the object-oriented
metrics found in [HS96] and [Mar03].

Data Flow Analyses

A class of more concise bug finders utilizes data flow analyses to detect malicious
code. Data flow analyses can answer a wide variety of questions such as uninitialized
variables, reaching definitions or “live” variables (c.f. [NNH99] for a good overview
of the topic). As part of the evaluation a basic form of intra-procedural data flow
analysis is implemented, that determines the effect of instructions on an abstraction
of the variables (and the stack) in the analyzed program.

The analysis is quite complex since it requires to iterate over all instructions
inside a method to determine the static effect of instructions on an abstract repre-
sentation for the state of variables and – in the case of Java – the stack. Hence, the
inherent computational complexity stems from the fact that the instructions make
up by far the largest portion of data in Java programs. Typically, the analysis also
considers control flow, which describes all possible execution paths through a given
program. Control flow is an additional source of complexity, due to the fact that it
requires a treatment of cycles (e.g., loops) in the program. Cycles require a fixpoint
computation to evaluate all possible abstract states that can arise through repeated
application of the instructions in the cycle.

The results of the data flow analysis are used to encode several real-world bug
detectors found in the tool Findbugs, which uses a similar form of data flow analysis.
The resulting abstraction of the data flow can be quite cumbersome to use in the final
Findbugs analyses. Simpler intermediate representations have been proposed for
easier reasoning over data flows, for example, a 3-address based representation in
[VRCG+10]. However, transformation to such a representation requires an analysis
similar to the one presented in this work. Hence, the presented analysis can be
seen as a first step to evaluate the wide range of possible data flow analyses. Most
importantly, the analysis is automatically incrementalized and due to the proposed
extension also self-maintainable.

5 http://metrics.sourceforge.net/
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Architecture Conformance Checking

In this analysis architecture specifications provide high level abstractions – termed
ensembles – that group source code entities which conceptually belong together, as
well as a set of architecturally intended dependencies between such ensembles. The
structural dependencies found in the code base are then checked for compliance with
the intended dependencies, based on the membership of code entities in ensembles.

Architecture compliance checking requires a global correlation of all source code
dependencies. Such a correlation has a computational complexity comparable to the
lightweight analyses, since only a few correlations are done in terms of operators.
Yet the amount of data considered in this analysis is higher, due to the global nature
of the correlation, which has an impact on the required computation times and more
importantly also on the memory required for incremental maintenance.

Another peculiarity of this scenario is that the architecture specification itself is
treated as an interactive system, i.e., architecture specification can be modified and
are, hence, incrementalized. Thus, the database not only receives events triggered
by editing source code, but also by editing the architecture specification. This
scenario is unique, not only because two different sets of data are incrementalized,
but because the architecture specification dynamically creates and modifies views
over the source code, i.e., as ensembles.

Summary of Results

The case studies show that the materialized memory for all sampled analyses stays
below the memory required to materialize the data of the entire program. Compared
to a materialization of the entire analyzed program in a deductive database the
memory stays within boundaries of 5% - 10% with the exception of the architecture
analysis. In the latter case a heavily indexed materialization took still only 20% - 25%
of the memory required for an un-indexed materialization in the deductive database.
The non-incremental runtime is comparable to our reference implementation in the
majority cases. The computationally more complex analyses are approx. three times
slower for computing the initial results of the incrementalization, which, however,
quickly pays of (i.e., after three runs). The incremental runtime is in general fast and
the majority of changes can be computed in less than 10 milliseconds and requires
only 20-30 milliseconds for larger changes. Larger changes in our case means that
we removed and added 20-30 methods with a total of approx. 2 000 - 3 000 removed
(and the same amount of added) instructions. Finally, the class granularity can
definitely be considered a good option for further memory improvement, albeit
the method granularity offered much optimization potential for a larger number of
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queries. The runtime increase is visible, yet the majority of incremental changes for
individual classes stayed within the time frame of 10 milliseconds.

1.1.5 Modular Definition and Checking of Source Code Against
Architecturally Intended Dependencies

Existing approaches in architecture conformance checking require the whole archi-
tecture and its intended dependencies to be specified in one single specification.
Based on the experience gained during a case study – performed as part of this
thesis – w.r.t. modeling the architecture of real systems (e.g., Hibernate [BK04]),
such approaches do not scale for large architectures. Scalability is an issue when
treating large systems, i.e., with many architectural elements and dependencies,
where architects want to focus on relevant parts of the system. Providing focused
views is quite challenging, even when compact notations are used, e.g., dependency
structure matrices [SJSJ05].

As part of this thesis a new approach to architecture conformance checking is
proposed, that enables architects to define intended architectural dependencies
in modular units termed slices. The incrementalization of the architecture con-
formance checking is an enabling factor for this approach and automation of the
incrementalization has the advantage of easy development. Incrementalization is
enabling such an approach, since slices are designed as independent units in terms
of described dependencies and are required to be independently checked. Modu-
larizing a non-incremental conformance check is not efficient, since architecture
analyses are whole program analyses that consider a large amount of data and,
hence, are expensive to run multiple times for each slice. Thus, an incremental
approach is far better suited to and has to compute only small updates to slices. The
automation eases the development of the analyses considerably, since it alleviates
the need for a complex implementation of the update logic.

1.1.6 Publications

The following publications were created in the context of the research performed
for this thesis:

1. R. Mitschke, A. Sewe and M. Mezini. Magic for the Masses: Safer High-level
Low-level Programming through Customizable Static Analyses. In Proceedings
of the 1st workshop on Modularity in systems software, MISS ’11, ACM, 2011
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2. R. Mitschke, M. Eichberg, M. Mezini, A. Garcia and I. Macia. Modular
Specification and Checking of Structural Dependencies. In Proceedings of the
12th International Conference on Aspect-oriented Software Development, AOSD
’13, ACM, 2013

3. P. Giarrusso, K. Ostermann, M. Eichberg, R. Mitschke, T. Rendel, C. Kästner.
Reify Your Collection Queries for Modularity and Speed! In Proceedings of the
12th International Conference on Aspect-oriented Software Development, AOSD
’13, ACM, 2013

1.2 Organization of This Thesis

The remainder of this thesis is structured into the following chapters:

Chapter 2 – Background
discusses the history and the applications of static analyses. Afterwards a general
overview of different lines of database research is given and each is discussed w.r.t.
the relationship to this thesis. Finally, the concept of incremental view maintenance
is discussed in detail. The concept of incremental view maintenance is introduced
via an illustrative example. In addition an overview of the design space for the
problem of incremental view maintenance is provided and a survey of existing
techniques and algorithms is given.

Chapter 3 – Language-Integrated Database with Incremental View Maintenance
introduces the event-driven in-memory database in detail. The chapter gives an
introduction on how data is defined and manipulated. Then the supported re-
lational operators are discussed; first w.r.t. their semantics and then w.r.t. their
incrementalization.

Chapter 4 – Query Language and Query Optimization
discusses the SQL-style query language for the database. Furthermore the chapter
introduces the optimizations to the database. First, traditional query optimizations
are shortly discussed w.r.t. their added benefit in providing memory efficient incre-
mental view maintenance. Then a novel optimization is introduced, that helps to
further reduce the amount of memory required in memory, by introducing scopes
for incremental computations. Finally, the chapter discusses issues in integrating
the query language into a general-purpose programming language.
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Chapter 5 – Incrementalized Static Analysis Engine
shows how the database is utilized to obtain a Static Analysis Engine (SAE). The
respective data structures are introduced and example analyses are given that show
how concrete static analyses are formulated using the SAE. Finally, the integration
of the SAE into an IDE is discussed.

Chapters 6-7 – Case Studies
are presented to evaluate the performance of the approach w.r.t required memory
storage and runtime. Chapter 6 discusses the lightweight analyses and the data flow
analyses. Chapter 7 discusses architecture conformance checking.

Chapter 8 – Conclusions and Future Directions
concludes this thesis and discusses directions for future work to enhance the pre-
sented approach.
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2 Background

This chapter first provides an overview of existing research in terms of static analyses
and database systems. Both have been studied extensively since the 1970’s and
produced quite a large variety of related work. The presented overview is not
intended to be comprehensive, but should rather serve as an outline of the main
directions taken in these areas. Especially in the case of database systems, the
chapter provides an overview w.r.t. different research directions that are closely
related to the event-driven in.memory database presented in this thesis. Finally, the
topic of incremental view maintenance in database systems has been researched at
least since the 1980’s. Hence, an overview and classification of the design space and
a survey of incremental maintenance techniques is provided.

2.1 Static Analyses

The classical application of static analyses is found in compilers [AU77] that provide
for example error-checking using static type systems, e.g., to detect mismatches
between a procedure’s formally specified parameter and the actual parameter. In
addition compilers use data flow analyses during optimization, e.g., the live-variables
analysis [Hec77] determines a variable to be live if it holds a value that is required
in a subsequent computation; the optimizer knows that only variables alive at the
exit of a block must be written to heap memory. The majority of compiler analyses
are confined to a single procedure (intra-procedural analysis).

The traditional static analyses of compilers are conservative in order to retain
soundness, where soundness in static analysis means that it does not miss any error in
the program that can arise at runtime (cf. [Rus01]). Conservative in this sense means
that the guaranteed properties are weak (yet easy to establish) compared to more
useful properties. For example, there may be many paths through a procedure that
do not correspond to any execution. Yet a static analysis can safely (conservatively)
assume that all paths are executable [ASU86], which simplifies the problem and
allows more efficient execution of the analysis.

With the wide adoption of languages such C and C++, the context of static
analyses was broadened to diagnose faults in languages with pointers and dynamic
storage. The focus in these analyses is to detect invalid pointer references, faulty
storage allocations or usage of uninitialized memory [DRS98]. Such analyses
typically consider the whole program (inter-procedural analysis). Analyses reasoning
over pointers have to solve an aliasing problem, i.e., if any given two variables in
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the program can point to the same location in memory. These analyses operate
on a model of the run-time state of the program and determine how the program
manipulates this state. The model in any aliasing analysis must represent all
memory locations via a finite number of objects. Since programs have many possible
executions and many possibly used memory locations, a reasonable abstraction
of all run-time states is used. In general such analyses have a trade-off between
the abstracted-away state and the precision of the analysis (more conservative
abstraction ≡ less precise results). Due to the high number of states in a given
program, such analyses are widely accepted to be very hard [LR91]. In fact many
inter-procedural static analyses were shown to be NP hard (cf. [Mye81]).

Object-oriented languages are slightly more complex for inter-procedural analyses,
since they rely on frequent method invocations with polymorphic subtyping. In
general, a method is invoked on a variable (the receiver) and – due to subtyping
and polymorphism – the runtime type of the receiver can yield different call targets.
Since receivers are often objects passed as method parameters, the concrete runtime
type of the receiver is also dependent on the context from which the enclosing
method was called. Inter-procedural analyses can determine an approximation,
i.e., a small set of possible classes that are concrete subtypes used throughout the
execution. Such analyses have been proposed for optimizations in object-oriented
compilers [DGC95], where statically known receiver types can be used to produce a
compiled program that used fewer dynamic method dispatches. A broader class of
analyses that use type information are typestate checkers, which have been applied
to C [SY86] and also to Java [ASSS09]. Typestates can be seen as an extension
to traditional types that include a notion of the state of a variable and the effect
produced by invoking certain methods, which allows some temporal reasoning
over the correctness of a program. In short, types define which operations can be
performed on a variable and typestates when they can be performed. Typestate
analyses can find a broad range of errors, such as uninitialized variables in languages
with pointers, but also general adherence to contracts of APIs, e.g., reading from
a file stream that has not been opened yet. Hence, static analyses can be used
beyond the purpose of detecting programming errors. Adherence to contracts can
have broad applications, such as finding security vulnerabilities (cf. [CM04] for an
overview).

A different approach to error detection is pursued by [Joh78] (for C) and [AB01,
HP04] (for Java). These approaches employ static analyses to find suspicious code
patterns that have a high possibility to cause defects. The analyses are lightweight
in the sense that they mostly rely on simple heuristics, and in some cases on intra-
procedural data flow, but do not use inter-procedural analyses. In many cases these
analyses are unsound, i.e., do not find all occurrences of a given class of errors, but
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try to identify the most common mistakes. For example Findbugs [HP04] features
an “Open Stream” detector that finds Java in-/output streams, which are created in
a method but not closed on all paths before the methods exits. Streams passed as
argument to other methods are ignored. However, the lightweight analyses were
shown to be useful and cover a good range of errors in real systems [RAF04].

Another set of – mostly – lightweight static analyses are software metrics, which
provide a quantitative measurement of the complexity of the software’s design
and implementation. Metrics in procedural and object-oriented languages have
been proposed and studied as predictors for the fault-proneness of modules/classes
[DMP02]. Metrics can be measured using very simple models, such as the number of
lines of code, or using elaborate models, such as the cyclomatic complexity [McC76].
The latter is essentially a measurement of the complexity exhibited by the control
flow graph of a method. In general, metrics are a very controversial topic, not only
for the precision with which certain attributes of a software system can be measured,
but more importantly how the measurements relate to the quality attributes, e.g.,
program defects, that they are supposed to model [KMB04]. While there are quite
positive results (e.g., [DMP02]), some metrics, e.g. cyclomatic complexity, do not
have statistically relevant correlation to defects [Hat12].

2.2 Database Systems

Relational database management systems (DBMS) are a technology that has been
developed over several decades, starting with the seminal work by Codd [Cod70]
on an algebra for managing data as a set of relations. Among the standard services
provided by DMBSs are (i) persistent storage of very large amounts of data – not
fit to retain in memory – and keeping it consistent over a long period of time; (ii)
users can query the data and modify the data, using appropriate database languages,
often termed query language and data-manipulation language; (iii) DBMSs provide
concurrent access to the data, for queries as well as for modifications and (iv)
transactionality of modifications, i.e., modifications are guaranteed to be performed
in isolation, meaning independently of each other, and to be atomic, meaning each
modification must either succeed completely or no changes are made at all. A good
overview on the general concepts found in database systems is given in [UGMW01].

The concept of transactionality is now shortly discussed in detail, since it is the
principle cause of long runtime for storing data in the database (with negative
effects as discussed in the introduction and seen in [HVdM06]). Transactionality
guarantees consistency in case of events such as system failure, violations of con-
sistency constraints, network time-outs, and more. To support transactionality the
database has a component for monitoring transactions and taking steps to recover
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from failed transactions. In a commercial DBMS this is typically done via logging
[Gra92]. Logging records modifications to the data that would be made to the data.
The modifications are only committed (i.e., stored) to the database in the case of
successful transactions. Logs are typically persistent, so that in the case of a system
failure, e.g., power outage (not including hard-disk failure), data is guaranteed to
be retained. Hence, logging imposes considerable overhead for a transaction.

In the following, general lines of database research are discussed. The focus here
is on (i) deductive database systems and logic languages, since these provide a broad
range of expressible queries – thus making them attractive for formulating static
analyses – (ii) main memory databases, since memory is a constraining quality for
static analyses; (iii) active and real-time databases, since they are architecturally
closest to the event-driven nature of the approach followed in this thesis; and finally
(iv) object-oriented databases, since the embedding proposed in this thesis is done in
the context of an object-oriented language and, hence, has several commonalities to
OO databases, e.g., the expressiveness of the query language.

2.2.1 Deductive Database Systems and Logic Languages

Deductive database systems have evolved out of early logic programming languages
[Llo87]. Logic programs can be seen as deriving logical consequences from a set
of known facts via a set of first order logic predicates (or rules). Facts are usually
represented as predicates with constant arguments (termed ground atoms). For
example, the knowledge that Greg is a parent of Sally can be represented as the fact
parent(greg, sally), where parent is the predicate with constant arguments greg and
sally. Using facts, knowledge is represented extensionally, i.e., by enumerating all
arguments for which a given predicate is true. Rules contain a head term that can
be derived when the predicates in the body are satisfied, i.e., the head is implied by
the body (typically written as head:-body in PROLOG-style notation). For example a
rule of the form

p :- q1, q2, . . . , qn

can be read as “ql and q2 and ... and qn, implies p”. Rules represent knowledge
intensionally, i.e., by declaring how it can be derived from already ascertained
knowledge via logical consequences.

Deductive databases can be understood as relational systems with a richer query
language. In this interpretation, the facts in logic languages are tuples in a database
relation, for example the fact parent(greg, sally) is a tuple (greg, sally) stored in a
relation parent. The rules provide a form of querying the relations that is much
richer than query languages such as SQL. In particular logic languages can express
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recursive queries, which traditionally were not part of SQL and even today are
only provided with limitations [ISO11]. For illustration, consider the rules below
that compute the ancestors relation. Ancestors are immediate parents (2.2.1.1), or
recursively all parents of ancestors (2.2.1.2).

ancestor(X , Y ) :- parent(X , Y ). (2.2.1.1)

ancestor(X , Z) :- parent(X , Y ), ancestor(Y, Z). (2.2.1.2)

From the query perspective, it is important to note that both deductive and
relational systems share the characteristic of being declarative, i.e., of allowing
the user to formulate a query that expresses which data is required, instead of
a set of operations that compute the data. However, due to their inheritance
from logic languages, deductive databases have many characteristics that set them
apart from relational database systems; [RU95] provides a very good overview.
Important relational database characteristics such as persistence, updates to the
relations, or even transactional guarantees were not part of the first deductive
databases. In particular persistence turns out to be quite difficult, since the logic
languages follow a “tuple-at-a-time” processing strategy, whereas persistence in
relational databases utilizes the set-orientation of relational operations for efficient
disk storage. In addition, the “tuple-at-a-time” processing is a very different query
evaluation technique and has (to some degree) lower run-time performance. Hence,
a lot of effort was spent to achieve better query evaluation techniques (cf. [SSW94]).

2.2.2 Main Memory Databases

During the 1980’s a large amount of works considered the upcoming availability
of large quantities of main memory. The focus in these works was mainly on the
following topics (a more detailed discussion can be found in [GMS92]): Transaction
processing has been reconsidered, since transaction can be completed faster when
performed in memory. Large quantities of fast running transactions can be efficiently
executed in a serial manner, which removes the cost of concurrency control. Data ac-
cess methods for disk memory have been reconsidered, since main memory databases
can directly retrieve the data via pointers in memory. Alongside the data access, the
indexing methods have been simplified, e.g., variants of linear hashing have been
efficiently used to index unordered data. In addition, memory efficient indexing for
ordered data has been proposed in the form of T-trees; balanced binary trees where
every tree node can hold multiple entries. Data representation was reconsidered
w.r.t. the advantages of using pointers to reference values and store recurring (large)
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values only once on the heap. Query processing was also reconsidered, since the
traditional relational databases focus on minimizing disk access, whereas in-memory
access requires a shift towards efficient computations. Main memory databases still
provide failure recovery, which remains a database service that requires storage on
hard-disks. In essence backups (also termed checkpoints) are performed, that can –
to some degree – be decoupled from transactions and perform disk I/O operations
in larger chunks. Although a lot of research was performed in the area of main
memory databases, there are few commercial system, e.g., Starburst, MonetDB,
TimesTen. Applications using these systems are deemed to be limited to certain areas
such as telecommunications and few other industries that require high performance
[HYX11]. Nevertheless, interest in big main-memory data stores has been renewed
in recent years. Yet, this trend utilizes multiple machines to broaden the pool of
available memory. For example, SAP’s Hana1 main-memory database can utilize a
cluster of servers as a single main-memory pool.

2.2.3 Active and Real-Time Database Systems

Active databases enable reactive behavior inside a DBMS via the definition of events
(rules) that execute user specified functionality when they are triggered [PD99].
Traditional databases required to write external application code that effectively
polls the database in the case of events or to ascertain whether some conditions
are met by the data and institute appropriate actions. Active databases move the
specification of the behavior into the database system, which allows both centralized
and timely processing of events. Among the frequently mentioned examples that
benefit from active databases are computer-integrated manufacturing, air-traffic
control or stock-market trading [BH95]. The majority of active database systems
defines reactive behavior via event-condition-action (ECA) rules. The semantics is
the following: when an event occurs and the condition is satisfied, then the action
is executed. Note that conditions are optional or implicit in some systems [PD99].

ECA-rule processing comprises several complex functionalities and, typically, the
complexity is addressed by one or several distinct database component(s) for ECA
processing. The design-space of components is quite diverse and features several
dimensions (cf. [PD99]). Active databases can support a variety of event types, e.g.,
based on data manipulation, time triggers, external agents, or even composition of
other (primitive) events [BH95]. The generality with which events are treated must
be met by a general component for monitoring events and triggering corresponding
rules. The processing of rules in relation to transactions can be performed differently,

1 http://www.sap.com/hana
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e.g., immediately when the conditions are met inside a transaction, deferred to the
end of the transaction or detached from the triggering transaction, i.e., in a separate
transaction. Multiple rules can be triggered at the same time; hence, a form of –
possibly parallel – scheduling for executing actions is required. Another important
issue is the timeliness of completing scheduled rules. This last issue is also the main
point of contact between active databases and real-time databases [BH95, Eri99].

Real-time databases are traditionally concerned with the completion of transaction
under given time constraints. The underlying idea is that data values, e.g., stock
market prices, have a time semantics and are valid only for a short time interval.
There are several implications of data validity that real-time databases address (cf.
[Gra92]). First, temporal consistency means that transactions must be scheduled
such that time constraints are honored, i.e., a transaction with a deadline for the
data has a higher priority than transaction without a deadline. Second, the deadline
of a transaction can sometimes be met using only an approximation of the results.
Hence, the timeliness of a transaction can be achieved by relaxing the consistency
guarantees of a database.

The introduction of validity intervals for data and scheduling techniques for
temporal consistency are the central theme of real-time databases. Indeed, it has
been noted that several misunderstandings on the concept of real-time databases
exist, the most infamous being: [...] that real-time [database] systems are synonymous
with speed. [SSH02].

2.2.4 Object-Oriented Database Systems

With object-orientation (OO) being on the rise in the 1980’s the relationship between
objects-oriented programming languages and databases was explored. From the
perspective of OO languages, databases offered the ability to persist large amounts
of objects (cf. [AH87]). Hence, one of the defining qualities of early approaches
was the ability to persist objects on hard disks and load them into main memory on-
demand via an object identifier (OID) – in essence a pointer – and then manipulate
and navigate the in-memory representation. From the perspective of database
research, object-orientation offered a basis to lift the restrictions implied by the first
normal form [Ken83]. The first normal form essentially states that a tuple consists
only of atomic values, which disallows data such as lists which can have variable
lengths for different tuples. New models were already proposed to incorporate
hierarchically structured data (cf. [AB93]). In this respect, object-orientation
provided a new and general model that allows objects to contain other objects or
even aggregations, i.e., groups of objects contained in collections such as arrays.
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There are many issues in providing object-oriented database systems, which are
discussed shortly in the following paragraphs. The focus here is on the underlying
data model and querying capabilities. These are the properties of database systems
that relate to the integration of relational querying with an OO language in the
proposed embedded database of this thesis. In general, other database issues
such as transaction management and failure recovery have also received special
attention in object-oriented database systems. A more comprehensive and detailed
overview is provided in [BM91] or [ZCC95]. These works also provide an overview
of implemented systems and their design choices. Note, that the concept of an object-
oriented database has been standardized by the ODMG (Object Data Management
Group) [Cat00] and object-oriented-like extensions have been incorporated into the
SQL standard (cf. [EM99] for an overview).

Object identity

The technique of loading objects via an identifier from disk into main memory
requires a notion of object identity. An object must be identified via a unique and
immutable value throughout its entire lifetime, while the object’s attributes may
change. Object identity in databases shares some similarity to the concept of object
identity in OO languages. In particular both have two notions of object equivalence:
(i) based on pointer equality, i.e., two objects point to the same memory location, or
(ii) based on value equality, i.e., the attributes of two objects represent the same
values.

Object identity is a quite far ranging concept for classical relational systems, since
previously data consisted of tuples that only had value equality. Tuples were to
some degree identifiable via their primary key. However, object identifiers are more
than primary keys. The latter describe the values (columns) in a tuple that contain
the data for which each tuple is unique. However, the data may change during the
“lifetime” of a tuple, as long as the primary key does not collide with other tuples in
the database. In this case the row is now uniquely identified by different data and
can not be referenced using the previous values. Object identity allows to uniquely
reference the same object at any time, even if attributes changed. In addition two
objects can have the same attribute values, yet have different identifiers.

Object identifiers are typically managed by the database system and not by
applications. This simplifies data definition, since users do not have to emulate a
unique immutable value for identity, and simplifies client code, since the insurance
of uniqueness for object identifiers and the maintenance of referential integrity is
quite challenging.
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Object-oriented data definition
OO databases allow the definition of classes with methods and inheritance which

are novel in the database context, yet are inspired by OO languages and very
similar to these concepts in the programming language sense. Classes specify
the structure of objects in terms of attributes (i.e., instance variables) and an
instantiation mechanisms, that allows to create concrete objects adhering to the
structure.

Methods provide data encapsulation by specifying a set operations on the data
contained inside the objects. Most systems also provide a notion of types – in the
programming language sense – that allows to specify interfaces of the operations
separately from implementations. The latter is typically provided in classes. Note,
that many OO databases are strongly typed, i.e., every operation is defined with
typed operands.

In a concrete database, the encapsulation of data is often a tricky design choice
that stands in contrast to one traditional goal of databases, which is that all possibly
relevant data can be freely queried and correlated in new ways. When employing
encapsulation only methods are visible, whereas the data and the implementation
remain hidden, thus only data accessible via the methods may be freely queried.
Since the attributes (i.e., the data) contained in objects are often the primary
working units for applications most systems provide work-arounds, such as system
defined get/set methods for each attribute.

Inheritance is provided by database systems in the classical OO sense that allows
classes to specialize functionality from their super classes. Classes can specialize
other classes with additional functionalities or by substituting functionalities. Single
and multiple inheritance can be provided with the same implications as in OO
languages, e.g., conflicting definitions. Inheritance is typically taken as a nominal
subtyping relationship. Types are checked for compatibility w.r.t. the inheritance
based type hierarchy, i.e., an object of the subtype can be assigned to a variable of
the supertype. OO database systems – like OO languages – support dynamic method
dispatch (i.e., late binding), that chooses the most specialized version of a method
for a given object at runtime based on the object’s class.

Object-oriented query languages
One of the most interesting points in the combination of OO features and

databases is the impact of OO on the query language of the database system.
The traditional relational query languages select sets of tuples from relations. In
OO databases a query selects a set of objects, which is quite similar to selecting
tuples in a relational database. Yet, OO databases provide a new querying capability
compared to relational databases. Given an object (via OID), the database can
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directly access referenced objects (via OID references). Note, that – from a query
perspective – the latter is comparable to an extension of the relational system for
hierarchically nested values. For illustration consider the following query:

Find all employees that work in a department with
a budget greater than 500 000 (€)

In a relational database where employees and departments are stored in separate
tables, this query requires a join; which can be expressed as follows:

{v | Employee(v) ∧ ∃u. Department(u) ∧
v.DepartmentId= u.Id ∧ u.Budget> 500 000}

The query introduces an additional variable u and a join predicate (v.DepartmentId=
u.Id), to find corresponding departments and restrict them w.r.t. the budget declared
for the query. Object-oriented queries can simplify the query, by formulating the
restriction on the departments directly on a nested value. A path expression is used
to denote the corresponding department object and the join can be thought of as
being performed implicitly. The resulting query is a simplified version – in the sense
of being more concise – of the above query, since less explicit variables and joins are
required; it can be expressed as follows:

{v | Employee(v) ∧ v.Department.Budget> 500 000}

Path expressions can be used to increase the conciseness of the queries, in the
sense of introducing less syntactic elements into the query. However, they do not
add expressive power to the language, i.e., it is possible to express a semantically
equivalent query using additional variables and explicit join predicates. Most object-
oriented query languages provide a syntactic notation similar to path expressions
[BM91].

Classes and querying
Classes (and types) in a database provide a novel mechanism for querying data

via extents, i.e., the set of all instances of a given type (including all subtypes).
Extents are in essence a reification of the type information in the set-theoretic sense.
That means objects are classified as members of a set for their given type and the
sets adhere to the subtyping relation. For example, if the class A is a subtype of
the class B (written as A<: B), then the extent for A is a subset of the extent for B
(ExtentA ⊂ ExtentB). Note, the use of ExtentC is an abbreviated syntax for the extent
of class C, as there is no common syntax.
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Extents can be explicitly maintained by the database, which incurs some overhead,
i.e., new object instances must be inserted (or deleted instances removed) from the
corresponding extents. Whether or not all class extents are automatically managed
by the database depends on the database system. Some systems also defer the
choice to schema designers, and let them declare classes that require a managed
extent.

Classes with extents provide a new form of querying, where tuples of different
data “layout” can be returned. For illustration consider a database that stores
employees with subtypes consultants and engineers. The subtypes can each store
specific data, e.g., bonus payments for consultants, yet both have a common set of
data, e.g., a monthly base salary. There are two issues here w.r.t. querying the data.
First, extents allow users to retrieve all objects regardless of their concrete type
and lets users declare queries based on the common data, e.g., the salary. Second,
the specialization gives rise to a form of coercion (i.e., typecasts), as found in OO
languages when dealing with heterogeneous collections. Ohori et al. [OBBT89]
provide a good discussion on the topic and the implications for static type inference.
For illustration consider the following query:

Find all employees of any kind (i.e., including sub-
types) that have a monthly salary higher than
5 000 (€) and if they are consultants their bonus
payments are greater than 2 000 (€)

In an OO database the extent of employees can be explicitly denoted, e.g, as
ExtentEmployee and the query can be formulated as follows:

{v | ExtentEmployee(v ) ∧ v.Salary> 5 000 ∧
(v.classOf(Consultant) → v.asClass(Consultant).bonus> 2 000) }

The query requires no special treatment for the field Salary, since all objects share
this attribute. However, to deal with specialization, e.g., finding out if an employee
is a consultant and querying their bonus, additional functions are needed for testing
objects for particular types and for “down casting” objects. In the example, we use
the functions classOf and asClass to perform these tasks. In essence the function
classOf checks whether a tuple is of the given class and the function asClass performs
a type cast to Consultant. The logical implication (→) is necessary for correctness
and performs the cast only if the classOf check is successful, since the cast will
yield runtime errors if performed on instances of other classes (save subtypes of
Consultant). In essence the use of logical implication means that the query language
has to provide some form of if-then control structure.
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Classes in query composition and view definition
Using classes in queries interferes with the free composition of queries allowed

in the relational model. The classical composition allows query results as input to
other queries, which is simple if only atomic values are supported. When classes
and objects are used, the question arises if the returned values are objects and of
which class. The same argument applies to the definition of views, which are in
general complex queries and, hence, it is not always clear what type (or class) the
elements in a view have.

The answer is simple for filtering queries as the one exemplified above, i.e., the
objects of the underlying relation(s) are returned and retain their class information.
However, the situation becomes more complex when queries are allowed to select a
subset of the attributes in an object. When trying to treat this set of attributes as an
object instance, it is unclear to which class the instance should belong. Potentially,
there is a defined superclass that has exactly the same attributes; then the selection
could be mapped to this class. Yet, the selection might as well yield a set of attributes
for which no class is defined in the database.

A common approach to solve this problem is to introduce restrictions that avoid
this situation. The database can restrict queries such that they retrieve either only a
single attribute or all attributes (i.e., the whole object), which is often referred to as
object preserving in literature. Other databases treat arbitrary attribute selections
as tuples containing complex values; however, these tuples then do not have any
methods defined on their data.

A different approach, followed by Heiler et al. [HZ90], is to define views via a
query together with a class (or type) for the resulting objects. This approach makes
the (reasonable) assumption that views are typically planned for by a database user,
who can then as well provide a class definition (including methods) for the resulting
objects. The implication of this approach is that the previously existing relational
operators, e.g., a join, require extension to be able to create new objects (with object
identifiers) instead of tuples containing values.

The most sophisticated solution is provided by MultiView [KR98], which automat-
ically creates and manages virtual classes for a predefined set of relational operators.
Virtual classes denote classes that arise due to the semantics of a query, instead of
being specified by the user, i.e., there is no class definition in the system. Note that
the term is ambiguous and not to be compared with virtual classes in strongly typed
OO languages. In these languages the term virtual classes denotes a technique for
defining general parameterized classes, such as lists or sets, and can be understood
as an alternative to generics [MMP89]. The maintenance of virtual classes in an
OO database is quite complex. Two techniques termed object slicing and dynamic
restructuring of the stored objects are used during the maintenance. The slicing tech-
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nique ensures that there is no fixed data layout. In essence all attributes are stored
as pointers to a data structure that holds the value together with a reference to the
class currently associated with the value. Consider for example that employees have
a name attribute. The slicing technique stores a pointer to a structure containing the
value of the name and a reference to the employee class. A query can then select
only the name and other attributes from an employee. In this case the dynamic
restructuring re-classifies all attribute instances to point to a new, i.e., virtual, class
that contains only queried attributes.

2.3 Incremental View Maintenance

Incremental maintenance is based on the idea that a view of the data in a database
can be efficiently maintained by only re-computing relevant parts of the view when
changes are made to data.

A view is a relation defined as a query – in terms of the relational algebra – over
base relations. The base relations are subject to direct modification (addition/dele-
tion/update of tuples). A view is not subject to direct modification. Instead the
result of the view is derived from the base relations. Thus a view can be seen as
a function from base relations to a derived relation. The function is traditionally
recomputed whenever the data of the view must be accessed [Sto75].

A materialized view [GM99a] can be obtained by storing the result of a view in
the database. In essence a materialized view can be understood as a cached copy of
the result. Consequently the access to the result of the view is much faster compared
to re-computing the view’s function every time the view is accessed. Furthermore,
other views defined on top of the materialized view can be evaluated more efficiently,
since the results of a materialized view can be indexed. Materialized views have a
large range of applications, the most prominent and widely researched being data
warehousing [JG12], where views are defined over relations that may be stored
in different (distributed) database sources. Other applications include replication
servers, data recording systems [JMS95], data visualization, and mobile systems
[GM99a].

The efficient updating of materialized views is called incremental view mainte-
nance, or view maintenance in short. The basic idea behind view maintenance is that
updates to a database are small compared to the overall size of the database and
only parts of the views change in response to updates in the base relations. The
idea was termed “principle of inertia” [GM99b]. This principle is only a heuristic
and does not apply in all cases, e.g., if all entries in a base relation are deleted it
may be cheaper to re-compute a view that depends on this base relation. Yet the
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principle of inertia applies in most cases, making incremental view maintenance a
worthwhile effort.

Example view
To illustrate the problem of view maintenance, consider for example a database

for administering a university. In the following two base relations are defined that
contain data on the lecturers of the university (2.3.0.1) and the staff that is tenured
and when the tenuring was granted (2.3.0.2). The Lecturers relation contains a
unique identifier StaffId, a Name and the Age for each lecturer. The StaffId, which
is also used to identify lecturers in the Tenure relation, which stores the according
date when the lecturer was given tenure.

Lecturers(StaffId, Name, Age) (2.3.0.1)

Tenure(StaffId, TenureDate) (2.3.0.2)

Figure 2.1 depicts an example instance of a database with tables for the two relations
– Lecturers (2.1a) and Tenure (2.1b) – filled with exemplary data. Not all lecturers
have tenure, for example the second entry in 2.1a has no corresponding entry in the
tenure table.

StaffId Name Age

1 Marinescu, E. 47
2 Rieble, D. 35
3 Glaser, T. 41

(a) Lecturers

StaffId TenureDate

1 09/01/2012
3 04/26/2002

(b) Tenure

Figure 2.1: Base relations in a university administration database

Given the above relations a view can be defined via the following SQL query:

1 CREATE VIEW TenuredLecturers(Name, TenureDate) AS
2 SELECT Name, TenureDate

3 FROM Lecturers , Tenure

4 WHERE Lecturers.StaffId = Tenure.StaffId

The query defines a new relation (line 1) that contains the lecturers Name and
TenureDate (selected in line 2) from the respective base relations (line 3). To ensure
that only tenured lecturers are contained in the view, the tables are correlated via a
join (line 4) of the respective StaffIds.
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A materialized view fully evaluates the join once and stores the result. Hence,
applying the materialized view method on the data shown in Figure 2.1 would
create the table shown below in Figure 2.2 as a result.

Name TenureDate

Marinescu, E. 09/01/2012
Glaser, T. 04/26/2002

Figure 2.2: Materialized view of TenuredLecturers

Subsequent queries of the view are very quick, since they merely consist of reading
the results stored in the materialized view. However, modifications of the base rela-
tions Lecturers or Tenure require examining the materialized view and determining
if and how the view must be updated.

General view maintenance algorithm
The general algorithm that is responsible for incremental view maintenance can

be summarized as follows. Consider Q as a query over the base relation R, then
V is the (multi-)set consistent with the evaluation of Q on R, i.e., V ≡ Q(R). A
set of modifications to the base relation R consist off additions (∆+R ) and deletions
(∆−R ). Updates to specific values of existing tuples, e.g., changing the name of a
lecturer, can be modeled as a deletion (of the tuple with the old name) followed by
an addition (of the tuple with the new name). The modifications change the base
relation R to

R′ ≡ (R−∆−R )∪∆
+
R

Naïve re-evaluation of the query computes V ′ ≡Q(R′). Incremental view main-
tenance approaches are able to determine the net effect on the materialized view
that stems from a change to a base relation. The effect is captured as additions and
deletions to the view, i.e.,∆+V and∆−V . Hence, the view can be efficiently maintained
by the following equation:

V ′ ≡ (V −∆−V )∪∆
+
V

View maintenance example
For illustration consider following addition and deletion of tuples to the Lecturers

relation:
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∆+Lecturers = {(4, Foxon, R., 33)}
∆−Lecturers = {(3, Glaser, T., 41)}

The effect on the materialized view TenuredLecturers can be expressed as additions
and deletions of tuples to that view. For the above example no new tuples must be
added to the view, since the new tuple in ∆+Lecturers has no corresponding entry in
Tenure The removal in ∆−Lecturers results in a removal to the view, since the lecturer
with StaffId= 3 is not present in both base relations. Thus, given the above additions
and deletions, the materialized view TenuredLecturers can be transitioned to a new
database state TenuredLecturers′ by the following formula:

TenuredLecturers′ = (TenuredLecturers− {(Glaser, T., 04/26/2002)})∪ ;

2.3.1 Design Space of Incremental View Maintenance

The design space for providing incremental maintenance of relational views can
be classified along several dimensions that impact the efficiency of the approach.
The following sections provide a classification of different design choices, exemplify
their impact where appropriate, and provide an overview of the related work in the
respective areas.

Maintenance Processing Strategy

There are three basic strategies for maintaining views (also non-incrementally).
Once an update to the base relations occurs the following strategies are possible:

Immediate Updates are propagated instantly to all affected views. The drawback
of the strategy is that a single update involves an unknown quantity of
computation, i.e., depending on the number and complexity of affected
views, the processing of the update can be costly. However, this strategy
yields a minimal response time for accessing the results of the update in the
maintained views.

Deferred Updates are not propagated but rather cached and the update is applied
lazily once the view is retrieved the next time. This strategy moves the com-
putational overhead for view maintenance away from the update and instead
incurs the overhead during query answering. In addition data structures for
caching the updates are needed, hence more space is consumed.

32 2 Background



Periodic Updates are propagated at pre-defined intervals or during periods of low
system activity. In contrast to the above two strategies, periodic updates
loosen the consistency guarantees, i.e., at a given point in time the view may
not be consistent with the actual values that were stored in the database,
hence such views are also referred to as snapshots.

The majority of the literature on view maintenance considers the immediate
strategy (cf., [GM99a]). Deferred view maintenance was for example studied by
[CGL+96] in a relational setting and by [AE99] for object oriented databases. A
performance analysis of immediate vs. deferred update strategies in a persistent
relational database is given by Hanson et al. [Han87]. They find that the choice for
the best update strategy is highly application dependent. In particular the choice
depends on the following parameters: (i) the ratio between data update and data
retrieval operations, (ii) the selectivity of the predicates defining the view, (iii) the
number of tuples written by each update (iv) the fraction of the data read (from
hard-disk) during retrieval and (v) the cost of maintaining the sets of inserted and
deleted tuples. They also show that for some views the performance of immediate
and deferred maintenance are the same, i.e., the advantages and disadvantages of
each strategy cancel each other.

The main advantage of deferred view maintenance is that fewer disk accesses to
the stored copy of a view must be performed than during immediate view mainte-
nance (pertaining to parameters (iv) and (v)). Hence, for main-memory database
we can safely assume that immediate maintenance performs better (overall), since
the main advantage of deferred view maintenance is not applicable

Periodic updates were proposed by [AL80] and provide an optimization for the
performance of large distributed databases. In this scenario the advantage is that
the large updates can be applied during periods of low system activity.

Expressiveness of View Definition

The efficiency of the view maintenance approaches is largely determined by the
database operators that need to be maintained. Hence, a database language that
provides more sophisticated constructs, e.g., aggregation, allows the definition of
views which are not as efficiently maintainable as other – more basic – constructs,
e.g., selections. Intuitively, a richer view definition language requires specialized
treatment of the richer semantics. The basis of relational algebra consists of select-
project-join views (SPJ2) over set-valued relations. These views were studied by

2 select-project-join queries are often referred to as conjunctive queries in literature
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the earliest works on view maintenance [Pai82, SI84, BLT86, QW91] and SPJ views
are supported by all successive techniques. The following extensions – loosely
ordered from least to most expressive – have received special attention w.r.t. the
incrementalization of their results.

Duplicates Most practical database systems are based on bag- (multiset-) valued
relations. Hence, a treatment of duplicate values was introduced in [GMS93]
for deductive databases and in [GL95] for relational algebra. In general,
subsequent approaches are based on duplicate semantics. The results are
also necessary for correct treatment of advanced operators, e.g., aggregations.
For example, if the database for lecturers computes the average age – an
aggregation – then the result in a set-valued relation would be wrong when
at least two lecturers have the same age.

Set Difference/Negation Set difference operators are the algebraic prerequisite to
formulating negations; as found in deductive databases. For example, con-
sider a query that retrieves all lecturers that do not have tenure (from the
example relations shown in the previous section). Informally, the query re-
trieves all lecturers and subtracts the (multi-)set of lecturers that do have
tenure (cf. Sec. 3.3.5 for a formal treatment). The incremental mainte-
nance of stratified negation for deductive databases was treated in [GMR95].
Stratified negation in essence states that negations may not be used inside
recursions. A more formal definition of stratified negation can be found in
[CGT89]. The algebraic treatment for relational algebra with duplicates was
provided in [GL95].

Aggregation is typically used in data warehousing to build summary views, i.e.,
key performance indicators over the underlying data, such as average number
of sales per marketed product. One example for an aggregation – over a
single attribute – is the average age of lecturers in a university administration
database. Aggregations in general can perform a grouping of the data, e.g.,
average age of lecturers grouped by the starting initial of the last name.
In addition data warehouses typically consider aggregations across many
dimensions (attributes) [AAD+96]. The application of a single aggregate
operator (without grouping) was treated in [GL95]. The work was extended
by [QGMW96], who formulated a general incremental maintenance involving
aggregation. The work in [PSCP02] treats the incremental computation
of non-distributive aggregation operators, i.e., operators that can not be
efficiently maintained due to their non-locality, e.g., MIN, MAX require access
to the underlying dataset if the old minimum/maximum is deleted from the
view.
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Transitive Closure/Linear Recursion Traditionally, the relational algebra does not
include any means for recursive queries. The transitive closure operator
provides a limited form of recursion termed linear recursion (cf. [JAN87], for
a good explanation of the relationship between transitive closure and linear
recursion).

A linear recursive program is best exemplified in deductive databases. A
program is called linear recursive if the logical implication for a literal is
expressed recursively with only one occurrence of the implied literal in the
antecedent. For example the following query denotes a path in a directed
graph. A path exists if there is a direct edge between the vertices (rule
2.3.1.1) or if there exists an edge that connects to a known path (rule 2.3.1.2).
The query is linear recursive, since the path literal is used only once in the
antecedent of rule 2.3.1.2.

path(X , Y ) :- edge(X , Y ). (2.3.1.1)

path(X , Z) :- edge(X , Y ), path(Y, Z). (2.3.1.2)

Although the transitive closure is a simple and well-understood operation,
the efficient maintenance is impeded by the large number of tuples and high
interconnectivity that cause unacceptable runtime and storage requirements.
Hence, efficient treatments of the view maintenance problem have focused
on providing optimal solutions for two important sub-problems of the general
transitive closure that consider (i) only acyclic graphs and (ii) restricted
queries, e.g., the above path query.

In [DT92] an algorithm is presented that derives non-recursive datalog pro-
grams to update right-linear-chain views over acyclic graphs. A right-linear-
chain imposes a special restriction that requires the recursive call to be on
the rightmost side of the rule and the variables to be ordered in a chain such
that the rule has the form:

q(X , Z) :- q1(X , Y1); q2(Y1, Y2), . . . , qk(Yk−1, Z)

The algorithm in [DT92] handles insertions of edges, while an extension
to deletions was given in [DS95], yet both only apply to right-linear-chain
views. Other views require additional materialized data for incrementaliza-
tion [DS00]. An example of a linear recursive view that is not a right-linear-
chain is the same generation query, i.e., are two siblings in a tree – or directed
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graph – at the same depth. The same generation query is exemplified by
the rules below (2.3.1.3, 2.3.1.4) as the predicate sg. Two nodes are in the
same generation if they have the same parent (rule 2.3.1.3), or if they have
two different parents who are in the same generation (rule 2.3.1.4). While
the rules can be brought into a chain order by providing parent and child
predicates, the rule 2.3.1.4 is not right linear and can not be transformed
such that both chain ordering and right linearity are enforced.

sg(X , Z) :- parent(X , Y ), child(Y, Z). (2.3.1.3)

sg(X , Z) :- parent(X , Y ), sg(Y, V ), child(V, Z). (2.3.1.4)

A general result on the maintainability of transitive closures is presented
in [DLW96], who find that it is not possible to derive a non-recursive pro-
gram for the maintenance of the transitive closure over an arbitrary graph
in response to deletions, i.e., deletions in arbitrary graphs always require an
intermediate storage for the incremental maintenance. Many algorithmic
maintenance strategies for the transitive closure have been proposed; [KZ08]
provides a good overview and comparison. The emphasis in these algorithms
was on almost linear update time. No considerations were made w.r.t. the
memory consumption – all algorithms require Ω(|Vertices|2) space. In [Jag90]
the authors proposed a compression strategy for maintaining the material-
ized view over the transitive closure that addressed the memory efficiency,
however, the compression strategy does not apply to the various structures
used to maintain the transitive closure in the various algorithmic strategies.

General Recursion is stronger than the transitive closure, since an arbitrary num-
ber of recursive predicate occurrences – and also mutual recursions – are
possible. For example, using general recursion a simple and very declarative
specification of transitivity is possible, as shown in the rule below.

p(X , Z) :- p(X , Y ), p(Y, Z).

General recursive queries are applied in ontologies – such as OWL – that have
symmetric and transitive properties. For example, Volz et. al [VSM05] extend
previously developed algorithms for maintenance of general recursive views
and apply this to ontology languages that are operationalized via deductive
databases.
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The efficient maintenance of general recursive views was studied first in
[Küc91, UO92, GMS93]. All three approaches are based on the principle of
deriving a set of delta rules, i.e., a transformed version of the original rules
used to efficiently compute only results that pertain to changes in the base
relations. An algorithmic approach that (re-)derives sets of changed tuples
on a relation-by-relation basis was presented in [HD92].

In general the above approaches assume that the results prior to a modifica-
tion are stored and available for the view maintenance. Upon modification
of the base relations the delta is used first to compute an overestimation of
tuples that need to be removed from the derived results. Then alternative
derivations for the new results are computed. A reverse approach is given
in [SJ96], where the view results are not required to be available during
the view maintenance process. Instead the approach exclusively uses the
underlying relations.

Information used During Maintenance

There are four basic structures that contain information which can be used during the
maintenance of relational views. Which information is required depends largely on
the expressivity of the language used to formulate the view, but also on algorithms
and properties of the underlying relations. Furthermore there are cases where
additional information can speed-up the maintenance process. Hence, a trade-off
between time and space consumption is to be made.

Deltas are the tuples that are inserted, deleted or modified in the base relations.
Maintenance of views that requires only information about deltas is very
efficient, since no storage is required.

Base relations refer to the underlying base relations prior to the update of the
database. Maintenance of views that require information about the base
relations is more costly than using only deltas. First the base relations contain
a large number of tuples, hence requiring much storage space. Second, some
maintenance algorithms require finding tuples with specific properties in the
base relations. Due to the fact that base relations are as a general rule larger
than deltas, finding such tuples is a time-consuming operation.

Materialized views refer to the multiset of tuples the view contained prior to the
update of the database. Using the materialized view incurs storage costs and
lookup cost incurred for finding tuples with specific properties, similar to the
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base relations. However, the materialized views are as a rule much smaller,
since not all elements in the base relations contribute to the result in the
materialized view.

Auxiliary views refer to intermediate results that are stored in addition to (or instead
of) the base relations and materialized views. For example, the base relations
of a join can be indexed and the index stored as an auxiliary view instead of
the base relations, which greatly speeds up the maintenance time.

The study of views that are maintainable using only the delta information has been
conducted under the terms autonomously computable [BCL89] or self-maintainable
views [GMR95, GM99a]. In addition [Huy96] presents a self-maintainability test for
rules in deductive databases. Key findings in relational algebra are that selections
and projections are always self-maintainable. Consider for example the selection of
lecturers – from the definition in Figure 2.1a – that are below the age of 40 years.
The respective view is defined below and filters the data in Lecturers based on the
condition in line 4.

1 CREATE VIEW YoungLecturers(Name, Age) AS
2 SELECT Name, Age

3 FROM Lecturers

4 WHERE Lecturers.Age < 40

The self maintainability of the view YoungLecturers stems from the fact that selections
are based on a local property of each tuple in the database. The selection condition
can be checked for each inserted or deleted tuple in the Lecturers relation and if a
tuple satisfies the condition it is added or removed from the view. Neither the base
relations nor the previously computed materialized view are required to deduce the
effect of the change.

Many of the more expressive language constructs are not self-maintainable and
either require the underlying base relation, the previously computed view results,
auxiliary data or a combination thereof. For example, a join between relations A
and B – in the most general form – always requires access to the underlying base
relations, since adding a or deleting a tuple (e.g., from A ) always requires checking
whether a corresponding tuple for the join condition exists in the joined relation
(e.g. B). Consider for example the join presented in Figure 2.2, between Lecturers
and Tenure. Here the addition/deletion of tuples to Lecturers requires to consult the
Tenure relation and finding corresponding tuples for the join. A language construct
that can be efficiently maintained using a combination of the base relation and the
materialized view is the transitive closure (over acyclic graphs). With the combined
data the view can efficiently be maintained in near linear time. It is interesting to
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note that the respective maintenance algorithm is non-recursive, even though the
operator provides a form of recursion (a respective algorithm using SQL statements
can be found in [PDR05]).

The use of auxiliary views is in some cases a necessity for an effective runtime
performance of the view maintenance. For example [PSCP02] use axillary automatic
summary tables3 to efficiently maintain non-distributive aggregate views. Other
views can also benefit from auxiliary views as shown in [QGMW96] and [VMK97]
were auxiliary views can effectively be used to minimize the number of tuples in
joins.

Provided Modification Operations

The modifications to the database can be performed using different operations that
manipulate the base relations. There are two different basic operations that can be
offered for view maintenance:

Insertions/Deletions are the basic operations for performing updates to the
database. The change to a view is maintained for a set of inserted or
deleted tuples. All approaches offer these basic operations. Differences
in performance can be eminent between insertions and deletions for some
language constructs, e.g., the transitive closure can be maintained more
efficiently for insertions than for deletions.

Updates can be supported as a first class concept or by modeling an update as a
deletion followed by an insertion. The main advantage of modeling updates
as an independent operation is the ability to reason over the attributes that
are modified. This enables the view maintenance to identify tuples that do
not contribute a change in the result of the current view. For illustration
consider the join of TenuredLecturers shown in Figure 2.2. If the Age attribute
of any lecturer is updated the results in TenuredLecturers do not change, since
the respective attribute is not part of the view.

Update operations can not always be propagated across all language con-
structs, i.e., some constructs treat an update and respond with a set of
deletions and insertions. The join operator is an example for such a language
construct; joins can not propagate updates that affect the joined attributes.
Consider again the TenuredLecturers view and an update to the Lecturers
relation that changes the staffId of the lecturer Marinescu, E. from 1 to 4. The

3 The term automatic summary table denotes an incrementally maintained (and materialized)
view in the IBM DB2 database
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corresponding change is a deletion of the entry (Marinescu, E., 09/01/2012)
from TenuredLecturers.

Updates are treated in related work for specific language constructs. In [GJSM96],
updates for SPJ views are discussed and the notion of attributes that contribute
to a view are formalized under the term exposed variables. The authors in [UO92]
consider update modifications to values in deductive databases. The authors in
[CW91] discuss the finding that updates do not propagate across join operators;
hence, they favor a general treatment of view maintenance as deletions followed by
insertions. The majority of related work falls into the category, that treats updates
in this fashion, e.g., [AE99, HBC02]4.

In [KR98] updates are discussed in the presence of managing “virtual classes”
(cf. Sec. 2.2.4) as materialized views for an OO database system. The treatment of
updates w.r.t. language constructs corresponds to the treatment in [GJSM96], i.e.,
updates to non-exposed variables are irrelevant to a view. In addition a complex
registration process is proposed that analyzes all views and registers them in the
database system if they need to be maintained due to an update of an objects
attribute.

Note, that the term update can lead to confusion, since the term is sometimes used
as synonym for a change operation, i.e., an insertion or deletion. For example the
work in [GGMS97] discusses updates in the latter sense. The authors treat a general
form of view updates as a merge operation in monoid homomorphisms5, yet their
updates correspond to the classical insertions and deletions. Consequently, through-
out this thesis the term modification is preferred to convey a change operation,
which can be an insertion, deletion or an update.

2.3.2 Incremental View Maintenance Techniques

Several approaches and techniques have been developed for the incremental main-
tenance of materialized views. The following sections provide an overview of the
proposed solutions. Counting algorithms, are among the first works to consider
incremental view maintenance. Algebraic query rewriting and logic query rewriting
can be considered as a generalization of the incremental maintenance problem

4 The authors in [AE99] provide a treatment for deferred view maintenance that tracks a list of
updated object, but the actual processing of updates in their algorithm treats updates as inserts
and deletes.

5 The findings in [GGMS97] coincide with the classical works in the fact that there exists a set of
language constructs that can not be maintained in the monoid homomorphisms without further
auxiliary views.
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for relational algebra and deductive databases. Active rules and memoing/tabling
incorporate (or extend) existing database technologies for incremental maintenance.
Finally, different optimizations techniques proposed in related works are discussed.

Counting Algorithms

The basic idea of this technique is to keep a multiplicity count, i.e., the number
of derivations for a tuple, as extra information. Upon insertion or deletion of a
tuple the counter is incremented or decremented accordingly and tuples are deleted
when their counter reaches zero. Similar variants were introduced by Shmueli et al.
[SI84], Blakeley et al. [BLT86] and Gupta et al. [GMS93].

Counting algorithms are frequently cited under this name in literature. Given
the above definition, the term seems to be a bit of a misnomer. Algorithmically
the incrementation or decrementation of a multiplicity counter is not the mainte-
nance technique. The actual maintenance is achieved by processing the underlying
computational model – relational operators or logic rules – in correct ways w.r.t.
modifications and by keeping a multiplicity counter. The latter is required for correct
treatments of specific operators (rules).

The technique was introduced to maintain SPJ views in a set algebra [SI84,
BLT86]. In this important subset of SQL, the multiplicity counters are necessary
for a correct treatment of multiple derivations for the projection operator. In
[SI84] specialized data structures are used to store multiple derivations. In [BLT86]
general relations are used to store tuples, which are enriched with the counter
information. In this approach an algorithm derives new SPJ expressions whose
evaluation determines tuples that must be inserted to (deleted from) the view.

In [GMS93] the technique is applied to a deductive database with duplicate
semantics. The multiplicity counter is derived from the multiplicity of the duplicate
semantics for the deductive database and stored similarly to [BLT86]. The algorithm
derives a set of delta predicates that use the old values of the base relations and
views to determine a set of tuples that must be inserted to (deleted from) the view.
The approach covers set union, stratified negation and aggregation.

Algebraic Query Rewriting

The idea is to define different change propagation expressions for insertions and
deletions from the base relations to the materialized view based on the original
view expression. Change propagation expressions are defined using the operators of
the relational algebra and can be simplified for insertions and deletions in different
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ways. The derived relational expressions compute the change to the view without
doing redundant computation.

The idea was first introduced in [Pai82] under the term finite differencing and was
used subsequently in [QW91] for view maintenance of SPJ views with set semantics.
Griffin et. al [GLT97] provide a correction to the minimality result of [QW91] and
extend the algebraic rewriting approach to a multiset algebra with aggregations and
multiset difference in [GL95]. In this latter work the authors also provide interesting
results pertaining to efficiency and show that for a very restricted class of views
(no projections, no Cartesian products), the incremental computation is always
more efficient. The algebraic approach was extended by [QGMW96] for views with
aggregations.

Logic Query Rewriting

This technique is used in deductive databases and is similar to algebraic query
rewriting in the sense that a new logic program, i.e., an extended set of logic rules,
is derived from the original logic program (rules). The main idea is the following.
Given a view definition as a (set of) rule(s) in a deductive database as defined
below (2.3.2.1), where a view p is defined based on relations (predicates) q1 to
qk. For brevity we omit a concrete variable binding, since the general idea can be
transcribed to predicates of any arity.

p :- q1, q2, . . . , qk (2.3.2.1)

A set of maintenance rules for the new database state (pnew) can be derived for
the insertions and deletions using three sets of delta rules, one for an overestimate
of deleted tuples (pdel), one for a reinsertion of tuples with alternative derivations
(pred) and one for general insertions (pins). The rule derivation follows a specific
schema that can in general be summarized as follows.

First the deletions are derived for each predicate qi by rewriting the query into a
rule (as in 2.3.2.2) where the old state of all qx is unified with the deletions of qi
(for all predicates x ̸= i). The deletions pdel stem from the union (i.e., disjunction)
over deletions from all qi (2.3.2.3). The new database state consists of all tuples
that are in p and have not been deleted by pdel (2.3.2.4).

pdel
i :- q1, q2, . . . , qdel

i , . . . , qk. (2.3.2.2)

pdel :- pdel
1 ; pdel

2 ; . . . ; pdel
k . (2.3.2.3)

pnew :- p,¬pdel . (2.3.2.4)
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Second the re-derived tuples are all that have been deleted by pdel but can be
inferred through the new database states of the underlying predicates, i.e., qnew

i
(2.3.2.5). The new state of p includes all re-derived tuples (2.3.2.6).

pred :- pdel , qnew
1 , qnew

2 , . . . , qnew
k . (2.3.2.5)

pnew :- pred . (2.3.2.6)

Third insertions are treated in a similar manner as deletions by providing a rule
for insertion to each underlying predicate pins

i (2.3.2.7). The difference is that
insertions are based on the new database state qnew

x for all predicates x ̸= i that
the rule qins

i must unify with. Like deletions the set of all insertions pins stems from
the union of all insertions from all qi (2.3.2.8). Finally the new state includes all
insertion to the database (2.3.2.9).

pins
i :- qnew

1 , qnew
2 , . . . , qins

i , . . . , qnew
k . (2.3.2.7)

pins :- pins
1 ; pins

2 ; . . . ; pins
k . (2.3.2.8)

pnew :- pins. (2.3.2.9)

The general idea was presented in [GMS93] as the DRed (Delete and Rederive)
algorithm for stratified logic programs that can also use aggregations. Note, that
the counting algorithm is presented in the same paper and can be seen as a special
case of the DRed algorithm used for non-recursive views. A similar idea as the DRed
algorithm was presented by [Küc91] for stratified recursive programs. However, the
work was criticized for not generating safe rules [GJSM96] and not treating some
special cases, such as duplicate rederivations, as efficiently as DRed.

In [UO92] the authors present a technique that rewrites queries with an explicit
support for an update operation (rather than only modeling insertions and dele-
tions). To enable efficient modeling of updates the concept of database keys was
introduced for logic predicates, and updates are only allowed on non-key arguments
of predicates. A key is modeled as a constraint that disallows arguments between
two tuples to share the same value. For example, as shown in (2.3.2.10) ke y p(K) is
the key constraint on p, where the first argument K is the key and hence no two
tuples may be stored using the same key. The program is translated into a new set
of rules that use existentially quantified subexpressions on the keys.

ke y p(K) :- p(K , X ), p(K , Y ), X ̸= Y. (2.3.2.10)
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From the maintenance rules summarized above it is easy to see that the general
idea relies on the availability of the old database state of the view p (i.e., rule
2.3.2.4). A modified version of the algorithm was given in [SJ96]. Their approach
alleviates the reliance on the old state of the view and focuses only on the availability
of the base relations.

Active Rules

Ceri and Widom [CW91] study views from the practical perspective of extending an
existing active database system with rules to support incremental view maintenance.
The rules define respective SQL statements as actions that manipulate the view
by inserting or deleting appropriate tuples. Hence, when a rule is triggered the
according update to the view is performed by the database. Active rules for the
insertions and deletions of tuples to the base relations are determined by a respective
algorithm. The authors consider nested sub-queries with positive and negative
existential quantification, as well as set union and difference operators. They define
efficient incremental maintenance rules for views if key information about base
relations is present. If no key information is present the views are re-computed in
their entirety.

Memoing/Tabling

The original idea behind memoing stems from a shortcoming in logic programming
languages that use the SLD6 resolution mechanism. SLD resolution basically imple-
ments a backtracking search through all rules that make up a logic program. This
backtracking can be understood as evaluating the logic rules as procedure calls,
with extension for the logic language, i.e., a rule can have multiple body definitions
for the same head and parameters in the head may be variables that are unified
in the body. Hence, speaking procedurally, this extension makes logic languages
nondeterministic. Due to recursion, the procedure calls can easily enter infinite
loops, even for simple – and meaningful – programs. Memoing is a technique
that guarantees termination by storing intermediate results for already computed
procedure calls, i.e., if the same call is made later in the computation the procedure
is not re-executed but rather the stored result is used [War92, SSW94]. The term
tabling is commonly used for the memoing technique in logic languages, as the
already computed results are stored and retrieved from a result table. Tabling also

6 SLD resolution is termed after the initial letters in “Linear resolution with Selection function for
Definite programs”; cf. [Lif96] for a treatment of the SLD calculus
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serves as an optimization technique that overcomes the fact that the SLD resolution
technique may perform several calls repeatedly during backtracking.

The original tabling solution was not incrementally maintained and tables were
effectively completely deleted in the presence of modifications. With tabling becom-
ing an established feature of deductive databases, it was naturally extended with
incremental view maintenance techniques. Note, that earlier works on view main-
tenance such as [Küc91, GMS93] maintain a storage similar to tabling, but were
either not implemented or were custom extensions to existing implementations.

In [SR03] the authors present an adaptation of the DRed algorithm of [GMS93]
that maintains tabled views. The approach uses a deferred maintenance strategy
and is only applicable to a single view. The latter restriction is due to the fact that
accessing the view refreshes the tables of all required predicates, but since the whole
approach is a top-down deferred evaluation, the refresh is not propagated in any
way to other views that depend on these predicates. Furthermore the approach has
O(n3) space complexity if one assumes a program that effectively computes a graph
reachability problem; where n is the number of vertices in the graph. The additional
space – reconsider O(n2) is required for transitive closure – is due to the fact that a
vector of supporting facts is stored for each derived fact.

Optimization Techniques

Several optimization techniques have been proposed to in the context of materialized
view maintenance. The first two techniques are optimizations to (i) speed up
evaluation and (ii) decrease (disk/main) memory for incremental maintenance. The
last two techniques are concerned with providing optimal solutions in the presence
of redefinitions of views or multiple independently defined views.

Identifying irrelevant modifications
The key idea is to provide tests that determine whether a particular modification

affects a given view, i.e., if the modification is relevant. If the test is negative, i.e., the
modification is irrelevant, no maintenance operations are necessary. However this
only pertains to particular modifications and if the test fails another maintenance
technique must be applied to maintain the view. In [BLT86, BCL89] a proposal
is made to test SPJ views in relational algebra, which basically normalize the
view definition and test the satisfiability of selection conditions. The approach
was extended for logic programming languages in [Elk90], which also considers
integrity constraints and simple recursive rules. In [LS93] the approach was further
generalized and reduced to the equivalence problem for datalog programs. The
approaches were adapted by [ABM09] for active XML documents.
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Testing the satisfiability of predicates and the equivalence between queries is in
general undecidable. The identification of irrelevant updates is thus only useful
for simple cases that can be decided quickly. In general the test must be less
expensive than determining – via some view maintenance technique – that the set
of changes to the view is indeed empty. The main advantage comes into play when
the modification is phrased as a simple query over a (potentially) large dataset.
Consider for example the YoungLecturers view given in Sec. 2.3.1, where all lecturers
have an age under 40. A database operation that is phrased as a query, which
deletes all lecturers over 40, can easily be checked to have no relevance for the view
YoungLecturers and is more efficient – for large datasets – than testing all deleted
tuples for their relevancy w.r.t. YoungLecturers. However, a general decision when
the test is advantageous is not discussed in the above approaches.

Efficient storage
To minimize the memory requirements of the incremental view maintenance

for relational databases with persistence, the authors of [Rou91] propose a data
structure termed view caches. The idea is to store only pointers to tuples in the
underlying relations that contribute to a view, instead of storing the concrete values
of the tuples in the view. The work was performed in a traditional stored database
context and hence is mainly concerned with an optimal I/O criterion that the same
buffer page of the underlying relation(s) is read only a minimum number of times.
To combat the space complexity of incrementally tabled logic programs that use
supporting facts the authors of [SR05b] propose a compression scheme that relies
on sharing the supports. Actual savings vary for the defined views and input data,
but can be considered close to tabling the results without supports.

Adapting views after Redefinitions
The main idea for this optimization is to maximize the reuse of results and

auxiliary data in the case when the definition of a view is redefined with slight
changes. The basic technique is discussed for relation algebra in [GMR95, MD96].
They discuss adaptations for different classes of changes, e.g., in the selection
conditions or in joins, and show which additional information must be kept in order
to react to redefinitions of views.

The authors of [VSM05] discuss changing rules for an incrementally maintained
ontology language that is encoded in a logic database. Changes to the ontology
change the rules of the logic program, i.e., the previously defined views. In [GIT11]
the authors generalize the adaptations to a larger set of logic programs and relational
algebra expressions. In particular they provide a framework for reasoning about
queries with negation (or set difference).
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Optimizing queries using maintained views
This query optimization takes materialized views into account and was proposed

to speed up query processing time for arbitrary queries and not only the queries of
the incrementally maintained views. The technique finds alternative formulations of
queries – specified by the user without referring to a view – that incorporate already
existing views maintained by the database system. As an optimization technique
the approach also has a merit for the definition of materialized views, when views
are defined via general queries that are partially maintained by other views. In this
case, alternative formulations using existing views can help to reduce redundant
maintenance work.

In [CKPS95] the authors present an extension to traditional query optimizations
that takes information about maintained views into account. A similar discussion is
provided for deductive databases in [LMS95]. The authors extend previous works
by also considering the minimality, i.e., size of the expressions, and completeness,
i.e., usage of only views and built-in predicates, of the alternative formulations.
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3 Language-Integrated Database with Incremental View Maintenance

In this chapter the integration of incremental view maintenance into a host pro-
gramming language is discussed. The incentive for the language integration is
twofold. First, to provide a query (i.e., computation) capability that allows the
use of relational operators found in databases for the sake of automated incremen-
talization. Second, to materialize in memory (i.e., store permanently) only the
necessary amount of data that is required for the incremental maintenance. As
shown in the previous chapter, incremental view maintenance has a long history of
studies in the fields of relational and deductive databases. In particular, there exists
a good understanding of how the different relational operators can maintain their
results incrementally. From these insights we can deduce the minimal amount of
materialized data.

It is instructional to understand the language integration as a combination of the
following five points:

Base relations (or extents) represent a (multi-)set of objects – in the sense of objects
provided by the host language – that can be queried. Extents are similar to
tables in databases, or collections in programming languages. Yet, extents are
only a logical representation of the contained data and never actually store
the data.

Incrementally-maintained relational operators are provided for maintaining the re-
sults of complex queries over the extents. The operators store a necessary
minimum of data to perform incremental maintenance, but not more.

An SQL-inspired embedded domain specific language is provided to specify queries,
which are then compiled to a tree of relational operators. The language is
comparable to those found in OO databases (cf. Sec. 2.2.4).

Incrementally-maintained views can simply be defined by storing the compiled
query in a variable in the host language. This means that the OO exten-
sion mechanisms, e.g., subclassing, can be reused to make the definition of
views more modular. For example, we can define an interface for views of spe-
cific types and give different implementations based on particular application
scenarios. Note that a type termed Relation is the common supertype for all
operators (i.e., compiled queries) and extents. Thus clients are not required
to differentiate between compiled queries and extents, but can interchange
them freely.
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Events are responsible for performing the incremental maintenance. Maintenance
starts by triggering events for the addition/removal/update of objects in the
base relations. The incremental changes are then propagated through the
operator tree and respective modification events are received by the view.
Clients can use views as materialized views, i.e., their data is retained in
memory and can be traversed similar to a list, or they can use a view without
materialization and subscribe to the event system of the incrementalization to
receive events whenever modifications to the results of the view are imminent.

All the above concepts are provided in the language Scala, which provides a very
good integration for building embedded domain specific languages (EDSLs).

For illustration consider the example depicted in Figure 3.1. The example uses
plain Scala (together with the proposed EDSL) and can be be compiled and run such
as it is presented. A base relation over objects of type Student is declared in line
1 and bound to the variable students; the concrete instance is of the type Extent

(line 2). A view of specific students is declared in line 4; the view is declared as
materialized via the type MaterializedRelation. The respective query in line 5
defines which objects are selected as results of the view. The query selects entire
student objects – denoted by (*) – from the base relation students that satisfy
the condition of having a first name equal to Sally. The incrementalization is
now performed automatically and the results are available via the variable view.
Incremental modifications are made to the base relation in lines 8 and 10, where
two new Student objects are added. After these modifications the execution of the
line 12 prints the string Sally. Note that the foreach basically takes a first-class
function and applies it to all elements in the collection; foreach is a standard Scala
method for collections, which is also supplied for materialized relations.

The presented approach uses ideas from the traditional view maintenance tech-
niques discussed in Sec. 2.3 to enable the incremental update exemplified above.
The notable difference is that incremental view maintenance in databases is typically
taken for materialized views, while the focus of this thesis is to perform as little
materialization as possible. More precisely, materialized views in databases are seen
as caches where the base relation and the views are materialized, whereas the data
in the computation is transient. In contrast, we wish to keep only the necessary
minimum of data required for the computation and treat the base relations and the
views as transient data. For example, in Figure 3.1 we do wish to materialize the set
of all students and the set of all students that are named “Sally”, but merely generate
events if students named “Sally” are added or removed from the database. Note that
the use of a materialized view in the example was made for illustrational purposes.
Typically, the results of the views are only generated as events and interested clients
can for example display them in a graphical user interface.
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1 val students: Relation[Students] =

2 new Extent[Student]()

3

4 val view: MaterializedRelation[Student] =

5 SELECT (*) FROM students WHERE (_.firstName == "Sally")

6

7 val sally = new Student("Sally", "Fields")

8 students.add(sally)

9 val george = new Student("George", "Tailor")

10 students.add(george)

11

12 view.foreach(s => println(s.firstName))

13 // prints: "Sally"

Figure 3.1: Example of an incrementally maintained materialized view

Throughout this work the language Scala is used as the host programming
language. Hence, all examples discussed in the following are expressed in the
notation of Scala. The EDSL for writing queries in Scala provides complete type
safety. As a simple example, type safety guarantees that the objects returned as
results of the query in line 5 are of the type Student. As a more elaborate example,
type safety guarantees that the conditions in the query are compatible with the
objects found in the queried relation. In the above example the given condition
must be phrased as a function that takes a parameter1 contra-variant to the type
Student (the type of the objects in the queried relation students).

Note that the notation of Scala is used in various discussions on typing issues.
In this respect Scala reflects the notation of type annotations found in textbooks
on type theory [Pie02]. In summary, the form e : T is used to denote that the
expression e has the type T . Subtyping is expressed via the form T <: S denoting
that T is a subtype of S. Parameterized types are denoted via square brackets, e.g.
R[T] denotes that R is parameterized by type T .

The remainder of this chapter is organized as follows: In Section 3.1 the data
definition, i.e., the layout of objects that can be queried via relations, is discussed
w.r.t. the integration into the host programming language. Section 3.2 discusses
the event system used for the manipulation of data. Section 3.3 introduces pro-
vided relational operators and discusses their semantics in the relational sense.

1 In the concrete example an anonymous function is used that can be translated to a function
taking a Student object as parameter
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The incremental maintenance of the supported operators is discussed in section 3.4.
Section 3.5 discusses the optimality of the incremental maintenance in terms of
memory and runtime. Finally, we discuss further related works on incremental main-
tenance in section 3.6 The SQL inspired query language used to define automatically
incrementalized views is discussed in the next chapter.

3.1 Data Definition

Object-oriented database management systems typically provide their own languages
for data definition. In this thesis the database is directly integrated into an object-
oriented programming language. Hence, no external data definition language is
required. Instead, the definition of database objects is given directly as types in
the language. Thus, objects stored in the database retain the safety of a strongly-
typed host language. Database objects can be defined using the whole range of
mechanisms provided by the host language, i.e., as classes, traits, object types or
even structural types. The approach as a whole is not tied to a single programming
language (i.e., Scala) and can in fact be conceived as being parameterized by the
language. In the following paragraphs we discuss how data can be defined and how
different database concepts are realized within the host language.

1 class Student(val firstName: String,

2 val lastName: String,

3 val grades: List[Int])

4 {

5 def gradeAverage: Float = {

6 grades.reduce(_ + _) / grades.length

7 }

8 }

9

10 class Course(val title: String)

11

12 class Registration(val student: Student,

13 val course: Course)

Figure 3.2: Data definition for a student registration database

Figure 3.2 depicts a simple database schema for a registration system that records
students and the courses they are registered for. The data in this database is declared
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using Scala classes. A student (declared in lines 1-8) has three attributes, a first and
last name of type String and a list of her grade points of type Int. In addition a
student has a method to compute the average of the grades (line 5-7). A course
(line 10) has a title of type String. A registration (line 12-13) is a relation between
students and courses, which is encoded as a class holding respective objects.

3.1.1 Object Properties

Objects are used in queries (and views) via the accessible attributes and methods
that are defined for the types of the objects. In the following we denote all data
that can be accessed for a given type as object properties or in short properties. A
property can be a stored value, e.g., the name of a student (cf. Fig. 3.2), or it can be
computed via a method, e.g., the gradeAverage of a student. We assume that the
computation of the value has no side-effects. All properties are strongly typed due
to their definition in the host language. Hence, properties are guaranteed to return
values of the specified types.

We currently restrict properties to be immutable once an object resides in the
database, i.e., was logically added to an extent. Instead of having mutable state
an explicit event must be triggered to the extent holding the particular object,
to signify an update of the object’s values. This approach greatly simplifies the
incrementalization, since all operators can rely on the fact that all modifications
are received via a well-defined interface and results can not be invalidated due to
unexpected changes in the state of an object.

1 val susy = new Student("Susy", "Fields")

2 students.update(sally, susy)

3

4 view.foreach(s => println(s.firstName))

5 // prints: ""

Figure 3.3: Example of an incremental update to object properties

For illustration, consider Figure 3.3 that updates an object in the student extent
declared in Figure 3.1. The first name of the object sally is updated to "Susy"

by notifying the database of the update (line 2). Instead of a state mutation, the
updated value is passed as a new object (created in line 1). Hence, the view is
notified of the changed value and the corresponding entry for "Sally" is removed.
Changing the state of the object sally via mutable fields would invalidate the
results in the defined view.
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The treatment of properties as immutable is actually quite natural when com-
paring the approach with OO programming that uses collections such as hash sets
or hash maps. Defining object equality (or object hash codes) via mutable fields is
equally harmful as storing mutable objects in the database. In the case of collections
potential users of the collections can experience strange results. For example, storing
an object o in a hash set s and changing the state of o can yield a negative result for
the test s.contains(o). The book Effective Java [Blo08] provides a more detailed
discussion on the topic.

Whether state is required to be mutable is also greatly dependent on the underly-
ing scenario of how data changes. For example, immutable structures are sufficient
for static analyses on bytecode, which was the motivating use-case for this thesis.
The general workflow in this scenario is to read the bytecode that was generated by
a compiler. The bytecode is parsed into a new immutable object structure. Previous
versions of the bytecode (e.g., for a recompiled class) are also represented by an
object structure, however, the parsing process does not try to identify objects in the
previous versions and alter their state; this makes for a cleaner and more efficient
design of the parser. Hence immutable state is sufficient and updates from the
previous version to the next version are triggered as events on the database.

The incorporation of mutable object state is also a technical issue, which stems
from the fact that a mutable state must somehow notify the incremental view
maintenance of the changes. An explicit triggering of updates after mutating state
– by sending an event to the database – is feasible, but requires additional boiler
plate code. In essence an object’s state mutation must be monitored (at least for
objects participating in the incremental view maintenance) to trigger events to the
database. Such a monitoring is not easily introduced with the common language
semantics of most OO programming languages. Although languages based on
bytecode as an intermediate representation (e.g., Java, Scala, C#), can be subject to
instrumentation of the classes to introduce said monitoring and a respective trigger
[TSDNP02].

3.1.2 Database Instances

A database instance consists of several extents and/or views. Logically an extent
represents2 a (multi-)set of objects instances of a specific type. Note that multisets
allow duplicates of objects, which will be discussed in detail in Sec. 3.3. For example,
a database instance for the data in Figure 3.2 consists of three extents EStudents,
ECourses and ERegistrations for each of the types Student, Course and Registration.

2 As noted in the beginning of this chapter extents do not actually store objects.
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Extents can be queried similar to tables (relations) in traditional databases. Each
property of an object corresponds to a column in a table and each object instance
corresponds to a row.

For illustration, Figure 3.4 depicts a database instance with the data in the extents
treated as being materialized. For example the database contains two students
(Figure 3.4a) as rows and all properties are represented as a respective column, i.e.,
first and last names, grades – represented as a set of integers for the purpose of this
illustration – and a grade average. Especially the grade average is not actually stored
as an attribute in the object, but in terms of querying the data it can be accessed in
the same manner as stored values.

OID firstName lastName grades gradeAverage

o1 Sally Fields {1,3, 2} 2.0
o2 John Doe {4, 1,1,3} 2.25

(a) EStudents

OID title

o3 Introduction to Computer Science
o4 Data and Knowledge Engineering
o5 Introduction to Software Engineering

(b) ECourses

OID student course

o6 o1 o3
o7 o1 o4
o8 o2 o3
o9 o2 o5

(c) ERegist rat ions

Figure 3.4: Example of a database instance for the student registration database

Objects in a database instance can have references to other objects. For example
the Registration class is defined with a reference to a student and a course. Each
entry in the registration extent uses the object identifiers (OID) to reference the
respective student and course, i.e., the first row in 3.4c means that the student
named “Sally Fields” is taking the course “Introduction to Computer Science”. Note
that object identifiers are not actually stored or maintained in the database, but
simply denote the object reference in memory used by the underlying programming
language. The column OID is merely presented for illustration.

As noted in the beginning of this chapter, extents are simply accessible via vari-
ables of the host language. In a typical scenario users design a database with multiple
extents (and views). In our scenario with the three extents defined in Figure 3.4, a
database can simply be defined as single a class. For illustration, Figure 3.5 depicts
an exemplary database definition. Using classes for database definition allows a
very flexible design, since OO extension mechanisms, e.g., subclassing, can simply
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1 class StudentRegistrationDatabase

2 {

3 val students = new Extent[Student]

4 val courses = new Extent[Course]

5 val registration = new Extent[Registration]

6 val view1 = ...

7 }

Figure 3.5: Definition of a student registration database

be reused to extend a database definition, e.g., via additional views in the a subclass.
An instance of a database can then be obtained by instantiating the respective class.
For global accessibility, i.e., throughout an entire program, singleton instances can
be defined.

3.1.3 Object Identity and Object Equality

The proposed language integration treats object identifiers different from traditional
OO databases. Object identifiers are not explicitly managed by the language integra-
tion, since they arise naturally by allocating objects in memory, i.e., each object can
be uniquely identified by its address in memory and object references are pointers to
said addresses. In contrast an OO database is required to manage these identifiers
explicitly, since objects can either reside in memory or a persistent storage device
and in the latter case must be retrieved efficiently.

Potentially, the host programming language provides (limited) access to object
identifiers by providing an equality test that compares object references. For ex-
ample, the Scala construct “o1 eq o2” returns true only if o1 and o2 reference
the same object. However, for the purpose of memory efficient incrementaliza-
tion tests based on object identity are actually detrimental. In a treatment via
identity, the removal of an object would require that the exact same object be
identified in the extent and removed from it, hence this is not possible with-
out storing the object. For illustration consider the extent courses for objects
of type Course. The course with the title “Introduction to Computer Science” was
added at some prior point in time. Note that this knowledge is implicit in the
database client application, i.e., the value in Figure 3.4b is not actually stored. The
call courses.remove(new Course("Introduction to Computer Science")) re-
moves the respective entry, even though the passed parameter is in fact a new
(different) object.

56 3 Language-Integrated Database with Incremental View Maintenance



Treatment by equality can be seen as a consequence of achieving minimal memory
consumption for the incrementalization. Nevertheless, it is prudent to note the fact
that – as an approach – treatment by equality implies that the complete state3 of an
object can be reconstructed by the database client without the help of the database.
In the above example the complete title of the removed entry (“Introduction to
Computer Science”) was – somehow – known to the client. In the case of using the
database for static analyses the client has this knowledge, since the data is input and
modified from source code files (or compiled bytecode files). As a simple example, if
an analyzed class is removed, the data is simply re-read from the respective bytecode
file and removed from the database, prior to the final deletion of the file. Note
that updates require a slightly more complex treatment which will be discussed
in detail Section 5.5. The important thing to note is that the treatment by value
equality is very flexible and does not require the extents to retain all the data. The
concrete state can be stored on disk in a form dictated by the client application
(as for example in the case of static analyses) or the state might be retained in
memory by the client application in some other form, hence storing them in extents
is a duplication. If this is not the case there is still the additional possibility to
materialize the data. In summary, treatment by equality allows the design decision
of where data is stored to be made by clients.

3.1.4 Subtyping and Querying

The types in the database definition retain the subtyping mechanisms of the host
language, i.e., introduction of additional data/behavior via subclassing, mix-in com-
position and structural subtyping. For example, Figure 3.6 depicts two extensions
to the class Course. The subclass MasterCourse (lines 1-3) represents a course
taken by students during their masters studies. A MasterCourse can have a set of
prerequisite courses which students must have already taken. A LabProject (lines
5-7) represents a hands-on training course, which can accommodate only a limited
number of students per semester. Due to the subtyping rules of the host language
both extension can be used whenever the common supertype Course is expected.
Queries on this supertype can, for example, uniformly access the property title in
a database containing all three classes.

Whether the extended properties (prerequisites or studentLimit) are acces-
sible by a query depends on the type of the extent or view on which the query is
specified. All extents and views are strongly typed and are parameterized by the
type of the objects they contain. For typing purposes we can treat extents and views

3 Or at least the parts of the state relevant for equality
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1 class MasterCourse(val prerequisites: List[Course],

2 title: String)

3 extends Course(title)

4

5 class LabProject(val studentLimit: Int,

6 title: String)

7 extends Course(title)

Figure 3.6: Extension of the database definition via inheritance

uniformly as relations. The type of a relation is denoted by Relation [T], which
means that the relation contains objects of type T ; from the typing perspective a
relation is similar to a heterogeneous list. For example, the type of the extent ECourses
is Relation [Course]. The properties available to views over a relation are those of
the parameter type T . For example a view defined on the type Relation [Course], can
access the property title. If the relation contains objects of types MasterCourse or
LabProject, their additional properties are not accessible.

Given a relation of type Relation [T], access to particular subtypes T
′

of T can
be obtained as a view. The view must (i) filter the elements, i.e., all objects of
type T satisfying a predicate that they are instances of T

′
and (ii) downcast all

elements to the particular subtype T
′
. For illustration, Figure 3.7 depicts a view of

all MasterCourse objects obtained from the base relation courses.

1 val masterCourses: Relation[MasterCourse] =

2 SELECT ( (_:Course).asInstanceOf[MasterCourse] ) FROM

3 courses WHERE (_.isInstanceOf[MasterCourse])

Figure 3.7: Providing object instances of subtypes as a view

Vice versa, given a set of n relations of types Relation
�

T1
�

, ..., Relation
�

Tn
�

(where all T1 ... Tn are subtypes of T), a combined view as Relation[T] can be
defined as the union of all relations. Hence, a complete relation over all subtypes
or a set of relations for each subtype can be freely transformed into one another.
Thus, a database can be designed with both a combined extent for the supertype
and several distinct extents for the subtypes or only either of the two possibilities.
Favoring one design over the other does not limit users of the database, but may
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require the definition of respective views if only one possibility is accessible in the
predefined database design.

3.2 Data Manipulation

The data manipulation is designed with the intent of performing efficient mainte-
nance of views. Since some views can be maintained without knowing the base
extents from which they were derived, data manipulation is not as straightforward
as in traditional databases, especially when treating deletions.

Databases can express modifications via a data manipulation language, which is
for example part of the SQL specification. In SQL deletions of objects in a database
can be phrased as a query, such as the following:

DELETE * FROM students WHERE firstName = ’Sally’

The net effect of a query in a data manipulation language can be evaluated into a
delta of deleted objects from the underlying table, e.g., students. Such deltas are
the basis for incremental maintenance algorithms as presented in [BLT86, GJSM96].
Given an extent E and a set of modifications, a view maintenance algorithm uses
deltas (sets of objects) for additions (∆+E ) and deletions (∆−E ) that are known to
change the extent E as follows:

Enew ≡ (E −∆−E )∪∆
+
E

In this thesis the extents do not require explicit storage and concrete sets of
objects can not be derived for queries such as presented above. Consequently, the
data manipulation of extents is managed via explicit sets of objects and not by a data
manipulation language. Thus the approach makes no assumptions whether the data
is stored or only propagated to update views. According to this semantics methods
for data manipulation are introduced for the type Extent as depicted in Figure 3.8.
Extent defines methods that allow to manipulate single entries via add/remove or
update. Multiple modifications can be provided as sets of additions, deletions or
updates. The method modify is exemplified here (line 11), which allows to provide
modifications of all three types together. Note the type Iterable is a Scala type that
allows to iterate over an arbitrary collection. There are no restrictions on the data
contained in the modifications, i.e., objects can be added multiple times if necessary.

As an interesting side-observation one might think that databases computations
are based on sets of objects and, hence, the single valued manipulations are not
of great importance. However, from the point of view of runtime performance, a
treatment via single objects can be advantageous. The simple reason is that the
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1 trait Extent[V] extends Relation[V]

2 {

3 def add(v: V)

4

5 def remove(v: V)

6

7 def update(oldV: V, newV: V)

8

9 ...

10

11 def modify(additions: Iterable[V],

12 removals: Iterable[V],

13 updates: Iterable[V])

14 }

Figure 3.8: Excerpt of the Scala trait for base extents

aggregation of objects into collections also requires computation time, e.g., creation
of nodes in a linked list, or entries in a hash set. If this computation is performed
solely for the purpose of modifying the database, the runtime can decrease by factors
of 3 to 5.

3.3 Definition of Relational Operators Using Functions as Parameters

The underlying execution model for which results are incrementally maintained
is an adaptation of the relational algebra [Cod70]. The presented formalization is
a comprehensive reformulation of relational operators with a uniform treatment
using functions as operator parameters. The traditional relational algebra passes
column names instead of functions to the various operators. For example, to signify
the columns on which a join between two tables is performed.

The relational algebra consists of relations, which are sets of tuples, and relational
operators, which query the relations and produce new relations as a result. Since
all operators consume and produce relations they can be freely combined to form
powerful queries. In addition, new operators can be defined that immediately work
with the existing model. Hence, the relational algebra provides a very flexible
formalism for expressing queries that supports composability.

Naturally, precursor formalizations were given in different related works. The
effective relational algebra for using multisets in SPJ views and in set-theoretic
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operators was first presented by Dayal et al. [DGK82]. We also adopt the multiset
approach where a multiset is a relation that can contain one or more copies of
the same value, i.e., {a, b, b} is a multiset with three elements. Multisets are the
standard model for modern relational databases and SQL [ISO11]. Hence, queries
can be formulated and understood by an audience familiar with standard database
technologies.

In contrast to Dayal et al. [DGK82] we use freely definable functions, whereas
they use column names. The object-oriented approach requires additional operators
which were also provided by Shaw et al. [SZ90]. In addition, the typing rules are
different from those found in related works. For example in the treatment by Kuno
et al. [KR98], all operations produce new types (called virtual classes) as a result.
Thus, for example the union over several relations containing objects of different
types yields a new type that represents the union of said types. In our approach we
require all types (for extents or views) to be defined as part of the host language.
Using this approach type correctness can be proven for the defined views using the
type checker provided by the host language.

The relational algebra operators provided for automatic incrementalization are
described after a short discussion of the background on the formalization and the
used notation. The semantics of each operator is introduced in prose and by a formal
description using multisets. The operators are divided into four groups: (i) basic
operators (Sec. 3.3.2), used in traditional relational algebra; (ii) set theoretic opera-
tors (Sec. 3.3.3), e.g., union; (iii) advanced operators (Sec. 3.3.4), e.g., transitive
closure and recursion; (iv) derived operators (Sec. 3.3.5), which support common
(sub-)queries for existential quantification.

3.3.1 Notation and Background

Multisets are formalized as sets of pairs where each pair consists of the value and
an additional count for the occurrences of the value. Hence, {a, b, b} is written as
{〈a, 1〉 , 〈b, 2〉}. For simplicity in the below definitions we can assume that 〈t, 0〉 ∈ A
is true if there does not exist a pair 〈t, i〉 in the multiset A, i.e., if the element is
not in the multiset we obtain a count of 0. From an implementation perspective
elements with a count of zero are removed from multisets. As discussed in Sec. 3.2
data manipulation relies on object equality rather than object identity. Consequently,
the formalization regards two objects in a multiset as identical if the values of all
their properties are equal. Hence, inserting an object to a multiset will increase the
counter, if the multiset already contains an equal object. In practice this means that
classes must implement respective equals and hashcode methods. This requirement
is in the spirit of the underlying programming language, i.e., the same methods are
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required for correct treatment of objects in sets or hash tables and, thus, known to
developers from working with these collection types.

Properties of objects, predicates, and transformations are uniformly treated as
functions. For example, given an object o : T , then retrieving the property v : V
can be written as o.v which returns a value of type V . Retrieving the property
can be seen as a function from T to V which is denoted by the type T → V . For
example retrieving the title of a Course (as defined in Figure 3.2) is a function of
type Course→ String. Likewise a predicate on objects of type T is a function of the
type T → Boolean, that returns true for all objects satisfying the predicate. Finally
transformations of the objects processed by an operator to a different output are
treated as function T → O where T is the type of the input and O the type of the
output.

We use a lambda notation for concrete functions supplied to the various operators.
For example, λx .x is the function that takes a parameter x and returns the parameter
as a result, i.e., the identity function. The lambda functions are used without any
type annotations for the sake of readability. The concrete types of parameters of
a lambda function are always deducible by the respective relations on which the
functions are used. For example, the function λs. s.firstName = ‘Sally‘ is a lambda
function on students, which returns true if a students first name is “Sally”. The
function can for example be used in a filter on a relation over student objects.

Where appropriate the Scala notation for tuple types is used, i.e., a tuple of two
objects with types U and V is denoted by the type (U , V ). For readability by a
non-Scala audience we denote access to the components of a tuple by properties
first and second, i.e., if o : (U , V ) then o.first returns a value of type U and o.second
a value of type V . Tuples with more entries are treated accordingly, e.g., a tuple
with three values o : (U , V, W ) can access the third component as o.third.

All operators are defined on multisets and the respective type for their operands is
denoted by the type MultiSet[T], i.e., a multiset that ranges over objects of type T . A
set (denoted by Set[T]) is a specialization of a multiset, i.e., Set[T]<: MultiSet[T]
and thus all operators accepting multisets also accept sets. The differentiation
between sets and multisets is advantageous for query optimization. For example, a
(simple) optimization is that the operator for duplicate elimination (cf. Sec.3.3.2)
transforms a multiset into a set and can thus be omitted if the operand is a set.
Hence, we discuss which operators retain the set property of their operand.
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3.3.2 Basic Operators

Let A : MultiSet[T] and B : MultiSet[V ] be two multisets containing objects of types
T and V , respectively, then the basic operators of the relational algebra are defined
as follows:

Selection σθ (A) : MultiSet[T], where θ is a boolean predicate of the type T →
Boolean (i.e., the domain is T and the range is Boolean). The selection yields
all objects from A that satisfy θ . The selection preserves sets, i.e., if A : Set[T]
then σθ (A) : Set[T].

σθ (A) = {〈v , i〉 | 〈v , i〉 ∈ A∧ θ(v )}

Projection πρ(A) : MultiSet[S], where ρ : T → S is a function that transforms the
objects in A to objects of type S. Multiple tuples can be transformed to the
same result. Hence, the result may always be a multiset and the count of an
object in the result is equal to the sum of all objects that are projected onto
the same image.

πρ(A) = {〈v , k〉 |∃ 〈x , n〉 ∈ A∧ v = ρ(x)∧ k =
∑

〈a,i〉∈A∧
v=ρ(a)

i}

Cartesian product (A× B) : MultiSet[(T, V )] builds tuples of all combination of the
objects in A and B. The Cartesian product preserves sets if both input relations
are sets, i.e., if A : Set[T] and B : Set[V ] then A× B : Set[(T, V )].

A× B =
�


(u, v ), i ∗ j
�

| 〈u, i〉 ∈ A∧



v , j
�

∈ B
	

Join (A ◃▹ρ ϕ B) : MultiSet[(T, V )] builds tuples of all combinations of the objects
t ∈ A and v ∈ B, where the join condition ρ(t) = ϕ(v ) is true. The functions
ρ : T → J1 and ϕ : V → J2 can return values of any types J1, J2 under the
condition that an equality comparison operator is defined between J1 and J2.

The result of a join is equivalent to σθ (A× B), where the filter function θ
encodes the join condition.

The filter function takes a tuple procured by the Cartesian product – thus
filter has the type θ : ((T, V ))→ Boolean – and evaluates the functions ρ and
ϕ on the first and second component of the tuple. Hence, in the definition
below we assume that the components can be accessed as properties first
and second via the dot notation. The join operator preserves sets, as per the
definition of selection and Cartesian product.

A ◃▹ρ ϕ B = σλt. ρ(t.first)=ϕ(t.second)(A× B)
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Duplicate Elimination δ(A) : Set[T], transforms a multiset A into a set.

δ(A) = {v | 〈v , i〉 ∈ A}

Aggregation γρ,α(A) : Set[(G, AV )], where ρ : T → G is a function that transforms
the objects in A to objects of type G, and α : MultiSet[T]→ AV is an aggrega-
tion function over multisets that builds a single value of type AV . Informally
the aggregation forms groups of objects over the relation, where all elements
in the group are transformed to the same value under ρ. Hence, the set of all
groups is given by δ(πρ(A)). The final results of the operator are the tuples
containing the image of ρ and the aggregate value of the respective group.

Typical aggregation functions are COUNT, SUM, MIN, MAX, that work over
integers, but the operator works with any aggregation functions over any type.
In the case the of the typical integer aggregation functions, we provide default
implementations that are parameterized by an additional function T → Int,
e.g., MIN(λx x .age). The latter is similar to the treatment of aggregation
functions in SQL where the function is parameterized by the column names
over which the aggregation should be performed.

Note that the grouping function (ρ) can be considered optional, i.e., if no
grouping is present the entire aggregation function is applied to the entire
relation. Omission of the grouping function is semantically equivalent to
using a grouping function that returns the same value for all elements, e.g.,
λx . 0.

γρ,α(A) =
⋃

g∈δ(πρ(A))

¦

(g, a)|a = α(σλt. ρ(t)=g(A))
©

3.3.3 Set-Theoretic Operators

The algebra features set operators for union, intersection and difference, of multisets.
The standard set-theoretic semantics can be extended in two different ways for
multisets. The difference lies in the treatment of multiple occurrences of objects
that are identical in their properties, i.e., all properties in two objects yield the
same values. The first extension treats multiple occurrences of identical objects as
indistinguishable. The second extension treats all objects as differing, even though
they may be identical in their values. Both extensions have their utility.

The indistinguishable semantics is useful for formulating correct transformations
of boolean predicates in selections. Recall that in relational algebra the combination
of predicates using boolean operators is translated via the following formulas:
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σθ1∨θ2
= σθ1

∪σθ2
σθ1∧θ2

= σθ1
∩σθ2

σθ1∧¬θ2
= σθ1

−σθ2

These properties are carried over by the indistinguishable semantics of the set
operators, since these operators reduce to their usual semantics if the operands
are sets. Consider for example a query on the student registration database in
Figure 3.4a, that selects all students named “Sally” or all students with an average
grade below 3.0:

σλs. s.firstName=‘Sally‘ ∨ s.gradeAverage<3.0(EStudents)

Clearly this query should yield the first two rows in Figure 3.4a and each row
should be present only once in the result. However, the disjunction in the predi-
cate will yield true for both the first condition (firstName= ‘Sally‘) and the second
condition (gradeAverage < 3.0) for the row containing the student named “Sally”.
However, the union over two selections that evaluate the first and second condi-
tion separately must contain the row for “Sally” only once, i.e., both results are
indistinguishable.

In contrast the differing semantics is required for correct unions over projec-
tions. In the relational algebra a union of two projections (πρ(A)∪πρ(B)) can be
transformed using the following formula.

πρ(A)∪πρ(B) = πρ(A∪ B)

For illustration, consider A= EStudents (as in Figure 3.4a), and let B be the relation
as shown below in Figue 3.9, and ρ = λs. s.firstName. Then the result of πρ(A∪ B)

OID firstName lastName grades gradeAverage

o10 John Smith {3,4} 3.5

Figure 3.9: Additional student stored in relation B

should clearly be a the multiset {〈Sally, 1〉 , 〈John, 2〉}. However, in the union over
two projections, the indistinguishable semantics treats instances of the name “John”
as duplicate values and, hence, πρ(A)∪πρ(B) = {〈Sally, 1〉 , 〈John, 1〉}.

To remedy the above situation a separate operator (denoted A⊎ B) is defined for
union with the differing semantics. The differing semantics has the added benefit
of being cheaper to maintain in materialized views. Note that the operators for set
intersection and set difference reduce to trivial meanings under the assumption that
all elements are differing, i.e., A∩ B = ; and A− B = A; thus they require no special
treatment.
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Definitions
Let A : MultiSet[T] and B : MultiSet[V ] be two multisets containing objects of

types T and V then the set-theoretic operators of the relational algebra are defined
as follows:

Union (indistinguishable) (A∪B) : MultiSet[U], contains occurrences of objects that
are contained in A or in B or both. Duplicates for equal objects occurring in
both relations amount to the maximum of all duplicates in A and B. The type
U of the elements contained in the union must be a common supertype of
T and V , i.e., T <: U ∧ V <: U . The type must be provided as part of the
operator and object equality must be defined between elements of type T
and elements of type U (or between V and U). The indistinguishable union
yields a set if both operands are sets, i.e., if A : Set[T] and B : Set[V ] then
A∪ B : Set[U].

A∪ B =
�

〈v , k〉 |∃i∃ j. 〈v , i〉 ∈ A∧



v , j
�

∈ B ∧ k =max(i, j)∧ k ̸= 0
	

Union (differing) (A⊎ B) : MultiSet[U], contains all occurrences of all objects from
A and B. Duplicates for equal objects occurring in both relations amount to
the sum of all duplicates in A and B. The type U of the elements contained in
the union must be a common supertype of T and V , i.e., T <: U ∧ V <: U .
The type must be provided as part of the operator. A notion of object equality
is not necessary, since the differing union treats all objects as unique elements.
The differing union yields a multiset in general. A set is only returned if
both operands are non-overlapping sets, i.e., if A : Set[T] and B : Set[V ] and
A∩ B = ; then A⊎ B : Set[U].

A⊎ B =
�

〈v , k〉 |∃i∃ j. 〈v , i〉 ∈ A∧



v , j
�

∈ B ∧ k = i+ j ∧ k ̸= 0
	

Intersection (A ∩ B) : MultiSet[U], contains all objects that are both in A and
B. Duplicates for equal objects occurring in both relations amount to the
minimum of all duplicates in A or B. The type U of the elements contained in
the intersection must be a common supertype of T and V , i.e., T <: U ∧ V <:
U . The type must be provided as part of the operator and object equality
must be defined between elements of type T and elements of type U (or
between V and U). Otherwise the result is guaranteed to be the empty set,
since no combination of two objects from A and B can be considered equal.
The intersection yields a set if either operand is a set, i.e., if A : Set[T] or
B : Set[V ] then A∩ B : Set[U].

A∩ B =
�

〈v , k〉 |(v , i) ∈ A∧ (v , j) ∈ B ∧ k =min(i, j)∧ k ̸= 0
	

66 3 Language-Integrated Database with Incremental View Maintenance



Difference (A− B) : MultiSet[T], contains all objects that are in A and not in B.
Duplicates for tuples occurring in both relations amount to the difference of
all duplicates in A and B. The types T and V of the elements in the operands
must either be subtypes, i.e., T <: V (or V <: T), or they must have a
common supertype U and object equality must be defined between elements
of type T and elements of type U (or between V and U). Otherwise the result
is guaranteed to be the set A, since no combination of two objects from A and
B can be considered equal. The difference yields a set if the first operands is
a set, i.e., if A : Set[T] then A∩ B : Set[T].

A− B =
�

〈v , k〉 | 〈v , i〉 ∈ A,



v , j
�

∈ B ∧ k =max(i− j, 0)∧ k ̸= 0
	

3.3.4 Advanced Operators

The operators (UnNest and Nest) deal with objects that contain collections as part of
their definition4, e.g., the grades attribute of the type Student as depicted in 3.2.
Such objects can occur frequently in an OO design, when the data contained in the
collection is deemed a logical constituent of the enclosing object. In the example in
Figure 3.4 we modeled the data for a student’s grades as a nested collection that
naturally belongs to a student. In first-normal-form the student grades would be
unnested as a “flat” relation. Figure 3.10 exemplifies the flattened relation of all
student grades. We omit object identifiers for each entry for brevity.

student grade

o1 1
o1 3
o1 2
o2 4
o2 1
o2 1
o2 3

Figure 3.10: Example of an extent (EGrades) with unnested student grades

Each representation (nested or unnested) offers a concise form of querying for
a certain scenario. The nested representation is more concise for queries that

4 A situation also found in relational database that are in “non first-normal-form” [JS82]
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involve only the values in a collection belonging to one object. The unnested
representation is more concise for queries that involve the values of all collections in
all objects. Hence, the Nest and UnNest operators can transform a flat representation
of database tuples into a collection that belongs to an object (Nest) and vice versa
(UnNest).

For illustration consider our running example of students and their grades. The
unnested relation EGrades works well with relational algebra operators that reason
over all grades for all students. Consider for example the following query:

Find the minimal grade given to any student

In the relational algebra the query can easily be formulated as an aggregation using
the MIN function over the unnested relation:

γMIN(λx x .grade)(EGrades)

The query is not as concise if we only have the nested relation available, i.e. without
support for for unnesting. In this case the nested relation must be queried by
building the minimum of the grades for each student and then a minimum over the
resulting values:

γMIN(πλs MIN(s.grades)(EStudents))

In contrast, the nested relation works well for queries that reason over the grades of
a single student. Consider for example the following query:

Find all students that have at least one grade equal
to 1 and one grade equal to 4.

Given that the collections support appropriate abstractions, we can phrase the query
such that the set 1, 4 is a subset of a student’s grades as follows:

σλs Set(1,4).subset(s.grades)(EStudents)

The unnested relation requires a join to state the same query, since we can only
reason over one grade at a time. Thus we have to find two entries, i.e., one for
the grade 1 and one for the grade 4, and join them to see that they belong to the
same student. The following operators briefly exemplify the join (the concrete join
conditions are omitted):

σλs s.grade=1(EGrades) ◃▹ σλs s.grade=4(EGrades)
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In summary, the Nest and UnNest operators can transform the database represen-
tation to allow more concise queries. In practice, we were mostly interested in the
unnest operator, since it was more common that a query was better expressible in
the unnested relation, while queries where the nested relation has an advantage –
as exemplified above – were rare.

The transitive closure operator provides a limited form of recursion. Consider for
example the class MasterCourse – as defined in Figure 3.6 – that has a prerequisite
course. Since the prerequisite can also be a master course a transitive chain of
prerequisite courses can exist. Queries using the basic and set-theoretic operators
defined in the previous sections can only express selections on the direct prerequisite
course; retrieved via the prerequisites property of the MasterCourse. A transitive
closure operator can find all direct and transitively reachable prerequisites.

Recursion allows the results of an operator that depends on values from A to be
used as new inputs for A. As noted in Chapter 2 the transitive closure also provides a
limited form of recursion. Hence, it is important to differentiate these two concepts a
little further. The transitive closure allows a recursive traversal over a graph formed
by the objects contained in a relation. However, the underlying assumption is that
all objects that form the graph are present as values in the relation. This allows to
express a large category of recursive functions. Yet, it can not express functions that
recursively depend on values computed as part of the recursion.

For illustration, consider the function rec in Figure 3.11. The function defines a

1 def rec(in: List[Data], fix: List[Data]): List[Data] = {

2 val next = new Data(transform(in.head))

3 if(!fix.contains(next))
4 rec(next :: in, next :: fix)

5 else if(in != Nil)

6 rec(in.rest, fix)

7 else
8 fix

9 }

Figure 3.11: Example for a fixpoint recursion

fixpoint recursion, where the initial input data is passed as a list in and the fixpoint
is also passed as a parameter fix (line 1); typically with the value Nil when the
recursion is started. In each step, a new value is computed as a transformation from
the first element in the list (line 2). If the new value is not contained in the fixpoint
(line 3) it is passed into the recursion as new input data (line 4). Otherwise, the
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rest of the input is processed (line 6) until no more elements are left in the input
(line 8). The transitive closure cannot express a recursive addition of computed
values, e.g., a call as found line 4. However, the important thing to note here is
that the transitive closure can be seen as a special case of recursion, i.e., a recursive
traversal over a set of edges, and can be maintained more efficiently in terms of the
runtime of incremental updates.

Definitions
Let A : MultiSet[T] be a multiset containing objects of types T then the set

extended operators of the relational algebra are defined as follows:

Nest νρ,ϕ(A) : Set[(S, MultiSet[V ])], where ρ : T → S is a function that transforms
the objects in A to objects of type S and ϕ : T → V is a function that
transforms the objects in A to objects of type V . Informally the nesting groups
objects in the relation, where all elements in the group are transformed to
the same value under ρ. For each group a multiset of objects – containing
elements transformed using the function ϕ – is returned, that contains the
nested values.

The operator can be reduced to a special form of aggregation (cf. Sec. 3.3.2).
This is due to our broad treatment of aggregation, i.e., we consider arbitrary
aggregation functions and not only aggregations over integers such as COUNT,
AVERAGE, etc. The aggregation function α takes as input the multiset of the
group and transforms the values using ϕ. Hence, the aggregation function
is an application of the function map in the usual functional programming
sense [Pie02].

Note that we give a definition of the nesting operator where the returned
values can be transformed – via map – to construct new objects. These objects
contain the nested values, e.g., as a property. The same effect could be
achieved by defining a projection on top of a simple operator, i.e., storing
the original objects in a collection and applying the map function in the
projection. However, since all objects are processed by the operator in any
case, the given definition is more efficient.

νρ,ϕ(A) = γρ,λG. map(G,ϕ)(A)

UnNest µρ(A) : MultiSet[(T, V )] , where ρ : T → MultiSet[V ] is a function that
transforms the objects in A to multisets containing objects of type V . The
unnesting takes all values contained in the multiset returned by ρ and com-
bines them with the respective object of A, which contained the multiset. The
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operator returns a set if A is a set and for all t ∈ A the function ρ returns a
set.

µρ(A) =
�

〈(t, v ), i ∗ k〉 | 〈t, i〉 ∈ A∧ S = ρ(t)∧ 〈v , k〉 ∈ S
	

Transitive Closure TCρ,ϕ(A) : Set[(S, U)], where the objects in A represent edges
and ρ : T → S and ϕ : T → U are functions that are used to transform
the edges to their respective start and end vertex. The graph over A is then
defined as GA = (V, E) where E is the set of edges and V the set of vertices,
which are defined as:

E =
�

(v , u)|∃t ∈ A∧ v = ρ(t)∧ u= ϕ(t)
	

V = {v |∃u.(u, v ) ∈ E ∨ ∃u.(v , u) ∈ E}

A sequence of vertices (v0, v1, . . . , vn) is a path of length n if (v i , v i+1) ∈ E for
all i ∈ [0 . . . n− 1] and if v i ̸= v j for all 0≤ i < j ≤ n. The sequence is a cycle
of length n if v0 = vn.

The transitive closure over A is then defined via the existence of a positive
path in GA (cf. [AMO93]). The result are always tuples of vertices, i.e.,
of type (S, U), since – while original objects in A are edges of type T – a
general transformation from a pair of vertices to objects of type T can not
be automatically derived. If such a transformation exists, it can be expressed
as an additional projection on the result of the transitive closure. Note that
the start and end vertex are not required to have the same type. During the
construction of paths all objects are compared via object equality, hence there
can be no runtime errors.

The transitive closure operator used in this thesis always treats the results as a
set, i.e., multiple paths from one vertex to another are not treated as multiple
results. In this respect the defined transitive closure differs from the treatment
of right-linear-chain recursion in logic programming (cf. Sec. 2.3.1), where
multiple paths yield multiple results. However, (at least) for the purposes of
the static analyses defined in this thesis this treatment is sufficient.

TCρ,ϕ(A) = {(u, v )|∃ a path with positive length from u to v in GA}

Note that we make no differentiation for cyclic or acyclic graphs w.r.t. the
above defined set semantics, since the existence of a path of positive length is
indifferent to cyclic or acyclic paths. Nevertheless, a treatment of cycles must
be performed in the computation of results, which will be discussed together
with the incremental maintenance of the operator in Section 3.4.3.
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Recursion REC (A, Op(A)) : MultiSet[U <: T], where Op(A) is a combination of
relational algebra operators that depend on A, i.e., have A as one of their
parameters. The recursion considered in this thesis is a fixpoint recursion
that eliminates duplicate recursive derivations. Hence, recursive functions
that would generate an infinite number of derivations are expressible and the
finiteness is ensured by our treatment of recursion.

The recursion is basically a substitution in the tree formed by operators that
depend in some way on the input relation A. The operators can form a
complex expression which is denoted as Op(A) in the following. To define
recursion we introduce a notion of substituting operators in Op(A) such that
the recursion can introduce a cyclic dependency into the operator tree which
lets results of Op(A) be propagated back to A. Let R be a tree of operators of
the relational algebra. Then a substitution is denoted by:

Subst (R, Old, New) = R′ : all occurrences of Old in R are replaced by New in R′

A recursive definition performs a substitution in the tree of Op(A) at the place
where A is used. The substituted value is the union of all original elements
from A together with the results from Op(A). To introduce the notion of
fixpoints the results of Op(A) are passed to an operator FIX, which can for now
be thought of as taking the union of two inputs and removing all duplicates,
i.e., FIX(A,B) ≡ δ(A⊎ B). Note that for an incremental computation the
semantics of FIX is more complex. For type-safety the elements in Op(A) must
be compatible to the elements in A. Hence, if the type of the elements in A is
T then the type of the elements in Op(A) must be of some U <: T .

REC (A, Op(A)) = Subst (Op(A), A, FIX (A, Op(A)))

For illustration consider Figure 3.12, where the non-recursive definition of
Op(A) is shown in Figure 3.12a and the substituted operator tree is shown in
Figure 3.12b. The initial operator tree is defined by the expression Op(A)=
A ◃▹ B – note that the concrete join-functions are omitted for brevity. Arrows
indicate the direction in which data flows between the operators.

Recursion and transitive closure

As noted earlier the transitive closure is a special case of recursion. Using the
above definition we can phrase the transitive closure via a general recursion
as shown in the equation below. Note that the results of the transitive
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◃▹

A B

(a) Non-Recursive Definition:
Op(A)= A ◃▹ B

◃▹

FIX

A

B

(b) Substituted Operator Graph:
Subst (Op(A), A, FIX (A, Op(A)))

Figure 3.12: Substitution of Recursive Operators

closure are always tuples of vertices, i.e., of type (S, U) where S is the type
of elements returned by ρ and accordingly U is returned by ϕ. Hence, the
equality below is given by wrapping the transitive closure in a projection,
where the projection function α transforms the tuples back into elements
of A; in short, the type of α is (S, U)→ T . A formulation using only TC on
the left hand side is also possible, but states equality to a recursion over a
projection of A to vertices and not a recursion over A itself.

πα
�

TCρ,ϕ(A)
�

= δ
�

A⊎ REC
�

A,πλx . α(ρ(x .first),ϕ(x .second))
�

A ◃▹ϕ ρ A
���

The equality between transitive closure and recursion can be understood
as follows: First the transitive closure contains all edges themselves, i.e., A
plus all edges that can be found by recursively concatenating existing edges.
Concatenation in this case means that (u, v ) and (v , w) are concatenated to
(u, w). Note that the recursion will only find concatenated edges and not
necessarily those in A, but the edges in A can be derived a second time in
case of cyclic graphs. Hence, the complete result is wrapped in a duplicate
elimination to make it comparable to the treatment of TC, where recursively
concatenated edges that are already in A do not count as a new result.

The concatenation of edges via a join in the recursion is similar to the treat-
ment of the transitive closure. In the transitive closures paths are built by
joining edges, where edges are constructed from objects via the functions ρ
and ϕ. Thus, if there are two objects o1 and o2, the constructed edges are
�

ρ(o1),ϕ(o1)
�

and
�

ρ(o2),ϕ(o2)
�

. A joined edge – or path – exists if the end
vertex of the first edge is equal to the start vertex of the second edge, in short
ϕ(o1) = ρ(o2). In this case the resulting joined edge is between the start
vertex of the first edge and the end vertex of the second edge, i.e., the result
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is
�

ρ(o1),ϕ(o2)
�

. In the recursion the equivalent to finding the existence of
a new paths is the self-join on A with the respective functions ϕ and ρ, i.e.,
the join ◃▹ϕ ρ will find corresponding objects such that ϕ(o1) = ρ(o2). The
result is a tuple

�

o1, o2
�

from which the concrete new path is constructed via
a projection. The recursion – as the transitive closure – runs until a fixpoint
is reached, i.e.,until no new paths are constructed. The existence of previ-
ously computed paths is ensured via the fixpoint operator FIX. To provide a
correctly typed recursive definition the constructed edge is transformed by α.
Thus the resulting objects of the recursion are always objects of the type that
elements in A have.

Restrictions on recursion

It is a well-known fact in deductive databases that negation inside a recursion
can lead to non-monotonicity. Hence, these systems only allow stratified
negation, i.e., a negation may only be used inside a recursion if it does
not depend on that recursively defined rule. In terms of operators in the
relational algebra, this means that recursive definitions using set differences –
the algebraic form of negation – are not allowed. For example, a recursive
definition of R = A− R is not allowed. The problem of non-monotonicity
manifests itself in an oscillating behavior of the evaluation. For illustration
consider the stepwise evaluation of R shown in the table below. In the first
step the value 1 is added A and R is empty. In the second step 1 is added
to R, since A− R evaluates to {1} − ;. However, due to the recursion this
means that the R must be evaluated again with the new value. This third
step reduces R again to the empty set, since {1} − {1}= ;. This situation is
repeated endlessly, thus we can not find a faithful evaluation of R.

A R

Step 1: {1} ;
Step 2: {1} {1}
Step 3: {1} ;

It is less well known that for aggregations the same restrictions apply. For
deductive databases this is not frequently discussed since not all systems allow
aggregations. Nevertheless, the issue is discussed in the context of recursive
extensions to relational databases (e.g. by Garcia-Molina et al. [GMUW08]
who give an argument about aggregations and sums as we will use below).
The argument is in essence the same as for negations. Consider a recursive
definition of R = γSUM (A⊎ R), i.e., the summation of all values from A and
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R. The stepwise evaluation would proceed as shown below. The interesting
points are steps 4 and 5. In step 4 the value of the aggregation is updated
recursively to the result 10. However, when the new result enters the recur-
sion again in step 5, we have lost the previous value of R, i.e., the value 5 is
no longer present in A⊎ R. Thus, the behavior of the recursive aggregation is
non-monotonic.

A R A⊎ R γSUM (A⊎ R)

Step 1: {1,4} ; {1, 4} 5
Step 2: {1,4} {5} {1,4} 5
Step 3: {1,4} {5} {1,4, 5} 10
Step 4: {1,4} {10} {1,4, 5} 10
Step 5: {1,4} {10} {1,4, 10} 15

Note that non-monotonicity in recursive aggregation is a tricky argument.
Intuitively, there are a lot of day-to-day recursive computations that work
towards a fixpoint and use operations similar to aggregations. The underlying
assumption is always that the aggregation functions eventually converge to a
single value. However, even such functions are problematic in the database
setting and basically suffer from the problem that the fixpoint becomes self-
sustaining. For illustration, consider the stepwise evaluation of R= γ∪ (A⊎ R)
(shown below). In this setting the values in the database are sets and the
aggregation is performed as set union, which eventually converges to a single
value. In the below example we add elements {a} and {b} to A until we
eventually reach a fixpoint {a, b} for the aggregation in step 3. In step 4 the
fixpoint is added to R and, since the aggregation is a convergent function the
value does not change further. However, if we remove the value {a} in step
5, no change is performed for the aggregation, since the fixpoint sustains
itself. This behavior is very unintuitive and typically does not arise when
using fixpoint computations in recursive programming, since the input data
is usually not subject to incremental changes.

A R A⊎ R γ∪ (A⊎ R)

Step 1: {{a}} ; {{a}} {{a}}
Step 2: {{a}} {{a}} {{a}, {a}} {{a}}
Step 3: {{a}, {b}} {{a}} {{a}, {a}, {b}} {{a, b}}
Step 4: {{a}, {b}} {{a, b}} {{a}, {b}, {a, b}} {{a, b}}
Step 5: {{b}} {{a, b}} {{b}, {a, b}} {{a, b}}
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3.3.5 Derived Operators

The following operators provide existential quantification over multiple relations.
The semantics for existential quantification can in general be derived from the
operators defined in the previous sections; hence, they are categorized as derived
operators.

Queries with existential quantification act similar to a selection operator with a
filter condition (discussed in Sec. 3.3.2). However, the filter condition is now based
on existential quantification over a second relation, i.e., the existential quantification
is a selection of all elements that also exist in another relation. Consider for
example the relations EStudents and ERegist rat ions from Figure 3.4. Using existential
quantification we can select all students that have registered for a course, i.e., there
exists at least one entry in ERegist rat ions for the respective student. Likewise we can
select all students that have not registered for any course, i.e., there exists no entry
in ERegist rat ions for the respective student.

In standard database terminology the respective operators are termed semi-join
(exists) and anti-semi-join (not exists).

Definitions
Let A : MultiSet[T] and B : MultiSet[V ] be two multisets containing objects of

types T and V then the basic operators of the relational algebra are defined as
follows:

Semi-Join (A nρ ϕ B) : MultiSet[T] selects objects from A such that for t ∈ A and
v ∈ B, the condition ∃y.y = ϕ(v )∧ y = ρ(t) is true. The functions ρ : T → J1
and ϕ : V → J2 can return values of any types J1, J2 under the condition that
an equality comparison operator is defined between J1 and J2. The semi-join
returns a set if the relation A is a set.

In general the semi-join can be expressed as a join. The right-hand side
is the relation A, the left-hand side is the set of values that are the images
of the function ϕ when applied to objects in B. Using a set – by duplicate
elimination – on the left-hand side reflects the semantics, that at least one
object has to exist in B that matches a respective object in A. The outermost
projection retrieves the elements from A form the joined tuples.

A nρ ϕ B = πλt t.first(A ◃▹ρ λt.t δ(πϕ(B)))

Anti-Semi-Join (A Âρ ϕ B) : MultiSet[T] selects objects from A such that for t ∈ A
and v ∈ B, the condition @y.y = ϕ(v ) ∧ y = ρ(t) is true. The functions
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ρ : T → J1 and ϕ : V → J2 can return values of any types J1, J2 under the
condition that an equality comparison operator is defined between J1 and J2.
The anti semi-join returns a set if the relation A is a set.

In general the anti-semi-join can be expressed via a set difference and a
semi-join. The right-hand side of the difference is the relation A, the left-hand
side is semi-join of A and B, i.e., we subtract from A the (multi-)set of objects
in A that have a corresponding object in B.

A Âρ ϕ B = A− (A nρ ϕ B)

3.4 Incremental Maintenance of Relational Operators

The incrementalization works by building an operator tree in which each operator
knows its immediate successors. The successors are notified of respective modifi-
cation events, whenever the data of the underlying operator changes. Hence, the
incrementalization works similar to an observer pattern [GHJV95]. The operators
are registered as successors (observers) during the compilation of queries. Note
that operators also know their predecessors and can – in essence – perform a non-
incremental top-down evaluation using these references. This form of evaluation
is used, for example, to initialize operators that are defined on top of materialized
views which already contain evaluation results.

3.4.1 Observer Pattern Style Change Propagation

To illustrate the observer pattern style used for the maintenance of views, consider
the definition of the Observer trait in Figure 3.13. The observer declares three
atomic events for additions (line 2), removals (line 3) and updates (line 4). An
operator registers itself as an observer and receives atomic modification events
through any of these three methods.

In addition to atomic modifications each operator can receive a set of modifica-
tions – basically a transaction without any rollback functionality – via the method
modified (line 6). A set of modifications is a triple consisting of additions, deletions
and updates. The concrete modifications use a multiplicity counter, e.g., the type
Addition includes a reference to the added value and a number indicating how
often the value is added. Treating the set of modifications as an atomic event allows
to enforce minimality conditions, e.g., no elements are added and immediately
deleted afterwards. The minimality of the set of modifications will be treated in
Sec. 3.4.3.
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1 trait Observer[V] {

2 def added(v: V)

3 def removed(v: V)

4 def updated(oldV: V, newV: V)

5

6 def modifed(additions: Set[Addition[V]],

7 removals: Set[Removal[V]],

8 updates: Set[Update[V]])

9 }

Figure 3.13: Observer trait used during change propagation

Base relations (of type Extent) and operators of the relational algebra for mul-
tisets (presented in Sec. 3.3) are defined as instances of the trait Observable (cf.
Figure 3.14).As such each base relation and each view – defined via one or more
operators – can notify other views of respective changes. Notifications are triggered
by respective notify methods, e.g., for additions (line 4); deletions, updates and
sets of modifications work accordingly. The triggering of notifications happens in
response to a received event and is specific to each operator. For example, when an
operator receives an added event, the operator must determine which elements are
added in response to the event. Note that additions can result in deletions and vice
versa – depending on the current operator.

1 trait Observable[V] {

2 def observers: Set[Observer[V]]

3

4 def notify_added(v: V) {

5 observers.foreach (_.added (v))

6 }

7 ...

8 }

Figure 3.14: Excerpt of the trait Observable

To illustrate the notification process an excerpt of the projection operator is
presented in Figure 3.15. The projection observes an underlying relation of the type
Domain (line 3) and transforms the elements using a projection function (line 2).
Hence, the result of the projection is of type Range and the operator as a whole is
accordingly declared as a respective Observable (line 4). The event notification
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is comparatively simple. For example, when the projection is notified that a new
element is added, the element is transformed and a respective notification is fired to
all observers (line 7).

1 class Projection[Domain, Range]

2 (val projection : Domain => Range)

3 extends Observer[Domain]

4 with Observable[Range]

5 {

6 def added(v: Domain) {

7 notify_added (projection (v))

8 }

9 ...

10 }

Figure 3.15: Excerpt of the Scala class for projections

Binary operators are treated in a slightly different way, since an observer is
required for the left-hand side as well as for the right-hand side operand. Consider,
for example, the class for the Cartesian product operator in Figure 3.16. The
binary operator builds the cross product over elements from two different domains
(DomainA on the left hand and DomainB on the right hand side of the operator).
Hence, we require two differently typed observers (line 6 and 15) that also propagate
changes slightly differently. For example, the addition of an object to the operand
on the left hand side (line 7) results in new tuples for the added object together
with all objects stemming from the relation on the right hand side. In the example
this semantics is achieved by iterating over all objects in the right hand side operand
(foreach in line 8). The resulting tuples are propagated by an anonymous function
passed to foreach (line 9), that is called for every object b in the right hand
side operand. The observer of the right hand side treats an addition accordingly
by mirroring the behavior for the left hand side. Note that while we introduce
internal observers, e.g., for the left- and right-hand side in the Cartesian product,
we omit these observers in the following treatment of operators. That means we
uniformly treat operators as successor without going into the details of internally
used observers e.g., the Cartesian product operator is the successor of its left- and
right-hand operand.

Each operator registers itself (or appropriate internal objects) as an observer to its
operand(s) at the time a query is compiled. Optimizations of the query expression
are considered before compiling the query and are discussed in Chapter 4. An
operator can be passed multiple times as an operand, and such an operator hence
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1 class CartesianProduct[DomainA, DomainB](

2 val left: Relation[DomainA],

3 val right: Relation[DomainB])

4 extends Observable[(DomainA, DomainB)]

5 {

6 object LeftObserver extends Observer[DomainA] {

7 def added(v: DomainA) {

8 right.foreach (

9 b => { notify_added (v, b) }

10 )

11 }

12 ...

13 }

14

15 object RightObserver extends Observer[DomainB]

16 }

Figure 3.16: Excerpt of the Scala class for Cartesian product

has multiple observers. This behavior basically reflects sharing of sub-queries, i.e.,
the result of a maintenance event is only computed a single time for the operator
and then propagated to multiple observers.

3.4.2 Examples for View Maintenance

To illustrate the incremental view maintenance, consider the following two examples
of views on the student registration database depicted in Figure 3.4.

Example 1 – Selection of last names of a filtered set of students
The first example filters all students that have an average grade below 3.0 and

selects their last name as a result. The respective query using the defined operators
is given as v iew1 in the following equation:

view1 = πλs. s.lastName(σλs. s.gradeAverage<3.0(EStudents))

The result of the query for a (non-incremental) evaluation on the data presented in
Figure 3.4a, is depicted in Figure 3.17. Both students in the extent EStudents pass the

80 3 Language-Integrated Database with Incremental View Maintenance



test in the filter, i.e., their grade average is lower than 3.0. Hence, their last names
are selected into the result.

The incremental evaluation is performed via events in the operator tree of v iew1
depicted in Figure 3.18. The successor relation in the tree is depicted by respective
arrows in the Figure, e.g., from EStudents to the σ operator. The tree of view1 is
very simple, since each operator only has a single successor. The data flow of the
incrementalization starts by adding (removing) objects to (from) the extent EStudents.
Respective events are then propagated to the successor (the σ operator), which in
turn filters the students and propagates events to the π operator, if an object passes
the filter.

OID value

o11 Fields
o12 Dow

Figure 3.17: Result of view1 for data
in Fig. 3.4a

EStudents

σλs. s.gradeAverage<3.0

πλs. s.lastName

Figure 3.18: Operator tree for view1

To illustrate the incrementalization an event for adding a new object is depicted in
Figure 3.19 as a UML sequence diagram. The event is received by the base relation
EStudents (leftmost lifeline denoted as students) and propagated to the operators
defined by view1. The top most operator (π in Figure 3.18) of the view is marked in
gray in the figure and basically represents the result. In addition the Figure includes
a MaterializedRelation node that is registered as an observer of the view and
stores the results. Reconsider that the view itself makes no a priori assumptions
whether it is only an intermediate step in a computation or the final result. Hence,
the top most operator does not store results by itself, but delegates storage to the
materialized node.
The data flow of the depicted event starts with adding an object to the extent
students as follows:

val v = new Student(’John’, ’Smith’, List(2, 2))

students.add(v)

The added(v) event propagates from the extent to the Selection (σ) operator. The
object defined above passes the test of the Selection – average grade 2.0< 3.0 –
and the event is then propagated to the Projection (π) operator. In the Projection
the object is transformed using the provided operation λs. s.lastName into a new

3.4 Incremental Maintenance of Relational Operators 81



opt

[v.gradeAverage < 3.0]

view1 : Projection[Student,String] : MaterializedRelation[String]: Selection[Student]students : Extent[Student]

e = v.lastName

store(e)added(e)

added(v)

add(v)

added(v)

notify_added(e)

notify_added(v)

notify_added(v)

Visual Paradigm for UML Standard Edition(TU Darmstadt)

Figure 3.19: Data flow for propagating an addition from the base relation to view1

value e. In the given example the transformed value e is propagated to an instance
of MaterializedRelation that stores the results of view1.

As can be seen by the above example, the modifications are only propagated
in the operator tree as far as they apply. Selections filter many elements out of
the propagation process, e.g., all events (additions/deletions/updates) containing
students that have an average grade above 3.0 are only propagated as far as the
node of the selection operator. Other operators, such as duplicate eliminations, also
propagate events only under certain condition, e.g., if an added element was not
already present in the duplicate elimination.

Example 2 – Selection of a filtered set of students registered for a course
The second example features a more complex view with a binary operator. The

view selects all students with an average grade below 3.0, which also have registered
for a course. The respective query is defined below as view2. The students are
filtered similar to view1 and the binary operator exists (n) is used to find students
that also have a registration. The exists operator can be simplified to a join – as
discussed in Section 3.3.5 – with the duplicate elimination (δ) of registered students
(πλr. r.student(ERegistrations)) as the right hand operand.

v iew2 = σλs. s.gradeAverage<3.0(EStudents) nλs.s λr. r.student ERegistrations

= πλt. t.first(σλs. s.gradeAverage<3.0(EStudents) ◃▹λs.s λt.t δ(πλr. r.student(ERegistrations)))

The incremental evaluation is performed by propagating events from the two base
relations EStudents and ERegist rat ions. Events are propagated from one base relation
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at a time via the operator tree depicted in Figure 3.20. Hence, the data flow starts
either in EStudents and propagates through the filter to the join or the data flow starts
in ERegist rat ions and propagates through the projection and the duplicate elimination
to the join.

◃▹λs.s λt.t

πλt. t.first

δ

πλr. r.student

σλs. s.gradeAverage<3.0

EStudents

ERegistrations

Figure 3.20: Operator tree for view2

To illustrate the different data flows the sequence diagram in Figure 3.21 depicts
one addition event for each base relation. The data flow is exemplified up to the join
– marked in gray – which is positioned in the middle, such that the sequence diagram
mimics the layout of the operator tree. Left of the join in the sequence diagram are
the operators representing the left sub-tree of the join and the right hand is laid out
accordingly. The base extents EStudents and ERegistrations are the outermost operators
in the sequence diagram.

The first addition event is performed on EStudents and propagation works similar to
the propagation in Figure 3.19. Once the added object reaches the join it is internally
added to the left hand side index (addToLeftIndex(v)). Note that the internal
workings of the join are abbreviated here for space reasons. Conceptually the index
is yet another observer of the underlying relation which notifies the join. From the
added value and the right hand side index a (possibly empty) delta of new joined
objects is computed (delta = join(v, getRightIndex())). Here we see that, in
order to determine possible joined objects, the operator requires a materialization
of all the data stemming from the right hand operand and the operator uses indexed
data to efficiently determine joined tuples. After obtaining the delta, all observers
of the join are notified for each added tuple (notify_added(delta[i])). As can
be seen the addition of a single element can lead to multiple additions of results
in a join operator. Note that a loop construct that emits atomic addition events
was chosen in order to remain in this formalism and not interchange atomic valued
events with sets of modifications.
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loop (0, delta.size)

opt

opt

[count(v) == 1]

[v.gradeAverage < 3.0]

loop (0, delta.size)

: Selection[Student]: Extent[Student] : Extent[Registration]: Projection[Registration, Student]: DuplicateElimination[Student]: Join[Student, Student]

notify_added(delta[i])

delta = join(v,
getRightIndex())

notify_added(v)

notify_added(v)

updateCount(v)

add(v)

add(v)

v = r.student

notify_added(r)
added(r)

add(r)

addToLeftIndex(v)added(v)

notify_added(v)

added(v)

notify_added(v)

add(v)

delta = join(v,
getLeftIndex())

notify_added(delta[i])

addToRightIndex(v)

Visual Paradigm for UML Standard Edition(TU Darmstadt)

Figure 3.21: Data flow for propagating additions from the base relations to view2

The second addition event is performed on ERegistrations. The first propagation is a
projection which is similar to Figure 3.19. Afterwards the event is propagated to the
duplicate elimination, which is one of the operators based on counting. As can be
seen the duplicate elimination internally updates the count for the added element
(updateCount(v)). An event is only fired if this was the first time the element was
added to the duplicate elimination (count(v) == 1), otherwise the element was a
duplicate and hence is already present as a result in subsequent observers. When
the element is added for the first time, an according event is propagated to the join
operator. As in the previous propagation from EStudents, the element is added to the
index (but on the right hand side) and a delta of added objects is computed and
propagated as results.
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3.4.3 Change-Propagation Expressions

This section shows how each operator is maintained with respect to change events
from underlying relations. The expressions obtained in this section are the min-
imal requirements for self-maintainability of each operator. In other words the
expressions are derived such that a minimal amount of materialization is required
to maintain one operator. The response to changes from underlying relations are
discussed algebraically by giving a change-propagation expression for each operator,
i.e., the expression basically models what happens in the observer pattern between a
received event and a notification of subsequent observers. The algebraic discussion
allows to reason over multisets of the underlying data that are required to be materi-
alized. The implementation provided as part of this thesis also closely resembles the
given propagation expressions. A treatment of optimizations for multiple operators
is discussed at the end of this chapter.

In the following, the notation for modifications and prerequisites for the change-
propagation expressions is discussed first. Then we discuss the maintenance of
self-maintainable operators without auxiliary data. Finally, those operators that
require some form of auxiliary data to be self-maintainable are discussed.

Notation of modifications
The change-propagation expressions are presented such that for each operator a

set of modifications for addition (∆+), deletions (∆−) and updates (∆upd) is derived.
This basically reflects the three sets of modifications passed as parameters to the
modified method of the observer depicted in Figure 3.13. Modifications always
pertain to a specific relation (e.g., A), where additions and deletions are multisets
– in the sense defined in Section 3.3 – of added and deleted elements (Equations
3.4.3.1 and 3.4.3.2) attached with a count of how many objects are added or deleted.
Updates are sets of triples that contain the old value, the new value, and the number
of updated objects (3.4.3.3). For abbreviation the combination of all three types of
modifications for a given relation A is written as a transaction (TA), which is a triple
of additions, deletions and updates to the relation (3.4.3.4).

∆+A = {〈v , k〉 | v is added k times} (3.4.3.1)

∆−A = {〈v , k〉 | v is removed k times} (3.4.3.2)

∆upd
A = {〈v , u, k〉 v is updated to u, k times} (3.4.3.3)

TA =
D

∆+A ,∆−A ,∆upd
A

E

(3.4.3.4)
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Prerequisites for change-propagation expressions
The change propagation of all operators is defined in such a way that correctness

and consistency of observing operators is enforced via the following two conditions:
First, the set of deletions only contains objects that are already in the underlying
relation. This means also that the objects are removed at most in the quantity
in which they are present (3.4.3.5). Second, the set of updates contains only
modification to objects that are also in the underlying relation, and no more objects
can be updated than are present in the underlying relation (3.4.3.6).

∀v , k. 〈v , k〉 ∈∆−A ∧ 〈v , i〉 ∈ A∧ k ≤ i (3.4.3.5)

∀v , k. 〈v , u, k〉 ∈∆upd
A ∧ 〈v , i〉 ∈ A∧ k ≤ i (3.4.3.6)

To obtain a minimal set of modifications – that are propagated through the op-
erator tree – the following conditions must hold. First, the same objects are not
deleted and then re-added by the same transaction (3.4.3.7). Second, updates are
real updates, i.e., there are no tuples in the updates that have the same old and
new value (3.4.3.8). In contrast to the earlier defined conditions, these latter two
conditions can be loosened, which will be discussed in the context of optimization in
Chapter 4. Note that loosening the condition 3.4.3.7 requires an internal treatment
of modifications in the correct order. Deletions must be processed prior to additions,
i.e., first the value is removed and then re-added. Due to this treatment a modifica-
tion that adds and removes a completely new tuple is not allowed, since deletions
are processed first and, hence, the very first condition (3.4.3.5) would be violated.

∆+A ∩ ∆
−
A = ; (3.4.3.7)

∀v , u, k. 〈v , u, k〉 ∈∆upd
A → v ̸= u (3.4.3.8)

Notation for change-propagation expressions
A change-propagation expression is derived for each operator by determining the

sets of modifications that must be propagated after applying a given transaction to
an operator. Formally, the expression is derived for each set of modifications in a
transaction, i.e., for the set of additions, deletions and updates. The modifications
are derived as the results of three functions (∆+,∆−,∆upd), which are defined
for each operator (op), such that the following three equations hold. Note that
the functions (∆+,∆−,∆upd) can always depend on the whole transaction, e.g.,
additions may be derived from deletions or updates or vice versa.
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op(A⊎∆+A ) = op(A)⊎∆+(op(TA)) (3.4.3.9)

op(A−∆−A ) = op(A)−∆−(op(TA)) (3.4.3.10)

op(A← [∆upd
A ) = op(A)← [∆upd(op(TA)) (3.4.3.11)

First, the result of the operator after adding ∆+A to the base relation A (via the union
operator ⊎) is equal to adding the result of ∆+ for the transaction TA to the previous
results of op(A) (3.4.3.9). Second, the result of removing ∆−A from A (via the set
difference operator −) is equal to removing the result of ∆− for the transaction TA
from the previous results op(A) (3.4.3.10). Third and finally, the result after the
application of all modifications ∆upd

A to A is equal to the application of the result of
∆upd for the transaction TA from the previous results op(A) (3.4.3.11).

Note that the operator (← [) is introduced as a shorthand for applying an update
to a relation, in order to keep the above definition simple. Formally, an update
can be applied as shown in 3.4.3.12. The equation is a quite complex due to the
treatment of multisets. The three conditions in each line in 3.4.3.12 basically do the
following: first decrease the respective counts to remove old elements (first line),
then add previously not existing elements (second line) and finally increase the
count for previously existing elements (third line).

A← [∆upd
A = {〈e, k〉 |(〈e, i〉 ∈ A∧




e, u, j
�

∈∆upd
A ∧ k = i− j)∨

(



v , e, j
�

∈∆upd
A ∧ @ 〈e, i〉 ∈ A∧ k = j)∨

(



v , e, j
�

∈∆upd
A ∧ ∃〈e, i〉 ∈ A∧ k = j+ i)

(3.4.3.12)

Using the three equations (3.4.3.9 – 3.4.3.11) the net effect of a change event – in
terms of modified objects – can be determined. The application of the three functions
(∆+(op(TA)),∆−(op(TA)),∆upd(op(TA)))) yields basically the sets of elements that
need to be propagated to the observers of an operator. In the following sections the
result of these three functions is defined for each operator from Section 3.3. We
distinguish two categories of operators:

Self-maintainable operators (Sec. 3.4.3) have a net effect that can be determined
solely by using the delta of each change. Formally, the results of the three
functions (∆+(op(TA)),∆−(op(TA)),∆upd(op(TA)))) only depend on values
obtained from ∆+A ,∆−A ,∆upd

A .

Non self-maintainable operators (Sec. 3.4.3) have a net effect that either depends
on the underlying relation (i.e., A) or further auxiliary data.
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Note that a similar formalization was given by Griffin et al. [GL95] for SPJ
views and the set-theoretic operators (i.e., not including aggregations and other
advanced operators). This formalization did not include updates. Also, their focus
was to obtain delta expressions for the sake of algebraic simplification. For example,
using their formalization one can derive a minimal expression that only deals with
additions of one side of a binary operator. Their simplifications assume the presence
of materialized base relations. Instead we reuse parts of their formalization to derive
minimal sets of data that must be materialized when base relations are not present.

Self-Maintainable Operators

Selections are self-maintainable since basically each element in a transaction must
pass the test (θ). The set of additions is thus derived from all added elements
that pass the test. Special care must be taken for updates. Here, all updated
elements where the old value did not pass the test but the new value does,
are also counted as additions. Deletions are handled similarly. Since only
elements are deleted that were previously added, the deletions can propagate
all elements that pass the test as these were surely added to the result of the
selection in a previous transaction. Likewise updates count as deletions if the
old value passed the test, but the new value does not pass the test. Updates
are only propagated as update events if both the old and the new value pass
the test.

∆+(σθ (TA)) =σθ (∆
+
A ) ⊎
n

〈u, k〉 | 〈v , u, k〉 ∈∆upd
A ∧¬θ(v )∧ θ(u)

o

∆−(σθ (TA)) =σθ (∆
−
A ) ⊎
n

〈v , k〉 | 〈v , u, k〉 ∈∆upd
A ∧ θ(v )∧¬θ(u)

o

∆upd(σθ (TA)) =
n

〈v , u, k〉 | 〈v , u, k〉 ∈∆upd
A ∧ θ(v )∧ θ(u)

o

Projections are also self-maintainable and basically must only pass the additions
and deletions as an addition or deletion of the projected value, i.e., the result
of the transformation via ρ. Updates are only propagated if the old and new
values are not projected to the same result. In addition, all updates that
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project the old and new values to the same result are counted as a single
update.

∆+(πρ(TA)) =πρ(∆
+
A )

∆−(πρ(TA)) =πρ(∆
−
A )

∆upd(πρ(TA)) ={〈v , u, k〉 |∃



x , y, n
�

∈∆upd
A ∧

v = ρ(x)∧ u= ρ(y)∧ v ̸= u ∧

k =
∑

〈a,b,i〉∈∆upd
A ∧

v=ρ(a) ∧ u=ρ(b)

i}

Union (differing) The union with differing semantics has the simplest change-
propagation expressions, since the operator just forwards the additions,
deletions or updates. This is due to the semantics of the operator, which com-
putes a result by simply adding all elements from the left hand and right hand
side operand. Since the operator is commutative the change-propagation
expressions for a transaction on the right hand side operand are treated
similarly.

∆+(TA ⊎ B) =∆+A
∆−(TA ⊎ B) =∆−A
∆upd(TA ⊎ B) =∆upd

A

∆+(A⊎ TB) =∆
+
B

∆−(A⊎ TB) =∆
−
B

∆upd(A⊎ TB) =∆
upd
B

UnNest is self-maintainable, since the unnesting extracts a set of objects from a
multiset that is locally contained in the added or deleted objects. Hence,
additions and deletions merely take the added/deleted object, extract all ele-
ments from the contained multiset and propagated these as added or deleted
elements. Updates are basically treated as deletions followed by insertions.
This situation can not be avoided since we can not know – without further
assumptions – that some objects contained in the unnested multisets of the
update should be treated as old and new values of one another. One assump-
tion that overcomes this problem is to treat the elements in the collection in
an ordered sequence. In this case objects inside the unnested multisets can
be correlated by their index in the sequence and we can propagate update
events. However, this assumption is not generalizable. Nevertheless, the
updates provide some benefit, since the extracted multisets can be analyzed
to incorporate only elements that were not present before the update into the
additions and remove only elements that are not present after the update.
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∆+(µρ(TA)) = {〈(t, e), k ∗ n〉 | 〈t, k〉 ∈∆+A ∧ S = ρ(t)∧ 〈e, n〉 ∈ S} ⊎

{〈(u, e), k ∗ n〉 | 〈v , u, k〉 ∈∆upd
A ∧

Sold = ρ(v )∧ 〈e, i〉 ∈ Sold∧
Snew = ρ(u)∧



e, j
�

∈ Snew∧
n= j− i ∧ n> 0}

∆−(µρ(TA)) = {〈(t, e), k ∗ n〉 | 〈t, k〉 ∈∆−A ∧ S = ρ(t)∧ 〈e, n〉 ∈ S} ⊎

{〈(v , e), k ∗ n〉 | 〈v , u, k〉 ∈∆upd
A ∧

Sold = ρ(v )∧ 〈e, i〉 ∈ Sold∧
Snew = ρ(u)∧



e, j
�

∈ Snew∧
n= i− j ∧ n> 0}

Operators Maintainable with Auxiliary Data Structures

Cartesian product For the Cartesian product we require both underlying base
relations for correct maintenance. This is due to the fact that for any
added/deleted object a corresponding tuple must be built with all objects
from the other relation. Hence, the view maintenance for either left or
right hand operand requires the other relation to be materialized. The
change-propagation expressions for additions and deletions simply build the
Cartesian product over all additions and deletions together with the other
relation. Updates can easily propagate over the Cartesian product. The
respective expressions for updating A build the set of tuples of the old value
from the update and a value from B and propagate this as an update to a
tuple of the new value and the same value from B. The update to B works
accordingly by building tuples with objects from A.

∆+(TA× B) = ∆+A × B

∆−(TA× B) = ∆−A × B

∆upd(TA× B) =
n

〈(v , b), (u, b), k ∗ i〉 | 〈v , u, k〉 ∈∆upd
A ∧ 〈b, i〉 ∈ B
o

∆+(A× 〈T, B〉) = A×∆+B
∆−(A× 〈T, B〉) = A×∆−B
∆upd(A× TB) =

n

〈(a, v ), (a, u), k ∗ i〉 | 〈v , u, k〉 ∈∆upd
B ∧ 〈a, i〉 ∈ A
o
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Join For the join we also require the underlying base relations (as for the Cartesian
product). In contrast to the Cartesian product, updates cannot easily be
propagated over a join. The reason being that the join is based on looking
up respective values via the functions ρ and ϕ. For example, if an update
to A modified the value from v to u such that ρ(v ) ̸= ρ(u) the objects now
join with a completely different object from B. Hence, to keep the semantics
simple the updates to a join are treated as deletions followed by additions.

∆+(TA ◃▹ρ ϕ B) =∆+A ◃▹ρ ϕ B ⊎
n

〈u, k〉 |∃v . 〈v , u, k〉 ∈∆upd
A

o

◃▹ρ ϕ B

∆−(TA ◃▹ρ ϕ B) =∆−A ◃▹ρ ϕ B ⊎
n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
A

o

◃▹ρ ϕ B

∆+(A ◃▹ρ ϕ 〈T, B〉) =A ◃▹ρ ϕ ∆
+
B ⊎

A ◃▹ρ ϕ

n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
B

o

∆−(A ◃▹ρ ϕ 〈T, B〉) =A ◃▹ρ ϕ ∆
−
B ⊎

A ◃▹ρ ϕ

n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
B

o

Duplicate Elimination also requires to materialize the underlying relation. The set of
deletions is built by removing all duplicates from the deletions and subtracting
any elements that are still in the underlying relation A after applying the
deletions to A. In other words, a deletion is only propagated when the element
reaches a count of 0 in A. Likewise additions are only propagated when the
element was not already present in A before the transaction. Updates can
be propagated as updates, yet a check is needed that the new value is not a
duplicate of a previously added element.
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∆+(δ(TA)) =(δ(∆
+
A )− A)⊎

{〈u, 1〉 | 〈v , u, k〉 ∈∆upd
A

∧ @ 〈v , i〉 ∈ A∧ i− k = 0

∧ @



u, j
�

∈ A}
∆−(δ(TA)) =δ(∆

−
A )− (A−∆

−
A )⊎

{〈v , 1〉 | 〈v , u, k〉 ∈∆upd
A

∧ ∃〈v , i〉 ∈ A∧ i− k = 0

∧ ∃



u, j
�

∈ A}

∆upd(δ(TA)) ={〈v , u, 1〉 | 〈v , u, k〉 ∈∆upd
A

∧ ∃〈v , i〉 ∈ A∧ i− k = 0

∧ @



u, j
�

∈ A}

Aggregation There are two issues in maintaining aggregations. First, what is the
relevant data required due to the grouping (via the function ρ) of objects?
Second, what is the relevant data required due to the aggregation (via the
function α) of the multisets obtained for each group?

Maintenance of aggregate groups

To answer the first question, the three cases for different modification can
informally be distinguished as follows: Additions are imminent when new
groups are obtained either from added objects or due to updates on objects.
Deletions are imminent when the groups are not contained in A after applying
all updates (written as Anew in the expression below). Updates are only
imminent if there is a group that is present before and after the modifications.
Hence, updates only pertain to obtaining new values from applying the
aggregation function. However, it is interesting to note that updates to the
aggregated values occur in response to additions or deletions, which makes
the aggregation operator somewhat special – in general the other operators
perform additions and deletions in response to updates and not vice versa.
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∆+(γρ,α(TA)) ={(g, a)| ( 〈v , i〉 ∈∆+A
∨



o, v , j
�

∈∆upd
A ∧ρ(o) ̸= ρ(v ) )

∧ g = ρ(v )∧ g ̸∈ δ(πρ(A))
∧ a = α(σλt. ρ(t)=g(A

new))}
∆−(γρ,α(TA)) ={(g, a)| ( 〈v , i〉 ∈∆−A

∨



v , o, j
�

∈∆upd
A ∧ρ(o) ̸= ρ(v ) )

∧ g = ρ(v )∧ g ̸∈ δ(πρ(Anew))

∧ a = α(σλt. ρ(t)=g(A))}

∆upd(γρ,α(TA)) ={



(g, aold), (g, anew)
�

| ( 〈v , i〉 ∈∆+A ∨



v , j
�

∈∆−A
∨ 〈o, v , k〉 ∈∆upd

A ∧ρ(o) = ρ(v ) )
∧ g = ρ(v )∧ g ∈ δ(πρ(A))
∧ aold = α(σλt. ρ(t)=g(A))

∧ anew = α(σλt. ρ(t)=g(A
new))

∧ aold ̸= anew}

As can be seen from the formal definitions – given above – existence of a
group requires a test w.r.t. δ(πρ(A)), i.e., one has to maintain the set of all
groups obtained using the aggregations. Note that for deletions the value
δ(πρ(Anew)) is used. To capture this semantics without actually applying all
modifications to A (since we want to forgo completely materializing A), the
operator uses an internal counter that stores how many elements in A are
contributing to a group.

Maintenance of aggregation functions

The second question has a twofold answer that depends on the makeup of
the aggregation function α. Some aggregation functions, e.g., Count, can
compute an updated value based on deltas, whereas other functions, e.g.,
Min, Max require the underlying group. The latter can be exemplified by con-
sidering an update that removes the value which was the minimum/maximum
of the aggregation. To compute a new minimum/maximum the underlying
group must be “scanned” to determine what the next higher/lower value is.
Such functions have been termed non-distributive in [PSCP02] – note, there is
no formalization in that work. In the terms of this thesis it is instructional to
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think of the aggregation functions as not self-maintainable, i.e., they require
the materialization of auxiliary data for efficient incrementalization.

From the perspective of the change-propagation expressions given above, the
impact of not self-maintainable functions is only imminent in the equation for
∆upd(γρ,α(TA)). Note that for additions we know that σλt. ρ(t)=g(A) = ;, since
the group was not contained in A prior to the modification. Hence the value
for a can be computed using only the deltas. For deletions (and the value
aold in updates) it would be sufficient to store the single aggregated value
of a for each value g that uniquely identifies the group. Only for obtaining
anew in the equation for updates the necessity can arise to query the whole
underlying group – as exemplified for the Min, Max above.

Informally to re-compute a not self-maintainable function the operator must
maintain an entire group, i.e., the multiset of elements in the group, for
each value g that uniquely identifies the group. A self-maintainable function
requires as minimal auxiliary data the previously computed value aold for
the group. Hence, both cases require some materialization, but the self-
maintainable case requires less memory. Formally, the different requirements
of (not) self-maintainable functions can be shown as follows. Each group is
computed via the selection of elements given by σλt. ρ(t)=g . The computation
of the groups for Anew is obtained from an old multiset of elements in the
group (Ag), a multiset of additional elements ∆add

g and a multiset of removed

elements ∆del
g . Note that – for simplification of the formulas – updates are

subsumed as additions and deletions (i.e., removal of the old value and
addition of the new value) which are denoted as ∆add

A and ∆del
A , in order to

discriminate from the treatment of additions/deletions without updates.

σλt. ρ(t)=g(A
new) =σλt. ρ(t)=g(A⊎∆add

A −∆del
A )

=σλt. ρ(t)=g(A)⊎σλt. ρ(t)=g(∆
add
A )−σλt. ρ(t)=g(∆

del
A )

=Ag ⊎∆add
g −∆del

g

For a self-maintainable aggregation function a homomorphism exists such
that the function can be distributed over the set operators. The new result can
then be obtained via: the old result (α(Ag) = aold) the result over the added
elements (α(∆add

g )), and the result over the deleted elements (α(∆del
g )). The

operators ⊕ and ⊖ are used to combine the results and are specific to the
domain of the values for a given aggregation function.

α(σλt. ρ(t)=g(A
new)) =α(Ag ⊎∆add

g −∆del
g )

=α(Ag)⊕α(∆add
g )⊖α(∆

del
g )
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For example, the count function would define ⊕ and ⊖ as addition and
subtraction over integers.

Count(σλt. ρ(t)=g(A
new)) = Countold + Count(∆add

g )− Count(∆del
g )

Union (indistinguishable) For the union with indistinguishable semantics it is easy
to see that both underlying relations are required for view maintenance. The
number of elements that contribute to the result are based on the maximum
of the number of elements in the left and right operand. Consider for example
the maintenance of the union for adding elements to the left operand (A).
The new maximum is built over the new number of elements on the left
side (A⊎∆+A ) and the number of elements on the right side (B). Fortunately,
given the change-propagation expressions from [GL95] we can find a better
solution based on the multiset differences of A− B and B − A. Hence, less
storage is required compared to materializing A and B, since effectively the
intersection between the two relations does not require any storage. The
basic idea behind these expressions is as follows: For additions, the change
can only add more elements from A if there was not already a larger number
of elements in B. Recap that the definition of the union is based on the
maximum of elements in A and B. The expression B− A contains all surplus
elements from B. Hence, an addition is only propagated if ∆+A contains more
elements than B− A. A similar argument holds for deletions. Deletions only
propagate if the A contains surplus elements not found in B. Hence, only the
minimum (∩) between ∆−A and A− B is propagated as deletions.

Propagation of updates is modeled as deletions followed by insertions to keep
the semantics simple. Intuitively an update can only be propagated as an
update if B did not have surplus elements of the old value and B did not
have surplus elements of the new value. Even then one has to determine how
many surplus elements there are and if the old and new surplus do not match,
some of the updates must be counted as additions or deletions. Hence, the
intuitive semantics is to treat updates simply as deletions and insertions.

∆+(TA ∪ B) =(∆+A ⊎
n

〈u, k〉 |∃v . 〈v , u, k〉 ∈∆upd
A

o

)− (B− A)

∆−(TA ∪ B) =(∆−A ⊎
n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
A

o

)∩ (A− B)

∆+(A∪ TB) =(∆
+
B ⊎
n

〈u, k〉 |∃v . 〈v , u, k〉 ∈∆upd
B

o

)− (A− B)

∆−(A∪ TB) =(∆
−
B ⊎
n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
B

o

)∩ (B− A)
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Intersection requires to materialize both underlying relations for view maintenance.
Like the indistinguishable union the view maintenance can be reduced to
change-propagation expressions based on A− B and B − A. Also, propaga-
tions are treated as deletions and additions similar to the treatment in the
indistinguishable union. The rationale behind the expressions is based on the
fact that the intersection is defined via the min operator. Thus, an addition
can only be propagated until the number of elements in B−A is reached, i.e.,
the number of elements in B minus the previously propagated elements from
A. Deletions can only be propagated if they are in the intersection. Hence, all
deletions that are also in A− B are deletions of surplus elements from A that
are not also in B. Thus, only the elements that are also present in A− B are
propagated as deletions.

∆+(TA ∩ B) =(∆+A ⊎
n

〈u, k〉 |∃v . 〈v , u, k〉 ∈∆upd
A

o

)∩ (B− A)

∆−(TA ∩ B) =(∆−A ⊎
n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
A

o

)− (A− B)

∆+(A∩ TB) =(∆
+
B ⊎
n

〈u, k〉 |∃v . 〈v , u, k〉 ∈∆upd
B

o

)∩ (A− B)

∆−(A∩ TB) =(∆
−
B ⊎
n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
B

o

)− (B− A)

Difference – like the intersection and indistinguishable union – requires both under-
lying relations, but the change-propagation expression can also be reduced
to differences. As a consequence, the difference operator basically stores the
result as a materialized view. It is important to highlight the expressions for
changes, since the set difference is an asymmetric operator and, hence, the
expressions are slightly different from the other set operators.

The left-hand side expression (TA) can be understood as follows. Additions
are propagated (∆+) after subtracting surplus elements from B, i.e., additions
are only propagated for the number elements in A that is greater than the
number of elements in B. Deletions are propagated (∆−) if they are also
contained in the previous result, i.e., we remove everything in ∆+A , but only
as many elements (∩) as we find in the result A− B. The same is true for
updates, i.e., the number of propagated updates (i) from elements in A is
equal to the number we find in the result A− B.

The right-hand side expression (TB) can be understood as follows. Additions
are propagated (∆+) if elements are removed from B and there are more of
the same elements in A, i.e., A contains elements that are currently not in
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the result A− B and that are now removed from B. As a change-propagation
expression this is a bit tricky due to double negation. Essentially the sub-
traction of B− A from ∆−B means that we remove from the propagation all
elements that are not in A. Formulated as a positive statement this means
that those elements that are in A are propagated. Deletions are propagated
(∆−) if elements are added to B and there are more of the same elements in
A, i.e., the result A− B contains elements that must be removed due to now
being in B. This is straightforward in the change-propagation expression; we
remove everything in ∆+B , but only as many elements (∩) as we find in the
result A− B. In addition, updates on the right-hand are treated as deletions
of old values and insertion of new values, since the result contains essentially
elements from A and updates in B merely add or remove different elements
from A.

∆+(TA− B) =∆+A − (B− A)

∆−(TA− B) =∆−A ∩ (A− B)

∆upd(TA− B) =
n

〈v , u, i〉 |∃k. 〈v , u, k〉 ∈∆upd
A ∧ 〈v , i〉 ∈ (A− B)

o

∆+(A− TB) =(∆
−
B ⊎
n

〈v , k〉 |∃u. 〈v , u, k〉 ∈∆upd
B

o

)− (B− A)

∆−(A− TB) =(∆
+
B ⊎
n

〈u, k〉 |∃v . 〈v , u, k〉 ∈∆upd
B

o

)∩ (A− B)

Nest The nesting operator is defined in terms of an aggregation operator and, hence,
incrementally maintained in the same way. Since the concrete aggregate func-
tions are of great importance for the requirements of materialized data in the
aggregation operator, the peculiarities of nesting are shortly discussed. The
definition of the nesting operator – repeated below – defines an aggregation
with a map function.

νρ,ϕ(A) = γρ,λG.map(G,ϕ)(A)

The function map takes a multiset and transforms the elements into a new
multiset. As such the function is a self-maintainable aggregate function. Note
that this is due to the fact that the transformation makes no assumption
regarding ordering of elements, i.e., added or removed elements can just be
added or removed to/from the previously computed result, without taking
into account at which position they were added. However, while the function

3.4 Incremental Maintenance of Relational Operators 97



is self-maintainable the aggregation operator always requires the storage of
the previously computed aggregate value, which is in this case the entire
transformed multiset. Hence, nesting requires an amount of data comparable
to a not self-maintainable aggregate function – depending on the size of the
transformed elements the data can be slightly more or slightly less.

Transitive Closure can be maintained differently for acyclic and cyclic graphs. The
change-propagation expressions are presented first for acyclic graphs. Then
cyclic graphs are considered, which are maintainable using an extension of
the basic idea used in acyclic graphs. The idea for maintaining the transitive
closure can also be found in [DS95, DS00]. The former work also provides a
(different) formalization and a correctness proof. For easier treatment the
idea is presented here in the uniform formalization for all operators defined
in this thesis.

In terms of materialized data, we can note that both types of graphs require
a materialization of the result, i.e., all edges in the transitive closure, as well
as an additional materialization of the edges in the underlying graph. Note
that for both types of graphs updates are treated as deletions followed by
insertions. For simplification the notation for additions and deletions with
subsumed updates – already used in aggregations – denoted as ∆add

A and ∆del
A

is used.

To further simplify the reasoning in the formulas the additions and deletions
are directly expressed over the graph GA = (V, E) (cf. Section 3.3.4) and more
specifically over the edges E in the graph. Thus, the sets of added and deleted
edges are defined as shown below. Note that the transitive closure yields a
set of edges as result and, hence, additions are only processed once for each
edge, i.e., if the edge is not already contained in E.

∆add
E =
¦

(v , u)|∃t ∈∆add
A ∧ v = ρ(t)∧ u= ϕ(t)∧ (v , u) ̸∈ E

©

∆del
E =
¦

(v , u)|∃t ∈∆del
A ∧ v = ρ(t)∧ u= ϕ(t)

©

Maintenance of acyclic directed graphs

The basic idea for incremental maintenance of acyclic graphs revolves around
concatenation of existing paths. Paths are already reified in the transitive
closure as edges, i.e., if a path exists in the graph a corresponding edge
from the start to the end vertex is contained in the transitive closure. The
interesting fact to note is that the incremental maintenance does not require
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recursion but can be expressed as a finite number of concatenations of existing
paths.

To simplify the change-propagation expressions, the concatenation of paths
is declared as a function between sets of edges (3.4.3.13). In this formula a
new path is generated by taking two existing edges where the end vertex of
the first edge is the start vertex of the second edge.

E1 ◦ E2 =
�

(v , u) | (v , x) ∈ E1 ∧ (x , u) ∈ E2
	

(3.4.3.13)

Using the formula for path concatenation the maintenance of additions is
phrased very simply as shown below. A (potential) addition is determined as
the sets of edges for appending or prepending added edges to existing paths
(TC(A) ◦∆add

E and ∆add
E ◦ TC(A)) together with the set of edges obtained by

concatenating two existing paths via an added edge (TC(A) ◦∆add
E ◦ TC(A)).

For illustration consider Figure 3.22, where a new edge (v2, v3) is added.
The new transitive closure paths (marked as thick arrows) are derived from
existing paths by prepending the edge (derives (v2, v4)), by appending the
edge (derives (v1, v3)) and by concatenating existing paths (derives (v1, v4)).

v1 v2 v3 v4

Figure 3.22: Deriving transitive closure paths after adding an edge

Concrete additions take into account that newly inferred paths are already in
the transitive closure. Hence, the final set of propagated additions is obtained
as the union of all added edges (∆add

E ), which is guaranteed to hold only new
edges, and the set of inferred paths that were not already contained in the
transitive closure. As can be seen from the equations, the maintenance of
the transitive closure always requires a materialization of the complete result
prior to the modifications (i.e., TC(A)).

TCadded(TA) = TC(A) ◦∆add
E ∪ ∆add

E ◦ TC(A) ∪ TC(A) ◦∆add
E ◦ TC(A)

∆+(TC(TA)) = ∆
add
E ∪
�

e | e ∈ TCadded(TA)∧ e ̸∈ TC(A)
	

Deletions are slightly more complex but use the same principle, i.e., path
concatenation. Potentially, all paths that go through a deleted edge must

3.4 Incremental Maintenance of Relational Operators 99



be removed from the transitive closure. However, the transitive closure can
contain different paths from a source vertex to a target vertex, i.e., paths that
do not go through the deleted edge. Thus, for deletions one must determine
a set of potentially deleted edges (termed TCSuspicious(TA)) and determine
edges with alternative paths. For this reason a set of known trusted edges
is built (TCTrusted(TA)), which contains all edges from the transitive closure
that are guaranteed to be not suspicious; together with the edges found in
the updated graph. The latter are by definition not suspicious. Alternative
paths can – interestingly – be found by simple concatenations of two or three
trusted edges into new paths. Hence, all alternative derivations of paths – i.e.,
edges in the transitive closure – are identified in the set TCAlternative(TA). Note
that these additional sets are not materialized; they depend on the concrete
modifications and are determined during each incremental maintenance
operation.

TCSuspicious(TA) =∆
del
E ∪ TC(A) ◦∆del

E ∪ ∆del
E ◦ TC(A) ∪ TC(A) ◦∆del

E ◦ TC(A)

TCTrusted(TA) =
�

TC(A)− TCSuspicious(TA)
�

∪ Enew

TCAlternative(TA) = TCTrusted(TA) ∪ TCTrusted(TA) ◦ TCTrusted(TA)

∪ TCTrusted(TA) ◦ TCTrusted(TA) ◦ TCTrusted(TA)

The concrete set of deleted edges in response to the change modifications
can now simply be phrased as follows. Deletions are all suspicious (i.e.,
potentially deleted) edges (TCSuspicious(TA)) that are not contained in the set
of alternative derivations.

∆−(TC(TA)) = TCSuspicious(TA) − TCAlternative(TA)

From the definition of deletions and the intermediate sets for suspi-
cious/trusted edges, it easy to see that the maintenance of the transitive
closure not only requires the previously computed result (TC(A)), but also the
set of edges in the graph (Enew). The latter are in this case already modified
with all change events once they are used for the incremental maintenance.
The edges from the graph are a strict necessity for correctness. Consider
for example an edge e is removed that has a lengthy path (a, b) through e,
hence (a, b) ∈ TCSuspicious(TA). If the only alternative is a direct edge (a, b)
that is contained in the underlying graph, i.e., (a, b) ∈ Enew, then a treatment
without adding Enew to the set of trusted edges is incorrect.

Having established above that the operator needs to materialize sets of
edges, there is an additional consideration, namely how edges are stored for
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efficient usage in the algorithms that encode the above expressions. Since
the concatenation operator (◦) is used to both prepend and append existing
edges to paths, it is necessary to quickly retrieve existing edges via their start
and via their end vertex. Hence, edges are stored as double adjacency list,
i.e., for each vertex one can quickly retrieve the set of incoming and the
set of outgoing edges. The space consumption is naturally higher compared
to using single adjacency lists. However, using single adjacency lists, e.g.,
for outgoing edges, requires a a full traversal over all vertices to determine
incoming edges.

Maintenance of cyclic directed graphs

The transitive closure over cyclic graphs can not be maintained efficiently,
i.e., in near linear time, for edge deletions without maintaining additional
data structures [DP97]. Intuitively the reason is that deleted edges can be
contained in a cycle and, hence, the maintenance algorithm must deal with
situations in which a cycle is broken by the deletion. To perform this task,
the maintenance algorithm requires a structure to quickly determine (i) if
an edge (vertex) participates in a cycle and (ii) if a cycle is broken and (iii)
which elements of a broken cycle are still reachable. The latter cannot strictly
be determined via additional data structures for all cases of edge deletions.
Hence, a traversal of the edges in the graph can not be avoided completely,
but the impact can be mitigated, e.g., via a recursive depth-first search of only
the elements in the cycle – and not the complete graph. Note that insertions
can be handled in the same manner as in the acyclic case.

A large variety of algorithms and data structures for the maintenance of the
transitive closure have been proposed with varying effectiveness; [KZ08]
provides a good overview and comparison. The change-propagation expres-
sions presented in the following are similar to the algorithmic idea found in
Frigioni et al. [FMZ01]. The basic idea is to determine strongly connected
components (SCCs), which are essentially subgraphs that correspond to all
vertices in a cyclic path, i.e., every vertex in a strongly connected component
can reach every other vertex. For each SCC a single representative vertex
(termed super-vertex) is created and the complete SCC is replaced in the
underlying graph by the super-vertex. After replacing all SCCs, the modi-
fied graph is guaranteed to be cycle-free. Hence, the original technique for
computing the transitive closure over acyclic graphs can be reused.

The approach followed in this thesis is a bit simpler in so far as no com-
plex substitutions are made and less data structures are used. The idea is
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to extend the definition of TCTrusted(TA) to work with SCCs, which is best
illustrated by an example. Consider the deletion of the edge (v4, v2) depicted
in Figure 3.23. Due to the deletion of the edge, all paths that go through the
SCC are contained in TCSuspicious(TA); especially the path (v1, v5) is marked
as suspicious. The reason why the change expressions of the acyclic graph
maintenance do not work, is that the alternative paths cannot simply be
derived by concatenation of two or three trusted paths. By the previous
definition of TCTrusted(TA), the set contains all paths ending at the SCC and all
paths starting after the SCC, i.e., (. . . , v2) and (v4, . . .) are still trusted for any
vertices in the graph not contained in the SCC, e.g., v1 and v5. But inside
the SCC all paths are suspicious, since all paths in the cycle can go through
the deleted edge (v4, v2). Hence, trusted edges in the SCC are only the edges
contained in the graph, i.e., (v2, v3) and (v3, v4). Now, to derive the – still
valid – path (v1, v5) the concatenation of four trusted paths is required. In
general, an SCC can have paths of arbitrary lengths between end-points such
as v2 and v4, which require more than four concatenations and, hence, the
acyclic technique for re-deriving paths is insufficient.

. . . v1 v2 v3 v4 v5 . . .

SCC

Figure 3.23: Deleting an edge in an SCC

To remedy the situation, the idea is to simply recompute trusted paths inside
an SCC (and not further) via a DFS traversal. In the above example, this
would yield the path (v2, v4) as a trusted path. Afterwards the concatenation
of two or three trusted paths is sufficient to maintain the transitive closure.
The DFS traversal requires only a minimal materialization of additional data
structures, namely the information in which SCC a vertex is contained. Apart
from this the traversal only requires the edges in the graph, which are already
maintained by the operator.

Formally, the data structure for determining participation in an SCC is a set
that contains for each vertex a corresponding identifier of it’s SCC as shown
below. Let V be the set of vertices for the underlying relation A and Id a set of
identifiers. Then the set SCCId(A) contains a set of pairs that links a vertex to
an SCC identifier. The set must maintain the invariant that any two vertices
that have the same identifier are also in a cycle. Note that not all vertices are
required to be linked to an SCC, but only those that actually participate in a
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cycle. Hence, the size of the data structure is bounded by the number and
size of the SCCs in a graph.

SCCId(A)⊆V × Id

Invariant: ∀



u, idu
�

,



v , idv

�

∈ SCCId(A).

idu = idv → (v , u) ∈ TC(A)∧ (u, v ) ∈ TC(A)

Given the above definition, the set of trusted edges can be extended; denoted
as TCTrustedSCC(TA).

TCTrustedSCC(TA) =TCTrusted(TA) ∪
{(u, v ) | ∃ a path from u to v in Enew∧
∃i ∈ Id. 〈u, i〉 ∈ SCCId(A)∧ 〈v , i〉 ∈ SCCId(A)}

The original set of trusted edges is retained and an additional set is added for
all paths between vertices in the same SCC. The definition of TCAlternative(TA)
can then be substituted by a definition that uses TCTrustedSCC(TA) instead of
TCTrusted(TA).

There are two important things to highlight in the presented approach. First,
the identifiers for SCCs and the re-computation of paths in an SCC are
only required if there are cycles in the graph. In the case of an acyclic
graph, the algorithm and data structures automatically reduce to those found
in the maintenance algorithm over acyclic graphs, i.e., SCCId(A) = ; and
TCTrustedSCC(TA) = TCTrusted(TA). Second, the approach naturally has a bad
asymptotic complexity for an incremental update (O(|E|)), since the worst
case is that the entire graph is a single cycle. Nevertheless the approach
performs reasonably well for graphs with small SCCs.

As noted in the beginning the complexity for removing edges in an SCC can
not be avoided entirely. In general, once an edge is removed that breaks
the cycle of an SCC a re-traversal of the graph must be performed. The
algorithm in [FMZ01] seeks to reduce the number re-computations by storing
an additional sparse certificate for each SCC. A sparse certificate is a subgraph
of the SCC that has the same set of vertices, but has fewer edges (2k − 2
where k is the number of vertices). The certificate guarantees the property
that if there is a path between two vertices in the SCC, then there is also a
path between the same vertices in the sparse certificate. One can think of
the sparse certificate as the essentially required edges in a cycle, whereas
multiple edges can exist that do not contribute to the cycle. Hence, deleting
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an edge not in the certificate guarantees that the cycle is not broken and no
re-computation of the SCC is required. The certificate costs additional space
and can only reduce the number of re-computations for graphs that contain
such cycles with unnecessary edges.

Recursion As discussed in Section 3.3.4 the recursion performs a substitution in the
operator tree. Conceptually, the substitution is quite simple. Each occurrence
of the relation A in Op(A) must be substituted by a recursive definition (ARec)
given as:

ARec = FIX (A, Op(A))

The compiled relation for Op(A) must in turn be observed by the fixpoint
operator (FIX). Given that the observer pattern allows to dynamically add or
remove observers the construction of a recursion is relatively simple and the
result of Op(A) in opA, the recursion can be constructed by the call:

1 opA.addObserver(fix)

The only issue for the query compiler is that the registration can only be per-
formed after the compilation of the query Op(A), i.e., during the construction
of the operator tree we have no variable opA representing the result. Hence,
the query compiler internally remembers the fixpoint operators and performs
the recursive registration in a final compilation step.

The recursive edge introduced in the operator tree has no special semantics,
i.e., elements are just propagated back in the tree. As a technical side note,
the evaluation in a recursive operator tree requires large method call stacks,
due to the fact that the propagation between the operators can produce rather
large call chains. These chains can currently not be optimized by the compiler
(e.g., via tail-call optimization), since recursion spans multiple observers with
a generic notification mechanism. That means each operator iterates over
the list of its observers and makes notification calls. Hence, the recursion
spans multiple objects and cannot be optimized by the compiler. To allow the
recursion to work with the default call stack sizes of the Java virtual machine,
the FIX operator basically emulates its own stack, i.e., it records the recursive
additions/deletions, but propagates them one item at a time.

To obtain correct incremental view maintenance a variant of the DRed (Delete
and Rederive) algorithm [GMS93] (cf. Sec. 2.3) with derivation counters is
used. Note that updates are treated as deletions followed by insertions in a
recursion. For simplification we use the notation for additions and deletions
with subsumed updates – already used in aggregations – denoted as ∆add

A and
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∆del
A . To understand the treatment of recursion let us start with the insertion

of elements.

Maintaining insertions

Insertions are relatively straightforward. For the purpose of fixpoint recursion
the set Derivations(A) tracks the number of different derivations for each
value in A. Thus, we can take the set of tuples with elements from A and a
counter and define the set Derivations(A) as a subset as follows:

Derivations(A)⊆A× Int

An insertion is propagated if the fixpoint operator has not already encountered
the value. This is formalized as follows:

∆+
�

FIX(TA)
�

=
¦

v | 〈v , i〉 ∈∆add
A ∧ (v , k) ∈ Derivations(A) ∧ k = 0

©

For brevity in the above definition we can assume that (v , k) ∈ Derivations(A)
is always true and returns a count of zero if the element was not encountered
before. When treating insertions the derivation counters must be updated.
Basically the number is incremented each time the insertion of an element is
encountered in to the operator, which can be formalized as follows:

∀〈v , i〉 ∈∆add
A ∧ (v , k) ∈ Derivations(A)⇒

Derivations(A) = (Derivations(A)− {(v , k)})⊎ {(v , k+ i)}

Note that each element is propagated exactly once, i.e., if an alternative
derivation of the element is encountered, the element is not propagated
again. Thus, any operators in the operator tree between the FIX operator
and the recursive back edge will also contain the element only once. So
far this treatment of additions is little more than an elaborate way to rule
out multiple derivations. The number of alternative derivations will become
interesting when we maintain deletions.

Maintaining deletions

The basic procedure for deletions is to propagate all deleted elements through
the operator tree, to determine all recursively derived values that are in turn
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deleted. The interesting point in the DRed algorithm is that for some elements
we have alternative derivations. Hence, these elements must be re-inserted
to determine which values can still be recursively derived. In other words
the deletion phase is an over-approximation of all deleted elements and is
followed by a rederivation phase that re-inserts elements to obtain a state
where only the exact deletions are performed.

The deletion phase is a mirror of the insertion phase, with the difference that
deletions are propagated. A deletion is propagated if the fixpoint operator has
not already encountered the deletion of the value. The number of deletions
is tracked in a set Deletions(A) as follows:

Deletions(A)⊆A× Int

The change-propagation expression for deletions is straight-forward and
formalized as follows:

∆−
�

FIX(TA)
�

=
¦

v | 〈v , i〉 ∈∆del
A ∧ (v , k) ∈ Deletions(A) ∧ k = 0

©

Similar to derivations the counter for deletions is updated each time an
element is encountered as deleted:

∀〈v , i〉 ∈∆del
A ∧ (v , k) ∈ Deletions(A)⇒

Deletions(A) = (Deletions(A)− {(v , k)})⊎ {(v , k+ i)}

Note that after the deletion phase we have effectively removed all deleted
elements from the incrementally maintained operators that stand between
the FIX operator and the recursive back edge to FIX. Hence, the rederivation
phase consists of effectively propagating insertions for elements that must
be rederived. In other words the rederivation phase is a second round of
insertions, but one that is triggered from inside the FIX operator. The set of
elements that must be rederived can be obtained as follows:

ReDerivations(A) =
�

v | (v , i) ∈ Deletions(A) ∧ (v , j) ∈ Derivations(A)∧ j− i > 0
	

In essence the set of rederivations contains all elements where the counter of
deletions is smaller than the counter for derivations. Before the rederivation
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phase starts the counters for all derivations must be updated to remove the
number of deleted elements as follows:

∀(v , i) ∈ Deletions(A) ∧ (v , j) ∈ Derivations(A)⇒
Derivations(A) =

�

Derivations(A)−
�

(v , j)
	�

⊎
�

(v , j− i)
	

After having made this preparation the set ReDerivations(A) is propagated to
the operators in the recursion. Any new recursively derived values will enter
the FIX operator again as an insertion and update the number of derivations
accordingly.

Materialized auxiliary data

In the above definitions for insertions and deletions we have declared three
sets, i.e., for derivations, deletions and rederivations. In terms of permanently
materialized data only the set for derivations is necessary. In other words after
a deletion is completed the sets Deletions(A) and ReDerivations(A) are not
needed anymore and thus the data is transient. Note that the rederivations
are propagated recursively until no new elements are inserted, afterwards
the control is returned to the method that started the rederivation phase and
only then are these sets thrown away.

Runtime efficiency

Incremental maintenance of recursive queries can be quite expensive. In
essence it is a source of non-linearity for the time required to incrementally
maintain operators. All other operators can quickly determine added or
removed results based on state they maintain by themselves. But the recursion
propagates changes through the operator tree to determine additions and
deletions. Thus, the cost for incremental maintenance is determined by the
complexity of the operator tree that is used inside the recursion.

Moreover, the recursion deletes an over-approximation of results and has a
rederivation phase; hence, deletions are not treated in a minimal manner. The
problem here is that the deletion and rederivation phases are also performed
recursively. Note that the rederivation in itself is natural for a recursive
operator. Consider for example the transitive closure which has a similar
phase. In the transitive closure an over-approximation of edges is marked as
suspicious and then alternative derivations are found by concatenating trusted
edges. The difference between the transitive closure and the general recursion
is that the transitive closure has an efficient way of finding alternatives by
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concatenations of two or three trusted edges. A transitive closure phrased as
general recursion essentially performs a traversal over the graph during the
rederivation phase, which is algorithmically much slower.

3.5 Discussion

In this chapter we have presented the foundations of a language-integrated database
for incremental view maintenance. Incremental maintenance is achieved via opera-
tors of the relational algebra over multisets. The operators are expressive enough
to formulate basic SPJ queries, set-theoretic queries, negations (via set difference),
aggregations, existential queries, transitive closures and recursions. The following
points deserve a closer discussion:

3.5.1 Memory Optimality of Incremental Maintenance

The queried data is represented as objects that are logically available as tuples in
base relations, yet base relations do not actually materialize (store) the data. Instead
data is materialized inside the operators only if required for incremental mainte-
nance of the operator itself. Each operator has a change-propagation expression
for incremental maintenance that materializes a minimal amount of data for the
respective operator. Hence, the solution is optimal w.r.t. the auxiliary data used in
each operator.

The overall optimality of the queries is in most cases reached when treating each
operator in isolation. However, there are cases where a different treatment can
be better. Consider for example the set-theoretic operators that rely on internal
materializations of A− B and B− A, where A and B are the underlying relations. If,
for example, A is already materialized, the auxiliary data is redundant and these
operators can instead be maintained by directly materializing B. Note that the result
of each operator is typically only materialized if explicitly requested by the user.
Nevertheless, such cases can arise if a user has requested the materialization, or if A
is computed by an operator that must materialize its results. The latter is done, for
example, in set differences or transitive closures. Yet, there is currently no data on
how common such cases are. Indeed, they were practically non-existent during our
evaluation of queries from the domain of static code analyses. Hence, for simplicity,
we treat operators as presented in Sec. 3.4.3 and leave such optimizations as future
work.
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3.5.2 Runtime Optimality of Incremental Maintenance

The evaluation strategy followed by observer-style change propagation can be
categorized as a bottom-up evaluation, which – in general – is considered inferior
to a top-down evaluation. The bottom-up nature is inherent in the strategy, since
the evaluation always starts at the base relations, i.e., the bottom, and propagates
results to operators further up in the operator tree. The downside of this strategy
is that each operator always produces a complete result for the defined query. If
subsequent operators rule out resulting tuples, i.e., due to selection conditions, some
results are not really required to be computed, i.e., unnecessary computations are
performed. However, there are optimizations that can alleviate the problem found
in bottom-up evaluation systems. One such optimization is to push down a selection
to a lower level in the operator tree, hence, ruling out unnecessary results earlier in
the computation. We discuss optimizations of the operator tree in the next chapter.

For an optimal runtime there is an interesting issue w.r.t. providing single-value
modifications, i.e., atomic add/remove events, and the multiset based modifications
used in the changed propagation expressions. In comparison, the single-valued
modification is much faster (approx. 5 x) over large datasets even for trivial queries.
The reason is that propagating the changes as multisets requires the creation of addi-
tional data structures, which are only used to notify the next operator. Notifications
using single values are simple method calls. In other words, for a dataset of size
n it is much faster to make n method calls then to construct a list of n results and
making 1 method call.

3.5.3 Complexity of Integrating Incremental Maintenance

In terms of the complexity of incorporating incremental view maintenance into an
application, a minor amount of integration must be performed. The view mainte-
nance requires events for object modification that must be explicitly (manually)
triggered as method calls to the base relations. Yet, this is well feasible if the number
of base relations remains small compared to the number of defined views. For
example, in the case of the static analyses formulated as part of our case studies,
there are only four base relations and 50+ views – declared as part of the case
studies.

The explicit triggering provides a very flexible form of integration into an applica-
tion, since the application is free to perform non-incremental computations on the
data. There is only one restriction on objects that participate in the incremental view
maintenance, which is that state mutations must be explicitly communicated to the

3.5 Discussion 109



database as an update event and may not be performed outside of the incrementally
maintained operators (cf. Sec. 3.1.1).

3.6 Related Work

A large variety of related work was already discussed in Chapter 2 with the focus on
the background of static analyses, different database technologies and incremental
view maintenance. This section addresses further related works w.r.t. incremental
view maintenance in databases, that was not required as background knowledge.
Furthermore, works on language integration for database queries are discussed.

Database view maintenance
In the context of OO databases, the MOVIE project [AFP03] provides a more fine-

grained treatment of incremental modifications to objects with nested collection. The
basis of these modifications is a very fine granularity for events, which can be summa-
rized as onInsertElementToCollection, onDeleteElementFromCollection, and
onModifyAttributeInCollectionElement. A formalization of such modifications
for a subset of OQL was discussed in [Nak01], where OQL is reduced to monoid
homomorphisms. Compared to the events defined in this thesis, the events in MOVIE
allow more fine-grained incremental updates. We did not consider events at this
granularity, since the primary target of our database are static analyses, where
such events are hard to come by. However, extending our approach to a broader
treatment is well feasible.

A different kind of database system has been introduced under the term column-
oriented database (cf. [AMH08] for a conceptual overview and comparison to
traditional row-oriented databases). The focus of these database systems is the
optimization of query performance, where – in essence – column-oriented systems
are more I/O efficient for read-only queries, but perform less well for write-only
queries. This performance gain is mainly due to the fact that the database has to
fetch (from a hard disk) only those columns (i.e., attributes) that are really accessed
by a query, whereas row-oriented systems fetch all the data in a row. The research
in column-oriented databases frequently cites an optimization technique termed late
materialization, where rows are reconstructed (materialized) by joining together
columns and these joins are performed as late as possible in a query’s execution.
Late materialization is conceptually different from the term materialization used in
this thesis, since late materialization only refers to the reconstruction of row-like
data after performing a query and is not tied to an incremental maintenance of
the query’s results. In contrast we use the term materialization to denote auxiliary
data used during incremental maintenance of the query’s results. Column-oriented
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database systems per-se offer a different angle at query processing that is orthogonal
to incremental view maintenance. There are several implications of using column-
oriented systems: (i) they require less main-memory during computation of results,
since less data is loaded into memory, i.e., only required columns; (ii) the column-
oriented requires additional column-based indices (on a hard disk) to back up this
style of query processing; (iii) typically compression schemes are used in these
systems, since column-based storage can be compressed better than row-based
storage. Concepts, such as column-based indices and compression are currently not
considered for the query processing in this thesis, but are worthwhile exploring in
future works.

From a practical perspective it seems prudent to make a distinction between
several applications of materialized views that are supported by commercial systems,
e.g., Oracle Database5, IBM DB26, etc. In these systems three basic use-cases employ
materialized views. (i) pre-computation of query results for faster access, (ii) storage
of data from several distributed database, and (iii) storage of summary tables to
answer online analytical processing (OLAP) queries. Typically the term “materialized
view” is used technically to refer to views that support the former two use-cases. In
this sense the traditional databases use incremental view maintenance as a form of
result caching, i.e., in the original sense of materialized views defined in Sec. 2.3,
and also require a materialization of the base relation. The third use-case stems from
the domain of data warehousing with federated databases and is an exception in so
far as access to base relations is actively avoided by the incrementalization. In this
setting the materialized views are available and maintained in the data warehouse.
Yet, the base data must be accessed from remote databases that can have high access
costs, e.g., if a high amount of data must be transferred over a network. Thus, it is
beneficial to maintain the views without accessing the remote database. However,
OLAP is a very specialized case that largely revolves around multi-dimensional
aggregate queries [GM99a]. In this context materialized views can be used to pre-
compute summary tables that increase the query performance of the data warehouse.
View maintenance in OLAP also tries to achieve self-maintainability, yet, the view
maintenance is to some extent orthogonal to traditional relational algebra and
geared towards the operations for the underlying multi-dimensional aggregates.

It is also important to note that not all database systems support materialized
view definitions. Especially NoSQL [Sto10] databases, e.g., Hadoop7, often provide
low-level abstractions, e.g., the map and reduce functions (or key-value stores),

5 http://www.oracle.com/database
6 http://www.ibm.com/db2
7 http://hadoop.apache.org
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which do not allow the definition of materialized views as supported by traditional
relational databases.

Another (recent) development in databases is the focus on big data stores and
that use parallelism to allow the database to cross multiple machines – in essence
treating a cluster of servers as a single computation resource. For example, SAP’s
Hana8 main-memory database can utilize a cluster of servers as a single memory
pool. Likewise, the Hadoop MapReduce framework utilizes parallelism to perform
computations on multiple servers, but uses persistent data. These approaches are
viable for large business applications, yet the integration of static analyses into a
developer’s IDE calls for a lightweight approach.

The language integration proposed in this thesis can be considered lightweight
in the sense that large(r) amounts of data can be processed on a single machine
without large memory requirements and without using a fully-fledged database
system. The language integration supports an incrementalization where the base
relations and the results are transient and only auxiliary data that is required for the
incremental view maintenance is materialized. The concept of self-maintainability
plays a pivotal role in this approach, to identify minimal memory requirements. In
itself the concept of self-maintainability was previously applied in database systems,
as exemplified in the OLAP use-case above. Yet, our approach abandons traditional
database models such as persistence and concurrent access and only keeps the
query and optimization abilities of databases. Persistence and concurrency are not
required in the setting of an integration of static analyses into a developer’s IDE,
since only one user on a single machine accesses data and the data is stored by
default in the IDE.

Finally, the self-maintainable operators and the minimal auxiliary data identified
in this chapter (cf. Sec. 3.4.3) are a good starting point, yet many standard operators
– especially joins – do require materialization of data. Thus, we introduce an
additional non-standard optimization that further reduces memory requirements in
the next chapter. The proposed optimization enables scoping for the incrementalized
data, such that no materialization is required for queries that correlate data within
a single scope.

Language integration for database queries
In recent years an increasing amount of works have provided language-integrated

query capabilities, i.e., integrations of database queries into programming languages.
The most widely known works are Microsoft LINQ [MAB08] and Ferry [GMRS09],
the latter was embedded into Scala as ScalaQL [GIS10]. The focus in these works
is to integrate standard database technologies with general purpose programming

8 http://www.sap.com/hana
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languages to provide a better handling of persistence related code. The main
issues addressed are (i) the type-correctness for database queries w.r.t. schemas in
persistent databases and (ii) query optimization in the programming language (i.e.,
on the client side) to reduce the amount of persistent data moved between client
and database.

The above works are orthogonal to this thesis in the sense that they can provide
different query front-ends. We discuss more on this issue in the next chapter after in-
troducing our own query language. It is important to note that the above cited works
do not explicitly target incrementalization. Queries against in-memory collections
could theoretically also be incrementalized in LINQ. However, the standard imple-
mentation (LINQ2Objects) performs no incrementalization. The commercial library
LiveLINQ provides incrementalization in the form of caching of result collections.
Furthermore, indexing is provided as an optimization for joins. All cached results,
and indices, as well as the underlying base relations are then fully materialized in
main-memory. The range of incrementalized operations provided by LiveLINQ is
not well documented. However, it seems fair to state that LiveLINQ supports the
basic and set-theoretic operators (cf. Sec. 3.3.2 and Sec. 3.3.3), since these are
declared in the standard LINQ API. Nevertheless, there is no concrete documentation
on how exactly individual operators are incrementally maintained. The available
documentation on LINQ states that lists are used for the base relations and results
(in conjunction with indices for optimizations), which conceptually means material-
ization of base relations as well as results. The underlying assumption is that base
relations are materialized in-memory anyway (by fetching data from a database).
Yet there is not information on auxiliary data or discussions on memory costs for the
incrementalization.

The Java Query Language (JQL) [WPN06] is an approach that provides a declara-
tive form of queries for the Java programming language. Yet, JQL is very specialized
w.r.t. the supported relational operators – mainly joins. The approach uses standard
optimization techniques – primarily join ordering – to improve runtime performance.
In [WPN08] caching for JQL results is introduced together with incremental main-
tenance of the cache. Updates to JQL caches also assume the availability of the
underlying base relations.

In general, language-integrated queries over in-memory collections are architec-
turally preferable over large distributed and parallel systems, when it comes to our
use-case of integrating incrementalized static analyses into an IDE on a single com-
puter. The two main reasons are that (i) there is no runtime cost for transitioning
the data to/from servers over a network (and typically paying transaction costs for
concurrent access, even though there is no concurrency) and (ii) the practicality of
setting up a distributed system for a single developer is questionable.
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However, the current language integrations share two characteristics: (i) the
incrementalization is added as an “afterthought” which leads to a treatment of (ii)
the incrementalization as a form of querying completely materialized collections
and caching (i.e., materialization) of results. The latter is conceptually equivalent
to treating the results as materialized views in databases. This means that in these
approaches in-memory collections for base relations and for results are materialized
alongside any auxiliary data structures required for view maintenance.

In contrast to the existing language integrations the treatment of incrementaliza-
tion in this thesis materializes as little data as possible to allow scalability to large(r)
amounts of data. In essence the base relations and the view results are seen as
transient data and only the auxiliary data structures required for incremental view
maintenance are materialized. The concept of not materializing base relations and –
to a smaller extent – results is novel for language integrations, since the traditional
programming model of working with collections is to have all the data available in
memory. Indeed not materializing base relations is a very distinctive design decision
that is viable only for a domain where the incrementalized data is available (e.g.,
persisted) outside of the running application. In this thesis the domain is static code
analyses where the underlying data, i.e., the source code, is persisted by the IDE.
However, the approach is easily applicable to other domains that revolve around
file-based editing as for example model-driven tools.
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4 Query Language and Query Optimization

This chapter presents the query language that is integrated into the host language
Scala and discusses query optimizations in detail. In Section 4.1 we first present the
query language via examples that cover the formulation of queries for the relational
operators defined in the last chapter. Then the query syntax is compared to a
standard SQL syntax and finally static type safety is discussed. In Section 4.2 several
query optimizations are discussed. We cover the application of traditional optimiza-
tions and consider optimizations for multiple views that reuse overlapping parts of
their queries, i.e., common subqueries. Then the relationship of the language inte-
gration to traditional query optimizations of OO databases is discussed. Furthermore
we discuss how indexing is performed in our system, since indices play an important
role for runtime, but should not require a complete materialization of data. Finally,
we discuss a novel optimization that introduces increment local operators. Increment
locality introduces a notion of scoping for data that is propagated from the base
relations and used during incremental view maintenance. With this optimization
views, that perform computations within said scopes, are self-maintainable, i.e., do
not materialize any memory.

4.1 Query Language – IQL

The query language has a surface syntax inspired by SQL [CB74] and is termed IQL
for “Incrementalized Query Language”. IQL provides keywords to formulate queries
in typical SQL-style with SELECT, FROM and WHERE clauses. Queries formulated
using IQL are then compiled into operator trees (cf. Section 3.4) whose results are
automatically incrementalized. IQL is an embedded domain specific language that
is integrated into Scala and, hence, is provided as a library.

The IQL syntax was developed with the following rationales in mind: First, the
language must provide a type safe embedding into Scala. Second, the language
should follow the standard SQL syntax where possible. Third, IQL must be expressive
enough to formulate queries using the supported operators (defined in Section 3.3).
However, IQL is not a complete transcription of the SQL language.

In this section the IQL language is presented in a mostly example driven manner.
In addition, the type safety of the language is discussed and the key differences
between IQL and SQL are highlighted and why IQL has to deviate from the standard
SQL syntax.
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The compilation from IQL to the relational operators is similar to a compilation
from standard SQL to relational algebra. Query compilation is discussed in standard
text books such as [GMUW08]. The general principles apply to IQL and a detailed
discussion is omitted.

4.1.1 Defining Queries in IQL

All functions of the various operators used in the examples, e.g., selection func-
tions, projection functions, which were previously formulated as λ functions are
now defined as (anonymous) Scala functions. The language is exemplified via
queries on the extents EStudents and ERegist rat ions, which are assumed to be avail-
able as objects students and registrations of the types Extent[Student] and
Extent[Registration] respectively.

Expressing queries using “dotless” function calls for keywords
The basic definition of SQL keywords adopts a “dotless” function call style to

mimic SQL style syntax. The basic Scala syntax rule that enables this is as follows:
if there is an object and a function (message) called on the object, then the “dot”
notation found in most object-oriented languages can be omitted. A respective query
using the three basic SQL keywords is shown in Figure 4.1. The query formulates
the view view1 from the first example in Section 3.4.2 (p. 80).

1 SELECT ((_:Student).lastName) FROM students WHERE

2 (_.gradeAverage < 3.0)

Figure 4.1: IQL query for selection of last names of a filtered set of students

The basic idea for the syntax is that each keyword is a method, called on an
object representing the previous clause in the query. The SELECT clause is the staring
keyword and, hence, uses a Scala object with an apply() method that takes the
projection function1 that transforms students to their last names. The produced
clause defines a method FROM which can be called in the “dotless” style provided by
Scala. The FROM takes one or more relations as parameters in the form of Extents,
compiled Relations or uncompiled IQL queries. The produced FROM clause then
defines a method WHERE which takes the selection function as a parameter. To

1 Note that in standard SQL the SELECT clause defines projections, and the WHERE clause basically
defines selections in the sense of the relational algebra operators
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illustrate the general idea behind the syntax, the Figure 4.2 shows an expanded
version with all the omitted syntactic elements from Scala.

1 SELECT.apply((_:Student).lastName).FROM(students).WHERE

2 (_.gradeAverage < 3.0)

Figure 4.2: Expanded IQL query from Figure 4.1 with “dot” syntax

Expressing queries using function definitions to omit type annotations
Several of the functions, provided to the various operators via IQL, require type

annotations for type safety. For example, the projection function in Figure 4.1
(line 1) has a type annotation _:Student, while the selection function (line 2)
required no type annotation, i.e., used the _ expression.

The type annotation in this position (and in several others) is required, because
the Scala compiler can not infer any type for an anonymous function. The two rules
of Scala that hamper the compiler from inferring types are (i) left to right deduction
of types2 and (ii) types are only deducible if the anonymous function is directly
passed as a parameter to a method where all parameter types are known.

In the case of the above projection, the anonymous function is passed to the
head of the expression, which means that the first rule hampers the compiler from
deducing any type, i.e., there is no expression to the left that already can tell us what
type the projection should have. In the case of the selection function both previous
clauses have clearly stated that the objects of discourse are of type Student. The
SELECT clause defines the type since an explicit function from Student to String

was passed and the FROM clause defines the type of the objects since students is of
the type Extent[Student].

To alleviate the burden of type annotations a set of explicitly typed functions can
be defined over the objects of discourse. For illustration Figure 4.3 depicts the above
query using an explicitly defined function lastName (line 1). The function is passed
as a parameter to the SELECT instead of the anonymous function (cf. line 2).

Expressing SQL-style SELECT clauses
The added benefit of using explicit functions is that one can achieve a type-safe

and SQL-style definition for projections to multiple properties of the selected objects.
In line 2 in Figure 4.4 the projection is defined using two functions that each take

2 The left to right deduction of types is a Scala specific problem. Other languages, such as Haskell,
do not have this problem.
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1 def lastName : Student => String = _.lastName

2 SELECT (lastName) FROM students WHERE ...

Figure 4.3: Shortened IQL query using function symbols

a Student object as parameter. The functions are implicitly converted by IQL to a
function that takes a Student as parameter and returns a tuple of two strings.

1 def firstName : Student => String = _.firstName

2 SELECT (firstName , lastName) FROM students WHERE ...

Figure 4.4: IQL query of an SQL-style SELECT clause for multiple selected properties

Expressing joins and join conditions
Joins are expressed by passing multiple tables to the FROM clause and formulating

one or more join conditions. Note that without join conditions such a query yields
the Cartesian product of the tables. For illustration, Figure 4.5 depicts a self-join of
the student relation that yields combinations of students that have the same first
and last name but a different grade average. To indicate the join in the query, the
extent students is passed twice to the FROM clause. The result of the query contains
Scala tuples of two student objects. Note that the result is defined using the special
keyword (*), hence no projection is performed and the result is returned as defined
for a join (or Cartesian product) operator, i.e., as a tuple of the joined objects.

1 SELECT (*) FROM (students, students) WHERE

2 (firstName === firstName) AND

3 (lastName === lastName) AND

4 NOT (gradeAverage === gradeAverage)

Figure 4.5: IQL query for joining students with same name and different grade
average

The query contains two positive join conditions, stating that the first names of
both students must be equal (line 2) and the last names must be equal (line 3). The
conditions are defined as functions that are supplied to a special IQL equality opera-
tor “===” that allows to specify equality between the conditions in an infix notation
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style. From the perspective of the query it is instructional to think of the equality
operator as taking two functions, applying the left function to objects contained
in the left relation in the FROM clause and applying the right function to objects
contained in the right function. All objects that yield the same result under these
functions are results of the join. In the case of the above query multiple equalities are
defined in conjunction (keyword AND). Hence, objects have to agree in the returned
values of all functions. The query contains a third condition (line 4) that is negated,
which means the objects must yield different values under the given functions. Note
that the negation (NOT) is constructed as a new object that is passed to the enclosing
query. This technique increases usability by allowing to omit numerous parenthesis,
e.g., the outer parenthesis in the expression AND( NOT(...) ).

Expressing existential sub-queries
Existential quantification is basically a filter condition on elements from a different

query (as discussed in the respective operators in Section 3.3.5). Hence, existential
quantification is formulated as sub-query3 in SQL. The existential condition is
initiated by the special EXISTS keyword, which is part of the WHERE clause and
contains a complete sub-query of the form SELECT, FROM, WHERE. The sub-query
specifies a join condition between objects in the sub-query relation and objects in
the outer query relation. The join condition specifies the properties for elements
in the outer query, such that there also exist elements in the sub-query with equal
properties.

Note that the join condition can be omitted. In this case the outer query basically
selects all elements of the outer relation, if the sub-query returns a non-empty result.
However, this case was of less practical value for the static analyses formulated in
this work and, hence, the (more interesting) example of using join conditions is
presented.

Figure 4.6 illustrates this using the example query already shown in Figure 3.20
(p. 83), which selects a filtered set of students that have also registered for a
course. The example uses two function definitions (for brevity and readability); (i)
registeredStudent (line 1) retrieves the student object from a registration entry
and (ii) student (line 2) is a short form of the identity function. Using the functions
makes the query shorter and more readable than supplying anonymous lambda
functions, since the latter would clutter the query with type annotations for the
respective parameter and return types. The outer query uses the standard clauses
presented earlier to select and filter all students that have a grade average below
3.0 (lines 3 and 4). The sub-query is surrounded by the EXISTS keyword (line 5)
and the sub-query starts with the selection of all registrations (line 6). Finally, the

3 Sub-queries are also often referred to as nested queries
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1 def registeredStudent: Registration => Student = _.student

2 def student: Student => Student = _

3 SELECT (*) FROM students WHERE

4 (_.gradeAverage < 3.0) AND

5 EXISTS (

6 SELECT (*) FROM registrations WHERE

7 (registeredStudent === student)

8 )

Figure 4.6: IQL query for selection of a filtered set of students registered for a course

join condition declares that a the registeredStudent contained in a registration
is equal to the student from the outer query (line 7). The join condition uses the
same syntax as seen in a join of two tables. In the case of sub-queries the condition
for elements of the sub-query is written on the left-hand side and the condition for
elements of the outer query on the right-hand side.

Expressing unnesting
The unnesting basically takes a multiset – i.e., a Scala collection – stored in an

object and makes the elements available as a flattened relation. Inspired by SQL,
the keyword UNNEST is used to indicate the unnesting. Since the unnesting operator
basically creates a new relation, it is only natural that the keyword is found as a
substitute for a relation in the FROM clause.

For illustration the query in Figure 4.7 declares an unnesting that extracts the
list of grades from students and makes them available as a relation. The relation
has a result type of tuples of Student and Int (line 1), as declared in the respective
operator in Section 3.3.4. Thus, as a result, each student is paired together with
every grade stored in her list grades. The unnesting is defined via the UNNEST

keyword, which takes two parameters; (i) the relation that contains the objects that
hold the to-be unnested collection as a property and (ii) the function used to extract
the collection from each object, e.g., _.grades in the example below.

1 val studentGrades : Relation[(Student, Int)] =

2 SELECT (*) FROM UNNEST (students, _.grades)

Figure 4.7: IQL query for unnesting the list of grades from students
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Expressing aggregations
An aggregation – in the general form – consists of two parts, (i) the aggregation

function(s) for building a single value(s) from a multiset and (ii) the grouping
function that segregates the objects in the underlying relation into groups, i.e.,
multisets that contain all objects which are equal under the grouping function. The
separation of aggregations into two parts is also eminent in the standard SQL syntax,
where the aggregation function is declared as part of the SELECT clause and the
grouping function is an optional clause positioned after the WHERE clause. The IQL
syntax adheres to this style of defining aggregations.

For illustration Figure 4.8 depicts an aggregation over the studentGrades rela-
tion, as defined in the previous example. The aggregation groups all students by
their semester and selects the minimum of all grades students of the respective
semester had. As in the previous examples several functions are used for brevity
and readability. The functions in line 1 and 2 return the first and second component
of the (Student, Int) tuple – returned as results in studentGrades – in more
readable form. The function semester (line 3) is again a more declarative form of
the identity function that transports the message that the integer value represents
a semester. The first part of the aggregate is declared in the SELECT clause. IQL

1 def gradedStudent : (Student, Int) => Student = _._1

2 def grade : (Student, Int) => Int = _._2

3 def semester : Int => Int = _

4 SELECT (semester, MIN(grade)) FROM

5 studentGrades GROUP_BY (gradedStudent(_).semester)

Figure 4.8: IQL query for selecting the lowest grade of students by semester

has the convention that the aggregate functions are declared last in the clause. For
example, the MIN function is declared as last function in line 4. Multiple aggregation
functions can be given but must all be used after the general projection functions.
The projections functions either take the objects in the underlying relation as a
parameter or, if a grouping function is present, the values returned by the grouping
function. Due to type-safety these alternatives are exclusive, i.e., if a grouping
function is present the projections must adhere to the type returned by the grouping.
In the example, students are grouped by a single function, which returns a student’s
semester as an Int value, hence only projections from Int values are possible. The
grouping function is declared using the keyword GROUP_BY that starts a new clause
(line 5). Note that grouping by multiple values is also possible and declared in the
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style of multiple functions in a projection. The result (and its type) is then a tuple
of the values (types) returned by the grouping functions.

Expressing transitive closures
Transitive closures – like unnestings – generate new relations and are thus

positioned in the FROM clause. For simplicity the keyword deviates from the SQL
standard and the transitive closure is denoted by TC.

Consider for illustration the definition of the transitive closure depicted in
Figure 4.9, which computes all transitive prerequisite courses of a master
course. Master courses were shown in Figure 3.6 as an extension of normal
courses. Each master course has a list of prerequisite courses, i.e., as field
prerequisites: List[Course]. In the example the relation masterCourses is
assumed to contain the data over all master courses. The direct prerequisite courses
are obtained via an unnesting (line 8). Note that the unnesting generates a re-
lation that contains tuples of MasterCourse and Course objects. The tuples are
transformed by the query (line 7) into objects of the type Prerequisite (line 1)
for easier treatment. We use the function asPrerequisite (whose definition is
omitted) to transform the tuple.

1 case class Prerequisite(

2 course: MasterCourse ,

3 prerequisite:Course

4 )

5

6 val directPrerequisites =

7 SELECT (asPrerequisite) FROM

8 UNNEST(masterCourses , _.prerequisites)

9

10 val transitivePrerequisites =

11 SELECT (asPrerequisite) FROM

12 TC(directPrerequisites , _.course, _.prerequisite)

Figure 4.9: IQL query for the transitive closure over all prerequisite courses

The actual transitive closure is very simple (line 12) and is defined via the keyword
TC together with three parameters. The first parameter is the underlying relation
(directPrerequisites). The second and third parameters are the functions that
retrieve a start and end vertex to interpret an object in that relation as an edge.
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In the above example, the objects are interpreted as edges from a course to its
prerequisite. The result is again transformed from a tuple to a prerequisite.

Expressing recursion
The definition of a recursive query is reminiscent of SQL’s treatment of recursion

– defined in the respective extensions of the SQL standard – and also features the
keyword WITH RECURSIVE (denoted as a single keyword WITH_RECURSIVE).

For illustration, the transitive closure defined in the last paragraph is phrased as a
general recursion in Figure 4.10. The example reuses the definition of Prerequisite
and the relation directPrerequisites. The WITH_RECURSIVE keyword (line 9)
takes two parameters. The first is the relation that should be substituted in the re-
cursive query (cf. Sec. 3.3.4 w.r.t. the substitution semantics). The second parameter
is the query that has the recursive dependency. All occurrences of the query given as
the first parameter are substituted in the second query. The result of the keyword
WITH_RECURSIVE is the result of the substitution.

1 def course: Prerequisite => MasterCourse = _.course

2 def prerequisite: Prerequisite => Course = _.prerequisite

3

4 def asTransitivePrerequisite:

5 (Prerequisite , Prerequisite) => (Prerequisite) =

6 (e => Prerequisite(e._1.course, e._2.prerequisite)

7

8 val recursivePrerequisites =

9 WITH_RECURSIVE(

10 directPrerequisites ,

11 SELECT DISTINCT (asTransitivePrerequisite) FROM

12 (directPrerequisites , directPrerequisites) WHERE

13 (prerequisite === course)

14 )

Figure 4.10: IQL query for a recursive traversal over prerequisite courses

The presented query is a concrete example of the general equality between
transitive closure and recursion that was shown in Sec. 3.3.4. Two prerequisites
are joined if the prerequisite of one equals a course with a further prerequisite
(line 13). From the resulting tuples a new transitive prerequisite is constructed via
the function asTransitivePrerequisite (lines 4 - 6). The results must be distinct
(line 11) to ensure the termination of the recursion.
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4.1.2 Comparison to SQL Syntax

The main difference of IQL to standard SQL is the usage of functions instead of
identifiers to signify the column names to retrieve properties from an object. SQL is a
standalone language that introduces its own syntax with a notion of identifiers. The
language is then parsed and the parsed expressions can be checked for correctness
by looking up the defined schema for the tables in the database. For example, in
SQL, students is an identifier bound to a qualified table and students.firstName

is bound to a qualified column, which is valid if the table students defines this
column in its schema.

The usage of identifiers can be illustrated best by SQL’s AS keyword, which allows
to (re-)name columns explicitly. Figure 4.11 depicts a query that concatenates the
first and last name of a student and provides it as the column named fullName. The
identifier fullName is then a legal column name for the outer query.

1 SELECT fullName FROM(
2 SELECT CONCAT(firstName ,’␣’,lastName) AS fullName

3 FROM students

4 )

Figure 4.11: Example query that explicitly names a column in SQL

An embedded DSL such as IQL can not easily introduce a new notion of identifiers
as they are found in SQL. This would entail writing a parser and type checker
for SQL expressions, with knowledge of where identifiers are declared and where
they can be looked up. For example, in the query in Figure 4.11 the parser must
determine that the inner query declares an identifier (column name) fullName and
that this identifier is valid for subsequent (outer) queries. In order to simplify the
embedding of IQL, the notion of SQL identifiers is dropped and IQL uses first-class
functions which can mimic column names.

Transporting the meaning of functions used as identifiers
Functions – in contrast to identifiers – can be anonymous and, hence, some

queries may not transport the meaning of particular functions in SELECT clauses – in
terms of values they represent. To ease the understanding for a query reader the IQL
queries should be declared using meaningful function names as seen in the examples
in the previous section. In addition, as we will see in Section 5, many queries are
defined such that they return either attributes from the underlying objects or new
objects of a specified type. Hence, there is no need to declare a lot of function
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names only to transport the meaning of a query. For example, instead of selecting a
tuple of strings – which does not port the meaning of the strings – as seen in the
query in Figure 4.4, the two strings can be wrapped in a new object that signifies
the meaning via the declared field names. Figure 4.12 depicts the respective query
as a transformation, which constructs a new object of type Name from a student. The
name object retains the meaning of the values through the names of the fields in its
declaration (line 1).

1 case class Name(firstName:String, lastName:String)

2 SELECT (s:Student) => Name(s.firstName ,s.lastName)

3 FROM students

Figure 4.12: IQL query for a projection that constructs a new object

Linking functions to relations
A further consequence of not having identifiers is that the link between the

supplied functions and the queried relations is not explicit, i.e., the functions in join
conditions and predicates do not explicitly mention the relation to which they are
applied.

For join conditions a positional arrangement of the provided functions serves to
establish a link to the queried relations. In an IQL query the left and right hand
relations are linked to the left and right hand join conditions (as seen in Figure 4.5).
In SQL, tables can be explicitly referenced via identifiers. For illustration Figure 4.13
depicts the join as an SQL query. The relations (SQL tables) are explicitly named as
s1 and s2 (line 1). The join conditions can reference the tables via their identifiers
and the position of the left or right hand table in the conditions is irrelevant; as seen
in line 2 and 3 where the position of left-hand and right-hand side are switched.
However, refraining from switching the position of conditions places no heavy
burden on query writers.

1 SELECT * FROM students s1, students s2 WHERE
2 s2.firstName == s1.firstName AND
3 s1.lastName == s2.lastName AND
4 ...

Figure 4.13: Example query that explicitly names tables in SQL
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For predicates – in IQL – the link must be established via the types of the provided
functions. For example, consider the query in Figure 4.14, where two relations are
queried and a predicate is defined on each of them. There are three consequences
of using the types to bind the predicates to specific relations. First, a positional

1 SELECT (*) FROM (students, registrations , registrations)

2 WHERE

3 (_.firstName == "Sally") AND

4 ((_:Registration).course.title == "Analysis I") AND

5 NEXT((_:Registration).course.semester == "Winter/2012")

Figure 4.14: IQL query using predicates on multiple relations

treatment is assumed as an “intuitive” solution, i.e., providing predicates in the order
of the relations in the queries FROM clause. Otherwise users must carefully analyze a
query to establish to which relation a predicate belongs. A free mixing of supplied
functions – with respect to the order of the relations – is theoretically possible, but
not supported by IQL. Second, for reasons of type inference, IQL requires completely
typed functions to signify that the predicate is linked to the next relation. Thus,
these functions can not use an untyped parameter name, e.g. (s => s.firstName)

or the untyped placeholder, e.g. _.firstName. Note that IQL assumes that after
a predicate of a specific type more predicates of the same type will follow, hence,
predicates can make extensive use of Scala’s untyped placeholder, which allows to
write predicates in a very brief fashion. For illustration consider Figure 4.14. The
first predicate (line 3) is declared as an untyped placeholder; IQL assumes the type
is compatible to the first relation. The second predicate must be completely typed
(line 4) to signify that the predicate reasons over objects of type Registration. The
final point w.r.t. linking functions and relations is, that in extreme cases the query is
defined with multiple references to the same relation or with references to relations
of the same type. In this case type information is insufficient to indicate that a
function is linked to the next relation. Note that this never happened in the static
analyses defined in this thesis. Nevertheless, it can be supported via the keyword
NEXT (line 5), which signifies that the predicated is linked to the next relation in the
FROM clause.

4.1.3 Static Type Safety of IQL

The main idea for ensuring static type safety for IQL expressions is to provide a type
safe encoding of the different IQL clauses (SELECT, FROM, etc.) into Scala and defer
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type checking to the Scala compiler. The basic principle followed in this approach
uses parametric types in the declarations of each clause. The parametric types are
bound to the types used in the query through the various parameters passed to
each clause, i.e., the projection function(s), the concrete relations or the selection
conditions. Type constraints on the bound parametric types ensure the applicability
of parameters in subsequent clauses, hence making the whole IQL query type safe. A
completed (and type correct) query is then parameterized by the type of the objects
in the resulting relation, hence ensuring compositionality of queries. The full range
of IQL clauses consists of a large number of classes; hence, the type safe embedding
of IQL is only discussed to the degree necessary to understand the type constraints
for a query.

Basic type safety for a select-from query over a single relation

To illustrate the approach Figure 4.15 depicts an excerpt of the respective
types for the basic clauses SELECT, FROM and WHERE. The special object SELECT

declares the method apply (line 2) that initiates the declaration of an IQL ex-
pression (cf. Section 4.1.1 for an example of the function call chain that con-
structs an expression). The parameter projection (line 3) is a function from
SelectionDomain to Range that binds the two parametric types. For example, the
function ((_:Student).lastName) binds the types to Student and String. The
apply method returns an object of type SELECT_CLAUSE which is parameterized by
the domain and range types of the projection.

The type SELECT_CLAUSE (line 7) then defines the method FROM which takes the
relation on which the query is performed; provided as a parameter (line 9). The
type constraint in line 8 declares that the relation must contain objects of a subtype
of the objects passed to the projection function declared in the select clause. For
example, given the projection function for a student’s last name, the relation must
have objects of a compatible type, i.e., Student or subtypes of Student, since these
types define lastName and, hence, are compatible. The method FROM returns a
FROM_CLAUSE (line 10), which is parameterized by the type of the objects in the
relation (Domain) and the returned objects of the projection (Range).

The FROM_CLAUSE (line 13) is the first clause that can conclude the definition of
an IQL query, which is signified by inheriting from the type SQL_QUERY (line 14).
In an SQL_QUERY the type parameter Range is bound to the type of the resulting
objects. Alternatively, the query can further specify a WHERE clause (line 15). The
WHERE_CLAUSE (line 19) allows to specify an arbitrary number of conditions by
passing predicate functions to the methods AND and OR (lines 21 and 23), which
take the domain objects of the relation as input and return a boolean value. Each
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condition again returns a WHERE_CLAUSE such that composition of many conditions
can be done via a chain of method calls.

1 object SELECT {

2 def apply[SelectionDomain , Range](

3 projection: SelectionDomain => Range

4 ): SELECT_CLAUSE[SelectionDomain , Range]

5 ...

6

7 trait SELECT_CLAUSE[SelectionDomain , Range] {

8 def FROM[Domain <: SelectionDomain](

9 relation: Relation[Domain]

10 ): FROM_CLAUSE[Domain, Range]

11 ...

12

13 trait FROM_CLAUSE[Domain, Range]

14 extends SQL_QUERY[Range] {

15 def WHERE(predicate: Domain => Boolean

16 ): WHERE_CLAUSE[Domain, Range]

17 ...

18

19 trait WHERE_CLAUSE[Domain, Range]

20 extends SQL_QUERY[Range] {

21 def AND(predicate: Domain => Boolean):

22 WHERE_CLAUSE[Domain, Range]

23 def OR(predicate: Domain => Boolean)...

24 ...

Figure 4.15: Excerpt of the type safe select and from clauses for a single relation

Type safety for queries over multiple relations
The basic principle of binding parametric types to various types – used in each

clause – is also applicable to queries over multiple relations. The key idea for
multiple relations is that for each number of relations a different type with a
respective number of type parameters is needed4. This entails defining one type per

4 This is similar to Scala’s internal treatment of tuples, which can be declared as 2 to 22 comma-
separated values enclosed in parentheses, which each construct a different type, e.g., Tuple2,
Tuple22.
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each clause for each number of parameters. For example the type WHERE_CLAUSE_2

signifies a where clause over two relations.
For illustration, Figure 4.16 depicts an excerpt of the clause types over two

relations. The SELECT clause is constructed from a projection function that takes
two parameters (line 3) and binds respectively more domain types in the type
SELECT_CLAUSE_2 (line 4). The FROM and WHERE clauses are extended in a similar
manner from the clauses over a single relation in Figure 4.15.

1 object SELECT {

2 def apply[DomainA, DomainB, Range](

3 projection: (DomainA, DomainB) => Range

4 ): SELECT_CLAUSE_2[DomainA, DomainB, Range]

5 ...

6

7 trait WHERE_CLAUSE_2[DomainA, DomainB, Range]

8 extends SQL_QUERY[Range]

9 {

10 def AND (predicateA: DomainA => Boolean

11 ): WHERE_CLAUSE_2[DomainA, DomainB, Range]

12

13 def OR (predicateA: DomainA => Boolean)

14 ...

15 }

16

17 implicit def where2toNext[DomainA, DomainB, Range](

18 whereClause2: WHERE_CLAUSE_2[DomainA, DomainB, Range]

19 ): WHERE_CLAUSE[DomainB, Range]

Figure 4.16: Excerpt of the type safe declaration of predicates for multiple relations

Note that for this work we implemented clauses for up to three relations. More
relations were never required during our case studies. In practice clauses for larger
numbers of relations will be implemented and more importantly will be generated,
since the types for clauses over different numbers of relations bear a large semblance
and do not require manual implementations.

The main technical difference between single and multiple relations arises in
the predicates that are passed as parameters to the where clause. Due to type
erasure the types DomainA and DomainB (line 7) are not visible after compilation.
The method declarations for AND and OR (line 10 and 13) are transformed – during
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type erasure – to methods with parameters of type Function1 (Scala’s internal
representation of a function with a single parameter). Hence, one cannot overload
the same method, e.g., AND, to receive predicate functions over either domain type,
since the overloaded methods are ambiguous after type erasure.

The problem of type erasure can not be alleviated by pure function definitions.
Hence, IQL relies on Scala’s implicit conversions, to “switch” types to the domain of
the next relation. For illustration consider Figure 4.16. The AND and OR conditions
in the clause over two relations allow to define conditions on DomainA (lines 10
and 13). The implicit conversion where2toNext (line 17) converts the clause to a
where clause with one domain less than the predecessor and whose conditions can
be defined on the next domain. Note that the implicit conversion is triggered when
the supplied predicate function is not of the correct type, i.e., DomainB instead of
DomainA.

In practice the scheme with explicit switching to the next domain means that
conditions are defined in a style as discussed in the previous section, e.g., in
Figure 4.14.

Type safety for join conditions
The type safety for join conditions is fairly straightforward. As stated for the

example in Figure 4.5, the join relies on a positional match between the left hand
function to left hand relation – and the right hand function treated accordingly. The
key point for join conditions is that IQL does not enforce type equality of the return
types yielded by the functions used as join conditions. Type safety is not strong
in this position, since the join is based on a notion of object equality, i.e., objects
are transformed by the join condition functions and tested via equals(o:Object)

Since, Java (and Scala) allow classes to declare their own notion of equality, the
strong type safety would constrain users of the database in an unnecessary way.

Nevertheless the type safety is strong between the parameters passed to the join
condition functions and the underlying relations from which these parameters come.
Figure 4.17 depicts the types used in a join. IQL relies on implicit conversion of
the first join condition function to an object (of type Comparator, which is omitted
in the figure) that defined the special === method. The === method in turn takes
the second function as a parameter and constructs an object of the type JOIN

that represents the entire join condition. The conversion binds the types of the
join condition functions (line 1) which are functions from DomainA to RangeA and
DomainB to RangeB. A join condition can be passed to the methods AND (line 6)
and OR (omitted in the figure). The domain types in the join have to conform to
the domain types of the where clause. Note that the JOIN type naturally declares
the domains to be contra-variant, i.e., a join allows the functions to be declared on
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1 trait JOIN[-DomainA, -DomainB, RangeA, RangeB]

2

3 trait WHERE_CLAUSE_2[DomainA, DomainB, Range]

4 ...

5 def AND[RangeA, RangeB] (

6 join: JOIN[DomainA, DomainB, RangeA, RangeB]

7 ): WHERE_CLAUSE_2[DomainA, DomainB, Range]

Figure 4.17: Excerpt of the type safe declaration of conditions

supertypes Hence, a join on Student objects can for example declare a condition on
a Person object, if Person is a supertype of Student.

Type safety for join conditions between sub-queries and outer queries
In the type safety for joins between nested sub-queries and the outer query the

basic assumption is that the sub-query is constructed individually, i.e., without
receiving information from the outer query. For example in Figure 4.6 the sub-
query on the registrations relation is constructed as an object and passed to
the exists expression in the outer query. This style of query construction ensures
compositionality and reuse, i.e., sub-queries can be defined once and reused in
different contexts. For the sake of type safety this means that a sub-query that
contains a join on an (unknown) outer query does not know the relation(s) of the
outer query and hence does not know the type(s) of the elements in the outer query.
Thus the basic idea for type safety is to bind the unknown types used in a join
condition to a type parameter and check the type correctness when the sub-query is
passed to an outer query.

To illustrate the type safety Figure 4.18 depicts the clauses and methods used
to construct a valid sub-query. A WHERE_CLAUSE object can receive various sub-
expressions as conditions (line 4), i.e., EXISTS over sub-queries, but also complex
conditions phrased in parenthesis such as c1 AND (c2 OR c3). An EXISTS subex-
pression is constructed via the corresponding EXISTS object (line 12) which in turn
can be constructed from a sub-query with an unbound relation (line 15). Note
that the term unbound is used to signify that the sub-query does declare a join
condition over a relation not declared in its from clause. In terms of the Scala type
system the type is concretely bound once a sub-query is constructed. A sub-query
with an unbound relation is constructed via a where clause condition that receives
an UNBOUND_JOIN parameter (depicted for AND in line 8). The UNBOUND_JOIN is a
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1 trait WHERE_CLAUSE[Domain, Range]

2 ...

3 def AND(

4 subExpression: SUB_EXPRESSION_1[Domain]

5 ): WHERE_CLAUSE[Domain, Range]

6 ...

7 def AND[Unbound, RangeA, RangeB](

8 join: UNBOUND_JOIN[Domain, Unbound, RangeA, RangeB]

9 ): UNBOUND_WHERE_1[Domain, Unbound, Range]

10 ...

11

12 object EXISTS

13 {

14 def apply[Unbound, Range](

15 query: UNBOUND_QUERY_1[Unbound, Range]

16 ): SUB_EXPRESSION_1[Unbound]

Figure 4.18: Excerpt of the type safe declaration of nested sub queries

special form of join condition and is implicitly constructed by a conversion from two
functions via the === operator.

4.2 Query Optimization

Relational query optimizations perform a transformation of the relational expres-
sions, i.e., the operator trees, to obtain a query that is cheaper in its evaluation.
The transformation utilizes algebraic laws, e.g., commutativity and associativity, to
find equivalent – and cheaper – relational expressions. Optimizations of relational
queries are a long researched topic and are discussed in standard text books (e.g.,
by Garcia-Molina et al. [GMUW08]). In fact, the availability of well understood op-
timization techniques was a key decision for using relational algebra as a formalism
for incremental maintenance.

In the following we first discuss the application of traditional optimizations.
Such optimization can be applied to relational queries in general and not only for
incremental maintenance. The main point here is to highlight optimizations that
impact the amount of data that needs to be materialized during the incremental
view maintenance. We then consider the case of optimizing multiple views to reuse
overlapping parts of their queries, i.e., common subqueries. Then the traditional
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query optimization of OO databases is discussed w.r.t. providing an in-memory
representation of objects. Furthermore we discuss how indexing is performed in our
system, since indices should not require a complete materialization of data. Finally,
we discuss an extension of traditional optimizations, that introduces increment local
operators.

Increment locality introduces a notion of scoping for data that is propagated
from the base relations and used during incremental view maintenance. A scope is
evident in the sense that the data contains several objects, which are all modified
together in a single transaction TA, i.e., they are all propagated together during
incremental view maintenance (as defined in Sec. 3.4.3). This scoping of data
can be used to optimize operators that materialize auxiliary data, by making the
materializations local to the scope of change, i.e., the auxiliary data is transient and
must not be permanently maintained.

4.2.1 Traditional Database Optimizations

Query optimizations in traditional databases come in two forms. Rewriting heuristics
are independent of the current state of the database and apply transformations
that are in general considered to yield a cheaper query. Examples are: avoiding
unnecessary duplicate eliminations (δ) or applying selections (σ) as early as possible
in a query (a.k.a. pushing selections). Cost-based optimizations require information
about the state of a database, e.g., approximate size of relations, and assess the
costs of several possible query executions for the given state in order to choose an
optimal plan. For example, given two consecutive join operations A ◃▹ B ◃▹ C , the
alternatives plans are to apply the first join and then the second (A ◃▹ B) ◃▹ C or
alternate the join order to (B ◃▹ C) ◃▹ A (which is possible due to commutativity and
associativity of the join operator). If A and B are known to be large and C is small,
a query optimizer avoids joining A and B first, since the join on two large relations
can consume considerable time, and the result of joining B and C will most likely
be small(er) relation again.

In the following the optimization for pushing selection is exemplified in more
detail. Furthermore, a summary of the impact of traditional optimization techniques
on incremental view maintenance and the materialized memory is given. In general,
the techniques and algebraic laws used in traditional database optimizations are
well known (cf. [GMUW08])). Hence, a comprehensive discussion of all techniques
and algebraic laws is omitted here.
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Example query for pushing selections
One of the most powerful optimization techniques in relational algebra is to push

selections over other operators. For example, by pushing selections down over a
join the joined relations are smaller and, hence, the join is less expensive.

The laws that allow selections to be pushed over joins are stated below and either
allow to push the selection over one argument (4.2.1.1) or over both arguments
(4.2.1.2). Informally, we can only push the selection down to a relation that has
all the properties mentioned in the condition (Θ). In traditional relational algebra
this assumption translates to checking that the relation has all the attributes (i.e.,
column names) used in the condition. This assumption can also be ported to typed
functions as used in our definition of operators, as will be shown shortly.

σΘ(A ◃▹ B) = σΘ(A) ◃▹ B (4.2.1.1)

σΘ(A ◃▹ B) = σΘ(A) ◃▹ σΘ(B) (4.2.1.2)

According to the above laws, selections can be pushed in both directions, i.e., up and
down in the operator tree. In combination this means that we have an extremely
powerful optimization, where we can use the first law (4.2.1.1) to push a selection
from one side up, and then use the second law (4.2.1.2) to push the selection down
to both sides.

For illustration consider the following query that expresses a join between stu-
dents and registrations, where a selection filter for students that have a grade
average above 3.0 is applied to the result of the join. Note that the result of the join
is a tuple of students and registrations and the filter is applied on the first element
of the tuple.

σλe. e.first.gradeAverage<3.0

�

EStudents ◃▹λs.s λt. t.student ERegistrations

�

To illustrate the applications of the laws for pushing selections, Figure 4.19 shows
three different operator trees. In Figure 4.19a the selection is performed after the
join, i.e., this operator tree corresponds to the above shown query. In Figure 4.19b
the selection is pushed down to the left hand operator by law 4.2.1.1. In Figure 4.19c
the selection is pushed down to both operators by law 4.2.1.2. The laws allow to
move selections down to one operand, i.e., (a) → (b), or to both operands, i.e.,
(a)→ (c). The laws are also applicable in both ways, i.e., we can move selections
upwards from one operand over the join (b) → (a) and then push the selection
down on the other operand (b)→ (c).
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σλe. e.first.gradeAverage<3.0

◃▹
λs.s λt. t.student

EStudents ERegistrations

(a) Selection on a joined value

◃▹
λs.s λt. t.student

σλs. s.gradeAverage<3.0

EStudents

ERegistrations

(b) Pushed down selection to one operand

◃▹
λs.s λt. t.student

σλs. s.gradeAverage<3.0 σλr. r.student.gradeAverage<3.0

EStudents ERegistrations

(c) Pushed down selection to both operands

Figure 4.19: Pushing selections over joins

Using general functions as conditions
When treating selection conditions as filter functions, we can push filters to the

earliest position in the operator tree where the variables used in the filter function
are provided by the relation. For example, we can push down the condition from
Figure 4.19a, which deals with student objects, to both sides, because one side is the
extent of students and the other side are the registration objects that hold a reference
to student objects. Yet, we could not push down a filter involving registrations to
the side of EStudents.

The treatment via functions requires some transformations to move operators in
the tree. As can be seen in Figure 4.19, the join conditions used in the different op-
erator trees are not the exact same functions, but the operator trees are semantically
equal. For illustration, consider the condition in (a), which can be transformed to
the condition in (b) by using the information how the joined value was constructed
as shown below.

λe. e.first.gradeAverage< 3.0

= λs.λr. (s,r).first.gradeAverage< 3.0

= λs.λr. s.gradeAverage< 3.0

= λs. s.gradeAverage< 3.0
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The parameter e in the first line was constructed by building a tuple of students and
registrations (s, r). Hence, we can rewrite the original condition to a function with
two parameters and replace all occurrences of e by the tuple (s, r). After that it is
a matter of simplification (i.e., partial application) to deduce that (s, r). f irst = s.
Finally we have to consider that the parameter r of the function is not used anymore
in the body, which allows us to push the selection, since EStudents can only provide
student objects, i.e., values for the parameter s.

The push down to the relation ERegistrations (Figure 4.19c) is only correct, since the
join condition used entire student objects from EStudents. The respective transforma-
tion takes into account the condition s = r.student, hence we can substitute s in the
below equations.

λe. e.first.gradeAverage< 3.0

= λs.λr. (s,r).first.gradeAverage< 3.0∧ s = r.student

= λs.λr. (r.student, r).first.gradeAverage< 3.0

= λr. r.student.gradeAverage< 3.0

In general, a different join condition can lead to situations where the selection is
not allowed to move down. For example, the condition s.name= r.student.name does
not allow us to make a substitution as seen above. Hence, there is no simplification
such that the resulting function does not depend on s and thus moving the selection
is illegal. Indeed, pushing down the selection to registrations would yield incorrect
results, if done as seen in Figure 4.19c. The reason is that we could have registrations
for students with a higher grade average that have the same name as some students
with a lower grade average. Tuples of such students would not be in the results if
the selection were pushed down. Note that pushing down a selection is still legal if
the selection condition involves only the joined property, e.g., name.

Impact on incremental view maintenance
In general, all optimization techniques that reduce the number of tuples used

in subsequent operators also reduce the amount of memory that needs to be ma-
terialized. For example, pushing down selections is a very powerful optimization,
especially in conjunction with joins, since it allows to perform joins over less tu-
ples. For incremental view maintenance this means that the joins – which require
materialization of the underlying relations (cf. Sec.3.4.3) – must materialize less
data. Hence, there is a huge impact by filtering data as early as possible. Indeed, if
no data is ever filtered at all, and the operators for incremental view maintenance
require a materialization, then the entire base relations are materialized and there
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is no gain in memory efficiency. Other optimizations that decrease the number of
tuples are the join ordering or pushing duplicate eliminations over joins.

4.2.2 Optimization for Multiple Views

Multiple views potentially share some common parts in their defining queries. An
optimization can detect these common parts and use a single shared subquery instead
of repeatedly evaluating the subquery, i.e., after the optimization multiple views
share a part of the operator tree. Subquery sharing allows to define views in a very
modular way, that is completely independent of each other. At the same time the
optimization provides an improved evaluation of these queries.

Optimizations for multiple queries have been pioneered by Sellis [Sel88] and the
topic has received much attention – in slightly different form – in the context of data
integration and data warehouses. The problem addressed in the latter context is that
a conjunctive query Q should be answered using views V1, . . . , Vn. Several algorithms
have been proposed to address this problem ([KA11] proposes an algorithm and
gives a good overview of existing works). In essence the algorithms must rewrite
the original query Q into a union of conjunctive queries that only use the views.

In the following we exemplify the optimization of sharing subqueries in multiple
views and then discuss its implications in view definitions and incremental view
maintenance.

Example of subquery sharing
For illustration, consider the following two views that were defined in Sec-

tion 3.4.2 as examples of view maintenance.

view1 = πλs. s.lastName(σλs. s.gradeAverage<3.0(EStudents))

view2 = σλs. s.gradeAverage<3.0(EStudents) nλs.s λr. r.student ERegistrations

The queries defining view1 and view2 share a common part, namely the selection
over students (σλs. s.gradeAverage<3.0) which has exactly the same filter function. Hence,
instead of performing the filter evaluation separately for each view, it can be shared
and thus only be evaluated once for both views.

The optimization rewrites the operator tree and substitutes shared subqueries
by a single instance of the subquery. For the above two views the operator tree is
rewritten as depicted in Figure 4.20. The original operator tree, where each view
is evaluated in isolation is shown in Figure 4.20a. The operator tree where the
subquery is shared is depicted in Figure 4.20b.
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EStudents

σλs. s.gradeAverage<3.0

πλs. s.lastName

σλs. s.gradeAverage<3.0

n
λs.s λr. r.student

ERegistrations

(a) Base operator tree (without shared subqueries)

EStudents

σλs. s.gradeAverage<3.0

πλs. s.lastName n
λs.s λr. r.student

ERegistrations

(b) Shared subquery in operator tree

Figure 4.20: Comparison of base operator tree to a tree with a shared subquery

Applicability of subquery sharing
In general, the optimization requires a notion of equality between the operator

trees (i.e., the subqueries) as well as the functions used in the various operators. In
the example shown in Figure 4.20 the optimization was easily applicable, since the
functions are syntactically equal and only a single operator is reused. In general,
less obvious rewritings can also yield shared subqueries. However, the effort to find
such rewritings is considerably greater. Especially, equality between the functions is
hard to decide. Levy et al. [LMS95] have shown that finding a rewriting of a query
to uses the results of existing views is NP-complete.

One also has to consider that rewriting – for view reuse – is orthogonal to finding
optimized queries for single views. In other words, we can find a rewriting that
allows views to reuse subqueries, yet each view in isolation would have a different
optimized operator tree. Hence, such a rewriting system must carefully weigh global
optimum versus local optimum.

As a final remark to applicability, note that the sharing of subqueries in IQL
must currently be enforced manually (by the query writer), i.e., by defining views
in terms of the results of another view. For example two queries can explicitly
select different elements from view2 and thus explicitly share the subquery. Indeed
declaring complex views (queries) as reusable abstractions is a natural pattern when
using the views in a programming language context. Hence, the ratio between
subquery sharing and reusing common abstractions is not quite clear, i.e., it is not
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clear how many views are expressed in terms of common abstractions vs. how
many views implicitly share the same subquery. Thus, we deem the incorporation of
subquery sharing an interesting extension to the query compiler, but have limited
ourselves to identifying potential uses for subquery sharing and manually rewriting
them to an optimized version. The evaluation in Chapter 6 includes a discussion on
how many potential sites for subquery sharing were found.

Impact on incremental view maintenance
In general, the incremental view maintenance benefits most if complex queries

are reused, which also materialize auxiliary data. In the example in Figure 4.20
a very simple filtering is reused, which does not require materialization of data.
However, if the entire result of view2 were reused by other queries the savings would
be great, since the existential quantification requires to materialize data.

Nevertheless, the shared subquery in Figure 4.20 has a benefit for query runtime
and, hence, the runtime of the incremental view maintenance. The expected savings
in terms of runtime are, however, highly dependent on the filter condition, i.e., is it
cheap or expensive to evaluate, and the amount of data filtered by the operator.

4.2.3 Comparison to OO Database Optimizations

Traditional OO databases typically have an optimization step that deals with path
expressions (cf. Sec. 2.2.4, p. 23) and must be performed prior to algebraic query
optimization (cf. [CD92]). The problem with path expressions is that referenced
objects must be retrieved from a different extent that is physically stored on a hard
disk. Hence, path expressions are often referred to as implicit joins. The optimization
of path expressions allows an OO database to retrieve only those referenced objects
that are absolutely required to evaluate a query. An object can contain multiple
other references that do not contribute to the query results and, hence, are not
retrieved from persistent storage. Path expressions can be optimized by rewriting
them into equivalent algebraic expressions, i.e., joins. In contrast, the in-memory
representation of objects used in this thesis does not require such an optimization,
since objects can be efficiently retrieved via references to memory locations.

Path expressions as implicit joins
For illustration consider the following query that selects the last names of students

referenced in a registration.

πλs. s.lastName

�

πλr. r.student

�

ERegistrations

��

In an OO database the referenced student object must be retrieved from a respective
extent (EStudents) that resides in persistent storage. The corresponding query for
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retrieving the object is a join as depicted in Figure 4.21. The join operator is denoted
as OOJoin to distinguish it from the join we have used so far.

πλs. s.lastName

OOJoinλs. s.sel f λr. r.student

EStudents ERegistrations

Figure 4.21: Algebraic equivalent of an OO path expression

The resulting operator tree features a new join and – in a more complex query – this
join is again subject to optimizations via query rewriting. Note that the implicit joins
are only required for object references. OO databases also contain atomic values,
e.g., integers, which are stored as part of an object and do not require further query
rewriting.

Impact on incremental view maintenance

The use of direct in-memory object references allows queries to be executed faster
since no implicit join must be performed. Hence, incremental view maintenance
is also performed faster. In terms of memory requirements for a single reference,
e.g., the student in a registration, an implicit join is naturally more expensive.
To be efficient the join requires indices over EStudents and ERegistrations. In contrast,
the pointer reference is a small memory cell in a registration object, i.e., typically
the address is stored using 4-bytes in 32-bit architectures and 8-byte in 64 bit
architectures. Yet, we need to consider that all other referenced objects are also
retained in memory as long as the object storing the pointer remains in memory. For
example, if the registration object features several more object references, that are
never used in a query, they are retained in memory.

The current implemented system requires users to declare data as objects, which
may contain any number of references. However, database designers should be
aware that pointers can always be replaced by explicit joins. Hence, there is a
user-driven trade-off between fast execution and – possible – materialization of
irrelevant data through object references. The trade-offs are further discussed at the
end of this chapter (cf. Sec. 4.3.5), together with a possible extension for moving
the decision of materialization to the query optimizer.
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4.2.4 Indexing

Joins are efficient only if the underlying relations are indexed. Otherwise a join
requires a full traversal of both relations to identify matching objects. The indices
used in our system are all based on hash tables. We assume that the reader has
some familiarity with hash tables and omit a detailed discussion.

The important thing to note is that creating an index materializes all objects of
the underlying relations and requires additional memory for the index structure,
i.e., the hash table. Hence, indexing is a very memory intensive operation. Since
the overall design goal for our database is to require as little memory as possible,
indexing is performed as late as possible in the operator tree.

Consider for example the following query that joins students and registrations by
the first and last name of the student. Note that multiple equality conditions are
translated to a function that creates matching tuples for each value that must be
equal. For example for the given query two indices are created. The index on the
left hand side stores student objects that can be efficiently retrieved by asking for
the tuple (s.firstName,s.lastName), where s is a student object. The index on the
right hand side does the same for registration objects.

◃▹
λs.(s.firstName,s.lastName) λr. (r.student.firstName, r.student.lastName)

σλs. s.gradeAverage<3.0

EStudents

ERegistrations

The indexing is performed right before the join operator, i.e., as late as possible.
Thus, the left-hand side index only contains students that passed the filter condition.
In general, such indices are also referred to as filtered indices in the literature.

Note that filtered indices are traditionally specified by the database designer in
the database schema. However, the filtered indices we wish to use are naturally
tied directly to the queries. Hence, we allow queries to be compiled by default with
respective filtered indices for all contained joins.

Impact on incremental view maintenance
As already discussed performing indexing is an operation that consumes much

additional memory. However, not performing indexing also has severe consequences
for the runtime of incremental maintenance. Consider for example that in the
above shown operator tree there is no index for registrations and a single new
student object is added that also passes the filter. To determine whether there is a
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registration the whole multiset of registrations must be traversed. This traversal is
repeated many times, if objects are added as single events. If multiple students are
added together the traversal can be done once for the entire change set, but still
each registration object must be compared to all added students.

4.2.5 Optimization Based on Increment Locality

The key idea behind the optimization is to perform a substitution of an operator
that requires materialized data by an analogous operator that uses only a transient
materialization. Such an operator can compute the same result as the analogous
materialized version, if all data used during the computation is in the scope of one
change propagation transaction.

Before we exemplify such a translation, let us shortly discuss in which scenarios
this optimization is applicable and why traditional databases do not offer such
an optimization. In general, scenarios for this optimization have three premises.
First, there must be a large set of data, which is not stored in the database, but
rather persisted externally in a large set of files, which can be brought into a basic
structured form, e.g., via parsing, suitable for formulating queries that are of interest
to end-users. Second, the basic structured form is not permanently required by
the end-user or the data changes too frequently, which makes permanent storage
unattractive. In short, the premise is that there is a large set of data that contributes
to results but has no inherent value in being permanently stored in the database.
Third and finally, there must be results that can be obtained using a single file, i.e.,
the scope of the optimization; otherwise the optimization is not applicable.

The static analyses discussed in the following chapters satisfy these three premises.
First, the data is stored externally, i.e., as source code files or compiled code files.
Second, the code files contain a lot of information, for example in the form of single
instructions which are not directly of interest to end-user, who rather wishes to
receive information on whether the given instructions violate certain conditions,
which would be formulated as a query. Third, there are conditions that can be
ascertained by analyzing a single code file, e.g., a single method can be invalid if
there is an instruction that dereferences a variable that contains the value null
instead of an object.

Traditional databases assume that all data that is stored in the database has
some inherent value to the end-user and can be retrieved anytime or correlated
in new ways via ad-hoc queries. In addition, the assumption that there is some
external storage whose content is edited outside of a database is inherently tied to
a single-user scenario, whereas traditional databases seek to provide concurrent
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access. Hence, such databases do not offer an optimization based on increment
locality.

Example for increment locality
To exemplify the optimization let us consider an extension to the database for

administering a university that was used throughout the last chapters. The extension
introduces course descriptions for the curriculum of the university. Note that we
use the example for the sake of staying in this simple domain. Administrative
databases for universities are rather traditional in the sense that all data should
be persisted as relations in the database. Nevertheless, let us consider that our
university stores each course description in a single external text file. The files
adhere to a certain structure to allow a parser to identify values, such as the title of
the course, one or more lecturers, and the material recommended for the lecture,
e.g., books. Let us further assume that the description files are stored in some form
of document management system (DMS). When a course description is changed the
new description file is uploaded to the DMS.

Note that the DMS has no knowledge about what changed inside the file. Hence,
it parses the complete predecessor version of the file, as well as the new version.
Instead of running some application specific code to determine changes on the
parsed result, the parser simply fires events to the base relations in the database
that signify tokens found in the old file as deleted and tokens in the new file
as added. Hence, the identification of relevant changes and modified results is
performed by the database in accordance to the currently defined views over the
course descriptions.

For this example we define three basic types of data (cf. Figure 4.22): course
descriptions with a title of the course (line 2), lecturers found in a course description
(line 4) and books recommended in the course description (line 8). These three types
of data are logically available as extents (lines 13-15). To perform an optimization
based on increment locality, the scope of the increment must be provided by the
database designer via annotations on classes. In the example below, the scope of
one increment is a single course description, hence, the class CourseDescription
is annotated as @LocalIncrement.

To exemplify the local increment optimization, consider a query for all lecturers
that recommend a book for their course that was written by themselves (cf. Fig-
ure 4.23). The query is a straightforward join over the two relations lecturers

and books and will select tuples of lecturers and books, i.e., the result shows which
lecturer recommend which of her own books. The join conditions state that the
book must be recommended in a course given by the lecturer (line 2) and that the
lecturers name must be the same as the name of the book’s author (line 3). Note
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1 @LocalIncrement

2 case class CourseDescription(title: String)

3

4 case class Lecturer(

5 course: CourseDescription ,

6 name: String)

7

8 case class RecommendedBook(

9 course: CourseDescription ,

10 authorName: String,

11 title: String)

12

13 val descriptions: Extent[CourseDescription]

14 val lecturers: Extent[Lecturer]

15 val books: Extent[RecommendedBook]

Figure 4.22: Data definition for course descriptions

that the functions course, name and authorName select the respective properties of
the underlying objects; their definition is omitted for the sake of brevity.

1 SELECT (*) FROM (lecturers , books) WHERE

2 (course === course) AND

3 (name === authorName)

Figure 4.23: IQL query for lecturers together with all books they wrote and use in
their own course

An ordinary join has no knowledge about increment locality and, hence, must
materialize the data contained in lecturers and books. Yet, it stands to reason that
we can find a possible combination in a single course description. In other words, a
pair of a lecturer and book that both satisfy the two conditions can be found without
considering the data of other course descriptions. Hence, we can substitute the join
(◃▹) by an operator with the same relational semantics (◃▹L) that deletes (“forgets”)
the internally used auxiliary data once the end of a change propagation transaction
is reached. The underlying property that allows us to perform the substitution is that
the data declared as the scope of a local increment, i.e., the CourseDescription,
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is used as one of the join conditions (line 2). If the query is phrased without the
quality of course descriptions the substitution is not valid. Note that the query would
translate to: “retrieve all lecturers together with all books they wrote, which are
used in any course”. Note furthermore the use of the phrase “any course”, which
implies that all course descriptions must be searched by the query and not only
those in a single course description.

Applicability of increment locality
As already shown in the above example a substitution by a local increment

version is not always possible. Table 4.1 summarizes the conditions that must be
satisfied to replace an operator. Note that a substitution only makes sense for the
operators that require auxiliary materialized data (cf. Sec. 3.4.3). There are two
side conditions that must be satisfied in order to have a correct substitution. The
first side condition states that the substitution is only valid if the instances of the
type annotated with @LocalIncrement either stem directly from base relations or
the instance may have undergone only object preserving transformations. In other
words we are not allowed to make the substitution if the instance were instantiated
by some transformation, i.e., by a projection. The simple reason is that one can
always return an object new CourseDescription(...) from a projection, even for
objects from base extents that are never changed during a local increment. In most
cases this condition is easy to verify, e.g., in Figure 4.23 both inputs of the join are
base relations.

The second side condition states that the instances of the local increment type
must be unique. Increment locality only guarantees that if a result exists it will
be deduced from data in one increment. Yet, there may be more results found by
correlating data between increments. Consider for example, that we have two course
descriptions with the same title, i.e., they are not unique. Both courses are given by
the same lecturer, but only in one course description does she recommend her book.
The ordinary join would find two objects from lecturers that can join with one
object from the relation books, i.e., each of these joins is a result. The increment
local join only finds the one result that is contained in the course description where
the book is recommended. Afterwards, the operator “forgets” the fact that the book
was recommended and, hence, produces only one result.

Impact on incremental view maintenance
Increment locality can have a huge impact on the data required to be materialized,

depending on the used operators and the size of the data. For example, in the join
over lecturers and books in course descriptions, we can have thousands of course
descriptions and never require any data to be materialized.
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Substituted
Operator

Condition

◃▹⇒ ◃▹L At least one join condition is an equality check
that is performed on a type annotated with
@LocalIncrement. In terms of the functions
shown in the operator tree, both join functions
either return objects of the @LocalIncrement

type or tuples where the same component of the
tuples in both join functions are objects of the
@LocalIncrement type.

γ ⇒ γL The grouping function returns objects of a
type annotated with @LocalIncrement or tu-
ples where one component are objects of the
@LocalIncrement type.

TC ⇒ TCL The functions that determine start and end of an
edge both return objects of a type annotated with
@LocalIncrement or the functions yield tuples
where the same component of the tuples in both
functions are objects of the @LocalIncrement

type.

op ⇒ opL The underlying operators that are the inputs for
op are all substituted by a local version. Note
that to check this property the self-maintainable
operators are also logically marked as transac-
tion local. For example, a selection is performed
after an increment local join is marked as incre-
ment local and, hence, further operators after
the selection can be substituted. However, the
self-maintainable operators are not replaced with
different versions in the compiled query.

Table 4.1: Conditions for substituting an operator by a local version

It has to be noted, that the increment locality can in turn have a negative impact
on runtime. The reason is that the increment local scope must always be changed in
its entirety, even if no change was made to the underlying data. For example, if a
course description has unchanged lecturers and books the result of the join must be
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recomputed nevertheless. The concrete impact on runtime performance depends
on the input data and the size of the increment local scope chosen. The trade-off
that is made here is quite tricky and has two important points: First, a smaller scope
for local increments (or none at all) allows to have more fine-grained maintenance
events. For example, when using course descriptions without a scope and a single
lecturer is changed, only the single event for updating the lecturer must be processed.
In short we can say that bigger scopes require more re-computation (i.e., more
events are processed) and smaller scopes require less re-computation. As a second
point, we also have to see that the fine-grained maintenance events do not come for
free. They require the knowledge of what exactly changed from the last version. For
example in the course description scenario, there is a file that needs to be parsed
and, hence, the change must be computed between two parsed outputs. To compute
the change all data in the old and new versions must be correlated, e.g., to find out
that only single lecturer changed we must compare all the books in the old version
to all books in the new version. Such a comparison can also take some time and,
hence, the re-computation w.r.t. the entire scope can be as efficient at least for some
views.

4.3 Discussion

In this chapter we have presented the declarative query language IQL. IQL queries
are compiled to the incrementally-maintained operators defined in the previous
chapter and, hence, provide the same expressivity. In other words, using IQL we
can define basic SPJ queries, set theoretic queries, negations (via set difference),
aggregations, existential queries, transitive closures and recursions. The following
points deserve a closer discussion.

4.3.1 General Query Optimization

Writing a fully-fledged SQL query optimizer was beyond the scope of this thesis. We
were rather interested in the semantics for incremental maintenance of relational
operators and their minimal memory requirements. Nevertheless we considered
optimizations in Sec. 4.2; albeit not all are currently performed automatically.

In IQL selections are performed as early as possible in a single query, i.e., also
before joins. There is no need to push down selections in an optimizer, since
IQL queries as shown in Sec. 4.1.1 already produce an operator tree, where the
selections stand out as functions on the left or right hand side relation of a join.
Nevertheless, a fully automated optimizer can cover pushing selections up and
down or over multiple queries, i.e., sub-selects. Likewise there is no automated
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re-ordering of joins. Indexing is performed automatically during query compilation.
The substitution for increment locality is currently performed by instructing the
query compiler to produce an increment local version of a query.

The issue of a fully-fledged query compiler is (mostly) a technical matter. The
optimizer requires a first class reification of the Scala functions used in the various
operators. We have explored the use of such a reification for optimizing non-
incremental queries using Scala collections and for-comprehensions [GOE+13]. The
concepts are well portable to a fully-fledged SQL query optimizer.

4.3.2 Using an Embedded Language Instead of Plain SQL

The embedding of IQL into Scala has two main advantages, namely (i) type safety at
compile-time for the written queries and (ii) compositionality with the host language,
i.e., the code is written in Scala and existing abstractions can be integrated from
Scala into IQL or vice versa. While IQL was inspired by SQL and bears a strong
resemblance, it is nevertheless not identical to the SQL standard. Thus, a slight
burden is placed on users of IQL to learn how different queries can be transported
from a pure SQL syntax to IQL.

An alternative design would be to support the SQL standard syntax, e.g., as plain
character string in Scala. The SQL standard features several extensions, e.g., for
recursive queries, such that a plain SQL syntax can express all IQL queries. Such a
design looses static type safety, yet could enhance the initial acceptance by users
familiar with SQL. Nevertheless, we did not explore such a design. The focus of this
thesis was mainly on the semantics of incremental maintenance and the application
of incremental maintenance to the domain of static analyses. Indeed the concepts
can be applied regardless of the concrete query language and as such can be seen as
parameterized by different query languages. However, it is important to note that
static type safety is very advantageous for correctness and has additional benefits
when using an IDE, e.g., query writers can use content assistant proposals that are
derived from the static types.

4.3.3 Using the Host Language vs. Using the Query Language

The presented query language is very expressive and features a large variety of
incrementally maintained operators, including the definition of recursive queries as
found in logic languages. Yet, the query language is embedded in a general-purpose
host language and – due to the very general treatment where operators work on
arbitrary functions – the host language can be used instead of the query language in
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many places. Naturally, we can ask ourselves, which alternative should be used, the
host language or the query language?

Using the host language
Consider a query that uses the function contains5 defined in Figure 4.24. The

function performs a recursive traversal over a list and can be used as part of a
selection (line 14) or any other operator that requires a function, e.g., a projection.

1 def contains[T](list: List[T], element: T) = {

2 if(list == Nil){

3 false
4 }

5 else if(list.head == element){

6 true
7 }

8 else {

9 contains(list.rest, element)

10 }

11 }

12

13 SELECT (*) FROM students WHERE

14 (s:Student) => contains(s.grades, 1)

Figure 4.24: Using a function of the host language

The two important issues to note here are that (i) to be able to use a function
from the host language, the input to the function must be locally (i.e., completely)
available from the underlying object in the database, e.g., the list of grades in
the student object, and that (ii) the incremental maintenance treats the function
as a black box and is oblivious to the complexity of the function, in this case
a recursive traversal. The second point implies that the function is recursively
evaluated during incremental maintenance, e.g., upon insertion of an element
the function contains performs the entire recursion once and upon deletion the
recursion is completely recomputed again. Intuitively this is a desirable behavior,
since incremental maintenance of recursive queries always entails materialization

5 The function contains is defined here for illustration purposes. The function is of course defined
in Scala’s collection API and can furthermore use a looped iteration instead of recursion.

4.3 Discussion 149



of data. Thus, for locally available data and recursive functions that are fast to
recompute, query writers retain the benefit of low memory consumption.

Using the query language
In the last paragraph we used a recursive function to test containment in a list.

However, the use of a recursive function does not imply that the equivalent is always
a recursive query. For illustration consider Figure 4.25, where an equivalent query
is defined.

1 SELECT (*) FROM students WHERE EXISTS (

2 SELECT (*) FROM studentGrades WHERE

3 (student === gradedStudent) AND

4 (grade == 1)

5 )

Figure 4.25: Declarative formulation of Figure 4.24

The query uses the unnested relation studentGrades (defined as an IQL example
in Figure 4.7) to find students that have at least one grade equal to 1. The query is
non-recursive, but where did the recursion go? The answer is that the unnesting
to studentGrades performs a complete traversal over all grades and makes them
available as a flat relation.

There are two important issues tied to this question that also raise further ques-
tions. First is the issue of performance. Intuitively the host-language version
performs better, since (i) the recursion stops once the element is reached, whereas
the unnesting on student grades traverses the entire list of grades and (ii) the
existential quantification requires additional auxiliary data for incremental mainte-
nance, i.e., a join and duplicate elimination (cf. Sec. 3.3.5)6. Second is the issue of
declarativity, i.e., the query does not assume how the data is computed but merely
states what data is computed. In contrast the function in the host language defines
one fixed computation of how the containment of a value is tested in a list. The
important point is that, for the declarative query, the performance issue must be seen
in new light. The way “how” results are computed is always subject to optimizations
as shown in Section 4.2. Furthermore, there might be alternative representation
for the data. For example, the studentGrades can be a flat relation in the first
place, and not a derived unnesting from a student’s grades. In this representation
incremental maintenance is much faster in the query language than in the host

6 Note that the query can be simplified, but still there is a need for auxiliary data
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language. The query language compiles to operators that test each single grade in
isolation when it is inserted and thus no re-traversals over grade lists are performed.

Declarative queries easily allow optimizations or changing the data to alternative
representations. Hence, there are two further questions: First, if we have a function
in the host language, can we find an equivalent declarative computation where all
optimizations are still applicable. Second, if we have a given data representation,
can we find an equivalent representation that is better suited to the incremental
computations that are performed, e.g., using an flat representation of student grades
instead of the nested data structure. Both questions must be seen in a larger context
and will be discussed in the next sub sections. Finding equivalent computations
effectively means we use that host language as a query front-end instead of giving
declarative queries in IQL. Finding equivalent representations means that we provide
an object-oriented definition of the data structures and can find suitable relational
data structures.

4.3.4 Using the Host Language as a Query Front-End

Currently queries are formulated in IQL, which means using the provided primitives
for correlating data, such as joins or existential quantification. The advantage of
using the primitives of IQL is that they are declarative, which means they do not
assume an incremental or non-incremental computation model, but can easily be
translated to both.

The biggest issue that precludes us from simply using the host language is that
it inherently defines computations via non-incremental functions. Hence, to use
the host language requires an automated program transformation that translates
non-incremental functions into incremental functions. For illustration consider, the
gradeAverage declared for students in our database for university administration.
The gradeAverage is a function that traverses the entire list of grades and produces
the average. The traversal is shown below for illustration; note the original definition
in Figure 3.2 used higher-order functions that perform the same traversal.

The above function must be translated into an incremental function that can deal
with additions/deletions (and possibly updates) to the input data, i.e., changes to
the collection grades. The incremental function must be automatically derived,
which entails finding change propagation expressions similar to those presented
in Sec. 3.4.3. In the above example, the function deals with a collection as input,
hence the incremental version must at least have change propagation expressions
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1 def gradeAverage: Float = {

2 var sum = 0

3 for(grade <- grades) {

4 sum = sum + grade

5 }

6 return sum / grades.size

7 }

Figure 4.26: A non-incremental computation of the grade average

for adding elements to the collection (4.3.4.1) and deleting elements from the
collection (4.3.4.2).

f (A⊎∆+A ) = f (A)⊕∆+f (4.3.4.1)

f (A−∆−A ) = f (A)⊖∆−f (4.3.4.2)

The target to which we want to translate must be an equivalent to the incremental
version of the aggregation function AVG. Note that the incremental function is
provided as a primitive by the database; hence the incrementalization features some
optimizations. The change expression for the average is exemplified below:

1 class AVG {

2 var avg: Float

3 var size: Int

4

5 def add(v:Int) = {

6 size = size + 1

7 avg = avg + (v - avg) / size

8 }

9 ...

10 }

The incremental version stores the results of avg and size of previous computations
(lines 2 and 3). Furthermore the function add (line 5) declares the incremental
update for adding elements (for simplification the example shows the addition of
a single element). Respective modifications to size and avg are performed in this
function (lines 6 and 7). As can be seen the average actually requires two results,
i.e., avg and size, which are maintained in a single function as an optimization.
Furthermore, the computation of the new avg is an optimized expression that does

152 4 Query Language and Query Optimization



not have to compute large sums. A naïve or automatically deduced approach might
not find this expression, but simply deduce an incremental change expression for
the sum and size used in Figure 4.26.

Finding equivalent incrementalized functions automatically can be done, as
shown for example in the works by Liu et al. [LT94, LS03, LSLR05] under the term
dynamic programming. Yet, the automatic derivation is not easy since all applied
transformations must be semantics preserving. Furthermore, these incrementalized
functions perform computations over a single data structure. Hence, it is not imme-
diately clear how this method would translate functions to queries that correlate
several structures in the form of multisets, e.g., via joins or existential queries.
Indeed it has been noted as an open problem by Liu to establish an exact connection
between the dynamic programming technique and algebraic incrementalization as
formulated by Paige et al. [Pai82] (cf. 2.3.2).

4.3.5 Object-Oriented vs. Relational Data Structures

In general, there is a dichotomy between object-oriented and relational design of
data structures. Object references, i.e., pointers in memory, can be expressed via
joins and vice versa.

The alternative designs, i.e., an OO design with references and a relational
design that uses joins, can be considered from three alternative perspectives. First,
from the query perspective the OO design allows more concise queries, since object
denotations (i.e., path expressions) are syntactically much shorter than joins (cf.
discussion in Sec. 2.2.4). Second, from the runtime perspective direct in-memory
object references allow faster object retrieval. Note that this is true only if the objects
are in-memory; a persistent database must perform the joins “under the hood” (cf.
Sec. 4.2.3). However, this point is tied to the questions of expressing computations
on the data in an object as non-incremantal functions, e.g., the gradeAverage

shown in Figure 4.26. In the case of such non-incremental definitions the relational
design has the immediate advantage that queries are declared in IQL and, hence,
are automatically incrementalized. Third, from the memory perspective there are
intricate trade-offs between both designs. On the one hand, a single reference is
more memory efficient than the memory materialized in a join. Note however, that
we have defined new optimizations, hence the join might be performed in a local
increment and thus not materialize memory at all. On the other hand, an object
reference keeps all referenced objects alive (i.e., materialized in memory), whereas
the relational design will materialize only objects required for view maintenance.

The two main questions to discuss here are (i) when should we favor the OO
or the relational design, i.e., under which circumstances is there an advantage for
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either design, and (ii) given the goal of using the database for a clearly specified set
of views, can an automated optimization be performed to transform a given design
to the alternative, if it is expected to perform better.

Which design should be favored?
As discussed above the relational design features increased potential for incre-

mentalization and has the added benefit of only retaining in memory the data that
is needed to answer the defined views. Thus, the relational design seems like a clear
winner. However, the second point is quickly diminished if the entire data is used in
the queries. In this case the following considerations should be made.

Use an OO representation if the expected dataset is small and the queried properties
can be re-computed fast. For example, if each student only has a small number of
grades, the computation is comparatively fast. In this case, incremental maintenance
of the computed value loses some of its advantages, since the machinery for incre-
mental maintenance also requires time, i.e., the change propagation of values and
the computations inside the operators (e.g., the aggregation in gradeAverage) are
additional overhead. Note that the OO representation typically allows to formulate
the queries in a self-maintainable way. Thus, the data is only materialized inside the
OO representation, but no additional requirements arise in the relational operators.
For example, the selection of students with particular grade averages (shown below)
is self-maintainable.

SELECT (*) FROM students WHERE (_.gradeAverage < 3.0)

Use a relational representation if the expected dataset is huge and let the query
compiler optimize the materialization. This is naturally a tricky assessment, since
the possible optimizations are highly dependent on the defined views. In the worst
case a complete materialization can not be avoided. However, the important thing
to note here is that typically optimizations are possible. In Sec. 4.2 we presented
traditional database optimizations as well as additional non-standard optimizations
that can reduce memory consumption where traditional optimizations fail. The
important thing to note here is that the OO representation is not suitable for these
optimizations, since the data is kept alive via object references in any case.

Use a relational representation if the (incremental) computation is inherently non-
modular, i.e., the modification of a value yields changes pertaining to other (un-
reachable) values. This is typically the case when using operators that correlate data
to form results, e.g., joins and other binary operators, or the transitive closure. For
example, the transitive closure over all master course prerequisites (cf. Figure 4.9)
performed an explicit unnesting to obtain a relational representation that features
each prerequisite as a tuple with the master course and the prerequisite course
as components. The OO representation of having a list of prerequisites stored

154 4 Query Language and Query Optimization



inside a master course is not suitable for an efficient incremental computation of
the transitive closure. The reason is that when we add a new prerequisite course,
the transitive closure of other master courses can change. For illustration consider
Figure 4.27 where two master courses are created and their prerequisites changed –
for ease of reasoning using state mutation. The first modification (line 4) can easily
be incorporated into an incremental result, i.e., by adding an edge (mc2, mc1) to
the transitive closure. However, the second modification (line 5) is non-modular.
The object of the modification is mc1 and we must add (mc2, c) to the result, yet the
object mc1 has no knowledge about the existence of mc2. Hence, the incremental
change can not be computed using only the list of prerequisites, but requires an
external traversal over all master courses to find other master courses that have mc1
as a prerequisite. Note that in the case of the transitive closure the entire dataset
is materialized anyway. However, keeping the references inside each object that
participates in the transitive closure is duplicate work that can be avoided.

1 val mc1, mc2: MasterCourse

2 val c: Course

3

4 mc2.prerequisites.add(mc1)

5 mc1.prerequisites.add(c)

Figure 4.27: Modifications that require non-modular computation (in the transitive
closure)

Automated transformation between OO and relational representations
In short such transformation can be performed, but not without a highly complex

program transformation. In essence this problem is akin to using functions in
the host language as a front end to query formulation. A complete discussion
of this transformation is beyond the scope of this thesis – whose focus is the
incrementalization of static analyses by expressing them in the provided EDSL.
Nevertheless, we shortly outline the general idea in the following.

The issue for such a transformation is that the OO representation uses localized
data, e.g., one list of grades per student object. The relational representation uses
global data, e.g., a list of all grades for all students. Conceptually, these two repre-
sentations can be converted into one another by the nesting and unnesting operators.
For example, assuming a globally defined relation for grades database.grades and
a function gradeList for selecting the list of grades from a nesting operation, a
respective query for the localized version can be expressed as follows.
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1 class Student(...){

2 def grades =

3 SELECT (gradeList) FROM

4 NEST(database.grades, _.student) WHERE

5 (_.student == this)
6 }

It is important to note, that such a conversion should be performed only conceptually.
That is, we do not want to instantiate and maintain the query presented above, since
this would entail maintaining one query per student object. Instead, we want to use
grades as a property of student objects, as if the list of grades was an instantiated
set of objects. The actual query that expresses how the list of grades for each student
is constructed can be optimized away.

4.4 Related Work

This section compares IQL with other language-integrated query systems. We
discussed these systems already in Sec. 3.6 w.r.t. incrementalization; here the focus
is on the syntactic differences. In addition we discuss related work on optimizing
incremental view maintenance.

Comparison to language-integrated query systems
Existing language-integrated query systems, e.g., LINQ [MAB08], Ferry [GMRS09],

and ScalaQL [GIS10] have deep roots in functional programming and are influenced
by earlier works on functional query languages, e.g., HaskellDB [LM99] or Kleisli
[Won00].

In general, the language integrations are based on (monad) comprehensions
(cf. Gray et al. [GKKP10]), which can be understood as succinct notation for
collection operations. The simplicity of the notation lies in the fact that many
SQL-operators, such as selections and projections have immediate translations to
comprehension operations, such as filter and map. The usage of filter or mapping
functions is already made explicit in the comprehension, yet the comprehension
does not presume a particular evaluation. Thus comprehensions – like IQL – are
declarative and favor optimizations. For example, the Scala compiler transforms
comprehensions into function calls to the default collection implementations for map,
filter etc., but other transformations (and optimizations) of the comprehensions are
possible.

While the comprehensions are very succinct for some operators, others have
no succinct one-to-one translation, e.g., groupings and aggregations or existential
quantifications, i.e., semi-joins. Thus the comprehension expressions for these
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operators are more verbose. Hence, these operators benefit from further high-level
syntax, e.g., GROUP_BY or EXISTS. This approach is taken by IQL, and to a lesser
degree also by LINQ. For some operators an SQL-style query syntax is provided by
LINQ, while others are used as collection operations. For example, the set union
or the minimum element (aggregation) are declared as function in the type of
collections, e.g., col1.Union(col2) or col1.Min(stud => student.grade). In
IQL all operations are decoupled from the actual collections (relations), but the
general idea of providing a high-level syntax is the same. IQL goes further than
LINQ, since we provide advanced operators such as semi-joins, transitive closure and
recursions.

The IQL syntax is currently mapped to relational algebra operators. However,
monoid comprehensions are more general and can also be used as a target to repre-
sent (and optimize) the queries. In particular, monoid comprehensions have been
cited as a simple and powerful formalism for unnesting of sub-queries [GKKP10].
Nevertheless, it is not immediately obvious which traditional optimizations can be
performed in the monoid comprehensions and which require a representation of
the relational algebra operators. The exploration of this connection is interesting as
future work.

Optimizing incremental view maintenance
Optimizations are concerned with two primary scenarios. (i) optimization of

the incremental maintenance expressions to increase runtime performance and (ii)
optimization of the amount of materialized data.

The work on optimizing incremental view maintenance expressions was pioneered
by Griffin et al. [GL95] for a practical relational algebra with multiset semantics.
Kawaguchi et al. [KLMR98] present an optimization for nested (collection) data
structures using “nested descriptor indices”, which are similar to traditional indices
used in relational joins. In the work by Kawaguchi the indices are persisted data, i.e.,
pointer structures into persisted tables and do incur materialization costs, however,
these are not explicitly discussed. We did not yet consider performance issues during
updates to nested collections. However, we deem the incorporation of indices to
treat updates to nested collections as interesting future work.

A very recent and interesting work on incremental view maintenance is the
DBToaster project [AKKN12]. DBToaster is an optimization framework that takes
SQL queries, and compiles them into procedural C++ code that performs the incre-
mentalization. The framework uses an incremental view maintenance technique
called higher-order delta processing, which can be understood as an extension of
traditional delta queries as found in [GL95]. Instead of simplifying algebraic expres-
sions as in [GL95], the deltas are compiled to highly optimized code. The work is
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orthogonal to this thesis in supporting more aggressive optimizations. Neverthe-
less, it assumes the availability of base relations for incremental view maintenance,
hence, it is not immediately clear how much of the optimizations are portable to
our approach.

The works by Hull et al. [HZ96] and Quass et al. [QGMW96] optimize the amount
of materialized data and are thus most closely related to our work. Hull et al.
minimize the materialized data in a distributed data warehouse setting, through
(partially) virtualized views, which means that (some) attributes are not stored by
the materialized view. The incentive is that general access to the distributed source
relations (i.e., base relations in our terminology) of the data is expensive, yet some
source relations are not frequently updated. Depending on the operators used in
defining the views, only the source relations (or specific attributes in these relations)
required during frequent re-computations are materialized. The decision of what to
materialize is driven by the database designer and communicated via annotations
on the database schema, similar to the increment local annotations introduced in
Sec. 4.2.5. This approach is orthogonal to the increment local optimization used in
this thesis. In our use-case of static analyses we typically change all base relations
(i.e., all sources). Hence, such an optimization is not profitable. Yet, in other
scenarios the approach by Hull et al. can certainly improve memory consumption.

Quass et al. also consider the problem of materializing data in a distributed
data warehouse setting. They use referential integrity constraints, i.e., primary and
foreign key relationships, to determine irrelevant data tuples. The work has a special
emphasis on views declared via joins. Referential integrity can be thought of as a
kind of existential constraint. For example, if a database contains relations for stores
and items sold at each store, we can only insert sold items if a corresponding store
exists. Assuming that a view is built over the items sold in particular stores (a join
over a subset of the stores to a subset of the sold items), incremental maintenance
can be optimized as follows: (i) if a new sold item is inserted, an existential query
can filter out items that will not join with any of the selected stores, and (ii) if a new
store is created we know that existing items can not join to a new store. Hence, only
the subset of the items that can actually join with the selected stores is required to be
maintained. This subset is then materialized as a (smaller) auxiliary view. In general,
the approach determines all relevant auxiliary views via the integrity constraints.
The approach assumes a special form of existential operator (i.e., semi-join in our
terminology), compared to the operator introduced in Sec. 3.3.4. In the existential
operator of Quass et al. the right-hand side is always materialized and the left-hand
side is transient (comparable to a selection operator), the correctness of this operator
is ensured by the integrity constraints. As an optimization the approach is also
orthogonal to the increment local optimization. In summary, the range of queries
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that can be optimized is smaller (i.e., only operators on primary and foreign keys)
and the optimization on integrity constraints still materializes data; though less than
an unoptimized version. In practice we found little application of the optimization
that uses referential integrity constraints. The constraints themselves can be found
in static source code analyses. For example, a method is always contained in a class;
hence, a join from methods to a particular set of classes could be optimized. Yet, we
used object references from methods to enclosing classes; hence, a query that selects
method for classes with particular properties is expressible as a simple selection.
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5 Incrementalized Static Analysis Engine

In this chapter the event-driven embedded database (introduced in the previous
chapters) is utilized to develop an incrementalized Static Analysis Engine (SAE).
The goal of the SAE is to provide users with a rich framework for formulating
static analyses whose results are automatically maintained by the engine. The
incrementalization is used to provide real-time feedback w.r.t. analysis results that
are shown in an IDE and the results are automatically updated when developers
perform changes to the code base. The analyzed code considered in this thesis is
Java bytecode. Hence, plain Java programs, but also programs in languages that
build on Java bytecode, e.g., Scala, Clojure1, Groovy2 etc., can be analyzed.

The purpose of this chapter is twofold. First, we discuss the representation of Java
bytecode and define the base relations of a database that will be queried. Second,
we show how static analyses are formulated over these base relations, using IQL (cf.
Sec. 4.1) as a query language. We also introduce general views that are predefined
for all users of the SAE and exemplify how more elaborate analyses can be defined
using these views. Finally, we discuss how the SAE is integrated into an IDE.

5.1 Java Bytecode Representation and Base Relations

A Java program is represented as objects in memory that capture its basic structure,
i.e., classes, methods, fields and instructions. The representation considered in this
thesis is derived from Java bytecode and can be divided into three main areas. First,
as a basis, all Java programs build on a representation of the types used in the
program. Types are used at all levels of the representation, for example to declare
the type of a class, the parameter types of a method, or the type of the receiver
of a method call instruction. Second, the representation consists of objects for the
basic entities in a Java program, i.e., objects representing classes, methods and
fields Finally, the representation of Java code at the level of bytecode instructions is
considered.

In order to read Java bytecode the toolkit BAT [BAT13] is used, since it is written
in Scala and integrates nicely into the embedded database. BAT is utilized in a
manner that reuses several structures from the toolkit. Integration with other
bytecode toolkits, such as ASM [BLC02], is also possible and would only require a
minimal effort.
1 http://clojure.org/
2 http://groovy.codehaus.org/
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5.1.1 Representation of Java Types

Java types are encoded using a type safe approach in Scala via the type hierarchy
depicted in Figure 5.1. The type hierarchy is directly reused from the underlying
bytecode toolkit (BAT). The type hierarchy discerns two main types. First, the
VoidType is valid only as a return type of a method, but can not be used in any other
position, e.g., as the type of a method’s parameter. Second, the FieldType can be
used in all other positions, i.e., as a method parameter, as a return type or as a field
type. Note that the term FieldType stems from the Java language specification.
The FieldType is further discriminated into the BaseType, used for Java primitive
types such as int, double etc., and the ReferenceType, used for object and array
references. Reference types have specific attributes for the type they represent.
The ObjectType contains a string for the class name it represents. For example to
represent the type java.lang.Exception an ObjectType is constructed with the
class name3 as follows:

val Exception = ObjectType("java/lang/Exception")

The ArrayType contains a reference to the type of the components stored in the
array – multidimensional arrays are represented with components ArrayType. For
example an array of strings (java.lang.String[]) is constructed as follows:

val stringArray = ArrayType(ObjectType("java/lang/String"))

Memory efficiency is of great importance for the overall representation of types,
since (references to) types make up a considerable portion of the represented
Java program. Hence, all objects of type BaseType and VoidType are singletons
[GHJV95], e.g., there is only one object representing the type int. This also reflects
the nature of these types since primitive types (or the void type) are the same in the
whole program. Usage of singletons is enforced at the language level via Scala’s the
object construct [OSV10], e.g., the following code declares the type for integers to
be a singleton.

object IntegerType extends BaseType

Due to the guarantee on the language level, singletons are also used when static
analyses construct instances of a specific type, e.g., to check that a method signature
contains an int parameter.

Memory efficiency is also considered by BAT when constructing object types
and array types. The same type can potentially be used in many places, e.g.,
the type String can be used as a parameter or return type for a multitude of

3 Note that the bytecode representation uses the character “/” instead of “.” to separate identifiers
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Type

BaseType

IntegerType DoubleType...

ReferenceType

+className : String

+simpleName() : String
+packageName() : String

ObjectType ArrayType

VoidType FieldType componentType

1

Visual Paradigm for UML Standard Edition(TU Darmstadt)

Figure 5.1: Representation of the Java type system

1 object ObjectType

2 {

3 val cache: Map[String, ObjectType] = Map()

4

5 def apply(className: String) = {

6 cache.getOrElseUpdate(className ,

7 new ObjectType(className))

8 }

9 }

Figure 5.2: Flyweight pattern for creation of ObjectTypes

methods, or as field type in many classes. Hence, object types and array types
are constructed via a Flyweight pattern [GHJV95], which is basically a cache for
previously constructed types. For illustration the Flyweight pattern for ObjectTypes
is depicted in Figure 5.2. The cache (line 3) is a map from the previously constructed
class names to their type representation. Types are constructed via the method
apply (line 5). The name apply is a special method name, which allows to call the
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Flyweight factory via the shorthand ObjectType("java/lang/String"), i.e., the
apply is implicitly added as a method call by Scala.

5.1.2 Representation of Java Entities

The basic Java entities (class, method and field declarations) are each represented
as distinct classes that encapsulate all relevant information pertaining to each entity.

Classes
The ClassDeclaration contains the structural information w.r.t. the type infor-

mation of a class and the inheritance hierarchy and is depicted in Figure 5.3. Note
that a class is also the largest scope for which we can guarantee that modifications
are made as a single local increment. Hence, we annotate the class declarations with
@LocalIncrement (line 1). The classType (line 3) is the type of the declared class.
The superClass represents the type of the super class this class declaration extends
(line 4). Note that for the special case of type java.lang.Object no superclass is
defined, hence the field is declared as a Scala Option that allows an analysis to
check whether the super class is defined or not. The interfaces (line 5) represent
the set of interfaces (as types) implemented by the Java class. Class declarations
also contain the minor and major version (lines 6 and 7) of the Java language
in which the class was compiled. Note that some analyses are only relevant for
programs compiled in earlier or later versions of Java. Visibility and other modifiers
are encoded as a single value in the accessFlags (line 8) that stores all modifiers as
bits set in the integer value. The ClassDeclaration provides suitable abstractions
to recover the individual modifiers. For example the method isPublic (line 10)
performs a bitwise operation to test whether the accessFlags contains the modifier
that declares the class as public.

Class members
Method and field declarations capture the relevant information pertaining to

the declaration of a respective member in a class. Note that a method declaration
captures information relevant only to a method’s signature and modifiers. The code
of a method will be treated in the subsequent paragraph on the representation of
Java Instructions. For illustration, the definition for method declarations is depicted
in Figure 5.4.
The depicted trait DeclaredClassMember (line 1) allows to abstract over methods
and fields, since they share some commonality, i.e., being declared in a class and
having specific access modifiers such as public. The class MethodDeclaration

(line 8) contains a reference to the declaring class (line 9), the name of the method
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1 @LocalIncrement

2 case class ClassDeclaration(

3 classType: ObjectType ,

4 superClass: Option[ObjectType],

5 interfaces: Set[ObjectType],

6 minorVersion: Int,

7 majorVersion: Int,

8 accessFlags: Int)

9 {

10 def isPublic: Boolean =

11 (ACC_PUBLIC & accessFlags) != 0

12 def isAnnotation: Boolean = ...

13 ...

14 }

Figure 5.3: Representation of Java class declarations

1 trait DeclaredClassMember {

2 def declaringClass: ClassDeclaration

3 ...

4 def isPublic: Boolean

5 ...

6 }

7

8 case class MethodDeclaration(

9 declaringClass: ClassDeclaration ,

10 name: String,

11 returnType: Type,

12 parameterTypes: Seq[ValueType],

13 accessFlags: Int

14 ) extends DeclaredClassMember

15 {

16 def isNative: Boolean = ...

17 ...

18 }

Figure 5.4: Representation of Java method declarations
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(line 10), the return type (line 11) and the method parameters (line 12). The latter
are an ordered sequence of types as they appear in the method signature. In addition
the accessFlags (line 13) are stored and treated similar to the accessFlags in a
class declaration. Note, that the accessFlags are complete w.r.t. the specification of
the Java language specification4. For example, methods can be declared as native
(line 16) Fields declarations are treated similar to method declarations, but have
only the field’s type instead of a return type and parameter types. Note that fields
also have different accessFlags, e.g., transient.

Relational representation vs. OO representation

The representation of Java entities as defined by the SAE is inherently relational.
For example, the set of all methods will be made available as an extent and, hence,
each method is represented by a single object that uniquely identifies the represented
method in terms of (i) declaring class, (ii) name and (iii) signature. The object-
oriented representation that is the default output of BAT contains an object graph
for traversing the data. For example, a class contains a list of its methods and fields.
These objects are then only uniquely identified in the context of the containing class,
i.e., they contain only name and signature.

Since the relational representation contains merely necessary facts to identify the
represented entity, it does not keep alive unnecessary objects that are filtered out
by queries over the database. Note that we intentionally included more data in the
entities than is strictly necessary. For example, a class contains a list of interfaces,
which we will later also make available as a relation. Nevertheless, this data
contributes only small amounts of memory, while keeping it in the representation
simplifies query writing.

Local increments

As noted earlier a class is the biggest scope for which we can use the optimization
w.r.t. local increments. By using the @LocalIncrement annotation we can now, for
example, join two class members, e.g., two methods, via their declaringClass

property and the join will not require any materialization of data. Note that the
second valid scope we will later use in the evaluation is the method scope, which is
declared by using the annotation on the MethodDeclaration entity instead of the
class declaration.

4 The Java Language Specification can be found at http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
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5.1.3 Representation of Java Code

The Java code of each method requires a representation of the instructions, i.e.,
the code executed for a method. All instructions are represented as objects of type
Instruction. The overall interface is very narrow, i.e., in essence each instructions
has an opcode that identifies which instruction is to be executed (cf. Figure 5.5).

1 trait Instruction {

2 def opcode: Int

3 }

Figure 5.5: Interface for Java bytecode Instructions

Individual instructions are singleton objects, if they do not contain further informa-
tion, e.g., the instruction ALOAD_0 (cf. Figure 5.6 line 1) that loads a reference on
the stack from the local variable table at index zero. Instructions that contain further
data – depending on how they are used in the program – are represented as case
classes that contain said data as fields, e.g., the instruction ALOAD (cf. Figure 5.6
line 5) that also loads a reference from the local variable table, but uses the index
indicated by the field lvIndex.

1 case object ALOAD_0 extends Instruction {

2 def opcode: Int = 42

3 }

4

5 case class ALOAD(lvIndex: Int) extends Instruction {

6 def opcode: Int = 25

7 }

Figure 5.6: Concrete Representation for Java bytecode Instructions

The complete code of a method is packed together as an array of instructions.
The rationale of BAT is to provide all relevant information in a compact format
that closely resembles the Java bytecode, i.e., in the bytecode all instructions are
represented as a byte array. The object representation stores the actual instructions
in the array and implicitly stores the program counter (pc) for the instructions via
the index in the array. Note that each instruction has a length of one or more byte
and the pc of a Java program is basically the index in the byte array of instructions.
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The index is then used in control flow related instructions, e.g., a goto instruction
provides the index (pc) at which the execution should continue. Figure 5.7a depicts
a simple program for a constructor that calls the super constructor of the type
java.lang.Object. The call instruction (invokespecial) has a length of 3 bytes;
hence the next pc is 4. Figure 5.7b depicts the resulting array for this simple method.
The object representation fills indices at which no instruction resides with the value
null.

pc instruction

0 aload_0
1 invokespecial java/lang/Object.<init>
4 return

(a) Bytecode Instructions

ALOAD_0

INVOKESPECIAL(ObjectType("java/lang/Object"),

"<init>",

MethodDescriptor(Nil, VoidType))

null
null
RETURN

(b) Array Representation

Figure 5.7: Representation of a method’s instruction array

The representation as an array of instructions is very compact and contains all
relevant information. However the representation is not suitable for declarative
definitions of analyses and is also not amenable to optimizations such as indexing for
specific instructions. Nevertheless, this representation allows a compact definition
of base relations, i.e., the entire code is made available in one extent. A suitable
transformation using the incrementalized operators provided by the database is
considered in Section 5.3.

The complete code – in the above described array form – is defined by the SAE as
an object of type CodeInfo (cf. Figure 5.8) that holds all relevant information of
a method’s code. The code info object defines to which method the code pertains
(line 2), the maximum stack height (line 3), the maximum amount of local variables
(line 4), the registered exceptions handlers (line 5) and finally the instructions
(line 6). The maximum stack height and maximum local variables are invariants
generated by the Java compiler that allow optimized execution of the Java bytecode,
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without re-analyzing the code to determine these values. An exception handler is a
designated block of code, at which the execution continues when an exception is
thrown. Each handler can treat a different type of exception and the correct handler
is determined when an exception is thrown.

1 case class CodeInfo(

2 declaringMethod : MethodDeclaration ,

3 maxStack: Int,

4 maxLocals: Int,

5 exceptionHandlers: Seq[ExceptionHandler],

6 instructions: Array[Instruction]

7 )

Figure 5.8: Representation of a method’s code block

5.1.4 Base Relations

The SAE is defined using only four base relations. All other relations are derived
from the data found in these relations. The minimal number of base relations
simplifies the integration between the parsing of a Java class file and the database.
The four relations are depicted in Figure 5.9. The first three relations capture the
different Java entities, i.e., classes (line 3), methods (line 5) and fields (line 7). The
final relation captures the code information for each method (line 9). Note that
Figure 5.9 depicts the interface that a concrete database has to implement. The
interface can be used to access the relations in queries. However. concrete instance
can define more (e.g., derived) relations.

All four base relations are declared with the type SetRelation. This signifies the
guarantee that each element in these relations will be present only once. For exam-
ple, there can be only one class declaration for each type such as java.lang.String.
Likewise, there can be only one method with a specific signature, i.e., method name,
parameter types and return type, for a given class; since the class is a declared as
part of a MethodDeclaration, the elements in methods are unique. The information
that the extents are sets can be used by the query compiler for optimizations

Note that the framework does not enforce this guarantee, since such a guarantee
can only be asserted by storing all elements and checking each addition. Since the
underlying execution model is based on the fact that the elements should not be
stored in the base relations, elements are added to the base relations and propagated
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1 trait BytecodeBaseRelations

2 {

3 def classDeclarations: SetRelation[ClassDeclaration]

4

5 def methodDeclarations: SetRelation[MethodDeclaration]

6

7 def fieldDeclarations: SetRelation[FieldDeclaration]

8

9 def code: SetRelation[CodeInfo]

10 }

Figure 5.9: Base relations for static analyses

to derived relations without any checks. Nevertheless, the guarantee is enforce by
the Java compiler and since the static analyses are based on Java bytecode generated
by a Java compiler there is no need to re-assert this guarantee.

5.2 Example Analyses on Base Relations

Using the base relations defined in Figure 5.9, the first (simple) static analyses can
be formulated. The following two examples are lightweight analyses derived from
the tool Findbugs [HP04]. For this thesis a larger set of Findbugs analyses was
sampled and formulated as SAE queries. The whole range of sampled queries and
their performance characteristics are discussed in Chapter 6. Note that all queries
are formulated with the entire dataset in mind. Incrementalization is performed
automatically due to the defined relational operators.

Example 1 – Protected field in final class
The first analysis detects cases of field declarations with confusing visibility

modifiers. A field is in violation of the query, if it is declared as protected while
the declaring class is declared as final. The rationale behind this check is that
the class declaration does not allow any sub classes; hence the field can never be
accessed by any sub class and should either be declared as package visible or as
private. The respective SAE query is depicted in Figure 5.10. To illustrate the
relationship between a query and the underlying database, the query is defined as
the result of a method named apply that constructs the incrementally maintained
query for a given database (passed as a parameter in line 1). The result is a relation
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of type FieldDeclaration (line 2), which can then be used to report violating field
declarations to the end user.

1 def apply(database: BytecodeBaseRelations):

2 Relation[FieldDeclaration] =

3 {

4 SELECT (*) FROM (database.fieldDeclarations) WHERE

5 (_.declaringClass.isFinal) AND

6 (_.isProtected)

7 }

Figure 5.10: SAE query for protected field declarations in final classes

The query is defined on the base relation database.fieldDeclarations (line 4)
and selects all field declarations (*) that pass the test formulated in the WHERE

clause. The formulation of the test is simple and declarative; the declaring class
must be have the modifier final (line 5) and the field itself must be declared as
protected (line 6). Due to the integration of the EDSL with the type inference of
Scala anonymous functions can be used to declare the tested properties.

Example 2 – Public finalizer defined
The second analysis detects method declarations of Java finalizer methods

(void finalize()), with dubious visibility modifiers. The general purpose of
finalizers is to perform cleanup operations such as releasing system resources before
an object is collected by the VM’s garbage collector. The contract of Java declares
finalizers as protected, which is due to the fact that these methods may be overrid-
den in sub classes, but should not be called from external objects. Hence, declaring
a finalizer as public is dubious and checked by the example analysis.

The query (cf. Figure 5.11) is defined on the base relation methodDeclarations

(line 4) and selects all method declarations that pass the test formulated in the WHERE
clause. The tests are defined in a similar declarative style as in the previous example.
The declared method must have the name "finalize" (line 5), be declared as
public (line 6) and adhere to the signature of the Java finalizer methods, i.e., have
a return type of void (line 7) and no parameters (line 8).

5.3 Extended Representation and Derived Relations

In the following, two common areas of information are discussed that are used in
many analyses and therefore declared as derived relations in the BytecodeDatabase.
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1 def apply(database: BytecodeBaseRelations):

2 Relation[MethodDeclaration] =

3 {

4 SELECT (*) FROM (database.methodDeclarations) WHERE

5 (_.name == "finalize") AND

6 (_.isPublic) AND

7 (_.returnType == VoidType) AND

8 (_.parameterTypes == Nil)

9 }

Figure 5.11: SAE query for publicly declared finalizer method

The first area is the inheritance hierarchy. The second is a relational representation
of a method’s instructions, which is suited for optimizations by the database.

Inheritance hierarchy
In the base relations the information regarding subclassing and inheritance from

interfaces is captured inside each class declaration (cf. Figure 5.3). However, many
static analyses have a special interest in reasoning over the transitive closure of all
subtypes, hence in the following a view subtypes is derived for this purpose. The
basic process for deriving such a relation is to unnest the information w.r.t. interface
inheritance from the class declaration, and building the transitive closure – via the
respective operator – over a union of subclassing and interface inheritance. The
important fact in this process is that the view subTypes can be declared using only
self-maintainable operators without auxiliary storage, except for the final step which
is the building of the transitive closure. In the following a detailed account of the
derivation process is given for illustration.

The first step of the derivation is to find a general representation of the infor-
mation w.r.t. subclassing and inheritance from interfaces. This is necessary since
the transitive closure is defined over a single relation, where each object in the
relation represents an edge. Hence, the information is uniformly transformed to a
subtype-supertype relationship. Figure 5.12 depicts the respective Scala class that is
used in the following to capture all inheritance based relationships.

The second step is to transform the base relations into the uniform represen-
tation. The definition of respective queries is depicted in Figure 5.13. The view
classInheritance (line 1) declares a transformation for the superclass inside
a class declaration to an inheritance relation. The view interfaceInheritance

(line 6) declares the transformation that unnests the interfaces from the class
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1 case class InheritanceRelation(

2 subType: ObjectType ,

3 superType: ObjectType)

Figure 5.12: Representation of the inheritance relation

declarations and maps them to an inheritance relation. The unnesting is de-
clared in line 9 using the keyword UNNEST. The interfaces function of type
ClassDeclaration => Set[ObjectType] unnests the set of interfaces. The query
is translated to an unnest operator (µ) and a projection (π). The results of the
unnesting – i.e. the interfaces – are passed as a parameter i (line 7) to the projection
function – declared in the SELECT clause – together with the declaring class c and
transformed to an inheritance relation.

1 lazy val classInheritance = SELECT (

2 (c: ClassDeclaration) =>

3 InheritanceRelation(c.classType , c.superClass.get)

4 ) FROM classDeclarations WHERE (_.superClass.isDefined)

5

6 lazy val interfaceInheritance = SELECT (

7 (c: ClassDeclaration , i: ObjectType) =>

8 InheritanceRelation(c.classType , i)

9 ) FROM UNNEST(classDeclarations ,_.interfaces)

Figure 5.13: Relational views of subclassing and interface inheritance

The final step is to build the transitive closure over all inheritance relations
and is depicted in Figure 5.14. The view inheritance (line 1) builds the union
over the inheritance relations for subclassing and interface inheritance. Since
the two relations are distinct, they can be declared with the self-maintainable
indistinguishable UNION ALL keyword that is translated to the self-maintainable
operator ⊎. The transitive closure subTypes (line 5) is built using the TC keyword
(line 8). The first parameter passed to TC is the underlying relation (inheritance).
The second parameter determines the start and end vertex of an edge in the relation.
In this case the start vertex is the declared as the subType and the end vertex as
the superType. Note that the transitive closure can also be built by interpreting
the edge from super to subtype. Yet, since the edges are declared inside a class in
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the sub-to-super-type fashion, i.e., the subtype A is declared as class A extends B,
this interpretation seems more natural. The result of the transitive closure operator
contains tuples of two ObjectTypes, since the operator can not know how to
translate these tuples into any other meaningful edge representation. Hence, a
projection is declared on top of the closure that transforms the tuples back into the
uniform InheritanceRelation representation. Note that this is not a necessity, yet
is done to achieve a uniform representation over all relations that allow to reason
over inheritance.

1 lazy val inheritance =

2 SELECT (*) FROM classInheritance UNION ALL

3 SELECT (*) FROM interfaceInheritance

4

5 lazy val subTypes = SELECT (

6 (edge: (ObjectType , ObjectType)) =>

7 InheritanceRelation (edge._1, edge._2)

8 ) FROM TC(inheritance)(_.subType, _.superType)

Figure 5.14: View of the transitive closure over the inheritance hierarchy

As can be seen in the above definitions, all queries used in the definition of the
inheritance relation are compiled to self-maintainable operators (µ,π,⊎). Hence,
the transformation to inheritance comes at no cost in terms of memory. The
transitive closure operator itself must store the tuples that represent edges, however
the inheritance relation is comparatively small, as will be shown in the later
evaluation in Section 6.

Relational view of instructions
The goal of the relational view is to transform the arrays of instructions presented

in Section 5.1.3 into a relational form, where every instruction is a single tuple in
the relation. A relational representation of instructions allows efficient queries over
all instructions, such as filtering for specific (groups of) instructions. The relational
representation is also designed to provide explicit information about an instructions
program counter (pc) and successor instructions. The former is present in the array
representation only implicitly via the array index where the instruction resides. The
latter is tedious to find since the array can contain an arbitrary number of null values
between instructions, hence one must always think about the byte length of an
instruction. Both situations preclude queries from simple and declarative reasoning
over program counters or successor instructions, hence the relational view makes
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the information explicit. Using the explicit information allows indexing for queries
that relate instructions, e.g., finding the target pc of a goto instruction.

The relational representation uses a type hierarchy with concrete instructions
types that are all a subtype of RelationalInstruction (depicted in Figure 5.15).
This type contains all relevant information for each single instruction. All instructions
contain the methods in which the instruction is declared (line 4), which is the basic
requirement to later find only instructions in the same method. Each instruction
has a pc (line 5) that stores the program counter and can be used for control flow
analyses. The seqIndex (line 6) numbers each instruction consecutively to allow
quick access to precursor or successor instructions, without having to reason about
specific instruction lengths.

1 trait RelationalInstruction

2 extends Instruction

3 {

4 def declaringMethod: MethodDeclaration

5 def pc: Int

6 def seqIndex: Int

7 }

Figure 5.15: Relational representation of an instruction

The transformation from the array representation to the relational representation
is a two-step process, which is depicted in Figure 5.16. First, the array is transformed
to a list of relational instructions. This step includes making the implicit information,
i.e., program counter and sequence index, explicit and providing the information in
which method the instruction was declared. In addition the list is filtered to omit
the null entries from the array. The step is depicted for illustration in lines 1-19.
Since the first step is intermediate, the result is declared as a private value (line 1),
thus not to be used directly by the static analyses.

The illustration of the array iteration serves two purposes. First, to underline the
workload of analyses that deal with instructions. The instructions make up – by far –
the largest part of data in a Java program and, hence, iterations over all instructions
are time-consuming. The work performed during the iteration is done only once in
the SAE, but contributes to the overall runtime. Second, to illustrate the code for an
iteration over instructions. During the evaluation in the next chapter, we compare
the SAE to a non-incrementalized implementation in BAT. Some analyses, such as
the dataflow analysis, require writing code similar to the one shown above. As we
will see the declarative version is much shorter and more concise.
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1 private lazy val relationalInstructionsList =

2 SELECT ( (codeInfo: CodeInfo) => {

3 var pc = 0

4 var seqIndex = 0

5 val length = codeInfo.instructions.length

6 var result: List[RelationalInstruction] = Nil

7 while (pc < length) {

8 val instr = codeInfo.instructions(pc)

9 if (instr != null) {

10 result = asRelationalInstruction(

11 codeInfo.declaringMethod ,

12 pc, seqIndex,

13 instr) :: result

14 seqIndex += 1

15 }

16 pc += 1

17 }

18 result

19 }) FROM code

20

21 lazy val instruction =

22 SELECT (*) FROM UNNEST(relationalInstructionsList , _)

Figure 5.16: Relational view on instructions

The actual translation to relational instructions is performed in a single loop
over the instructions (line 7). Filtering of the null entries (line 9) is performed
together with the transformation (line 10) in a single pass. The transforma-
tion asRelationalInstruction simply constructs a new RelationalInstruction

object for a given instruction, based on the instructions type, e.g., aload_0,
invokevirtual. The second step after the transformation is simply to unnests
all relational instructions from the list using the unnesting operator of the database
(line 22). Since the unnesting is performed on a list of relational instructions, the
unnesting requires no extraction of a multiset from an underlying object, but already
receives a multiset, i.e., the list of instructions. Hence the unnesting is declared as
identity (UNNEST(..., _)).

Using the above declared instruction relation the database can be efficiently
filtered for specific instructions. For example, Figure 5.17, depicts two views that
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filter all static method calls (line 1) and all instructions that read a field (line 6). The
SAE uses the type system to filter instructions of a specific subtype. All static method
calls are of the type INVOKESTATIC – signifying the invokestatic bytecode – and
hence a respective instanceof filter is applied (line 4). The results are cast to the
INVOKESTATIC, which provides information such as the type of the receiver of the
call and the name of the called method. The SAE also features type abstractions for
multiple instructions that share a commonality. For example, the instructions that
read fields are signified by the FieldReadInstruction, which is a supertype for
the two concrete bytecode instructions that read fields (getstatic and getfield).
Again the respective view filters instructions by their type (line 9) and casts them
(line 7) to make additional properties available, such as the name of the field.

1 lazy val invokestatic = SELECT (

2 (_: RelationalInstruction).asInstanceOf[INVOKESTATIC]

3 ) FROM (instructions) WHERE

4 (_.isInstanceOf[INVOKESTATIC])

5

6 lazy val readfield = SELECT (

7 (_: RelationalInstruction).asInstanceOf[FieldReadInstruction]

8 ) FROM (instructions) WHERE

9 (_.isInstanceOf[FieldReadInstruction])

Figure 5.17: Selected relational views for specific instructions

The key advantage of the representation in Figure 5.17 is that the iteration over
all instructions is performed only once. The alternative is that each analysis works
directly on the array of code. For example, one can easily imagine that an analysis
that reasons over static method calls performs it’s own filtering via the instruction
array, e.g., code.instructions.filter(_.isInstanceOf[INVOKESTATIC]). How-
ever, the function filter must perform an iteration over all instructions similar to
the loop in Figure 5.16. Hence, performing many such iterations in each analysis is
time consuming and the relational representation is more efficient.

5.4 Example Analyses on Derived Relations

Using the derived relations defined in the previous section, more elaborate static
analyses can be formulated. The following two examples are derived from the tool
Findbugs, similar to the previous examples. While more elaborate than the previous
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examples, the presented checks on the code are still considered lightweight analyses,
in the sense that no control-/dataflow is required. The first example reasons over
the inheritance hierarchy. The second finds a specific pattern of instructions, i.e.,
a sequence of instructions with specific properties. Hence, the second example
requires some notion of a method’s code but not the full control-/dataflow of the
code.

Example 1 – Clone defined in non-cloneable class
The first analysis finds situations in which a class declares a Java clone()

method for object duplication, but does not implement the interface Cloneable.
By Java’s convention if an object does not implement the interface Cloneable a
CloneNotSupportedException is thrown. Hence, this situation must be avoided.

The analysis is based on finding declarations of the clone method where the
interface Cloneable is not a supertype of the declaring class. Since the Cloneable

interface can be declared in superclasses, the analysis requires the whole inheritance
hierarchy, i.e., the transitive closure over all subtypes. Note that the correctness of
this analysis depends on the available classes with which the database is populated,
since – due to the dependence on the whole inheritance hierarchy – classes can be
missed if their superclasses are not analyzed in the database. For example, the class
CharacterIterator is defines as cloneable and resides in the JDK. If an analyzed
class defines a clone method and is a subclass of CharacterIterator, but classes
in the JDK are not part of the database, the class is reported as a false positive.
However, this limitation exists also in the Findbugs tool and we encoded the analysis
as it was found there.

1 SELECT (*) FROM methodDeclarations WHERE

2 (_.name == "clone") AND

3 (_.parameterTypes == Nil) AND

4 (_.returnType == ObjectType("java/lang/Object"))

5 NOT ( EXISTS (

6 SELECT (*) FROM (subTypes) WHERE

7 (subType === declaringClassType) AND

8 (_.superType == ObjectType("java/lang/Cloneable"))

9 ))

Figure 5.18: SAE query for clone defined in non-cloneable class

The query for the analysis is depicted in Figure 5.18 and depends on the base
relation of all method declarations (line 1) and the derived supTypes relation of
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all transitive subtypes (line 6). From the method declarations all methods are
selected that are implementations of clone, i.e., have the name "clone" (line 2), are
parameterless (line 3) and return an object of the type java.lang.Object (line 4).
These selected clone methods are filtered by the NOT EXISTS keyword (line 5). The
filter finds all methods where no inheritance relation exists, such that the subtype is
the type of the declaring class (line 7) and the supertype is the interface Cloneable

(line 8).

Example 2 – Primitive boxed and unboxed for coercion
The second analysis finds situations in the code where primitive values are boxed,

i.e., wrapped into a respective object such as Integer for int values, and then
immediately unboxed to a different primitive type. For example, given a variable
float f; a boxing and unboxing is performed to coerce the float to an int by the
following statement:

int i = new Float(f).intValue()

In Java the above computation should be performed by a direct primitive coercion
that is cheaper in its execution, e.g., using the statement:

int i = (int) f

The actual analysis must only be performed for classes compiled for Java 5, since
this version introduced automatic boxing of primitives, which can lead to confusion
for untrained developers. Note that other situations – apart from coercion – where
boxed types are immediately unboxed are also checked by Findbugs, but reported
as different errors.

The analysis revolves around finding an invokespecial instruction – the con-
structor call, e.g., new Float(f) – immediately followed by an invokevirtual

instruction – the call to perform the coercion, e.g., intValue(). The analysis – such
as it is presented – is derived from the original Findbugs implementation and can
be seen as only a heuristic for finding boxing followed by unboxing. In general
an object can be stored in a variable and unboxed later, which requires a more
elaborate analysis based on the method’s dataflow. The query applies two more
heuristics also found in the original Findbugs implementation. The first heuristic
captures the right constructors by stating that the class of the constructed object
resides in the package java.lang, e.g., java.lang.Float or java.lang.Integer,
and receives a primitive value as its single parameter. The second heuristic captures
the right method calls for the coercion by stating that all methods are basically
parameterless and their name ends with Value, e.g., intValue() or floatValue().

The respective query is depicted in Figure 5.19 and performs a join between the
derived relations invokeSpecial and invokeVirtual. (line 1) to find immediately
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1 SELECT (*) FROM (invokeSpecial , invokeVirtual) WHERE

2 (declaringMethod === declaringMethod) AND

3 (nextIndex === index) AND

4 (receiverType === receiverType) AND

5 NOT (firstParameterType === returnType) AND

6 (_.declaringClass.majorVersion >= 49) AND

7 (_.parameterTypes.size == 1) AND

8 (_.parameterTypes(0).isBaseType) AND

9 (_.receiverType.packageName == "java/lang") AND

10 ((_: INVOKEVIRTUAL).parameterTypes == Nil) AND

11 (_.name.endsWith("Value"))

Figure 5.19: SAE query for primitives that are boxed and unboxed for coercion

consecutive instructions. There are three join conditions, stating that (i) instructions
must reside in the same method (line 2), (ii) instructions must follow each other
immediately, i.e., the next index after the first instruction is the index of the second
instruction (line 3) and (iii) methods must be called on the same type (line 4),
e.g., the statement new Float(f).intValue() produces a constructor call to Float

and the call to intValue() on an object of type Float. To check that a coercion
performed, the joined instructions are compared by the parameter type of the
constructor and the return type of the ...Value() call. A coercion is performed
if the parameter and return type are not the same (line 5). The check in line 6
states that the Java version must be greater or equal to Java 5 (which is encoded
as the number 49 in Java class files). The invokespecial instruction must fulfill
several properties; (i) for coercion the constructor must receive a primitive type
as its sole parameter (lines 7 and 8), (ii) for the above mentioned heuristic, the
constructed class must be in the package java.lang (line 9). Finally, the heuristic
for the coercing method call checks the method to be parameterless (line 10) and of
a name that ends with Value (line 11).

5.5 IDE Integration

The goal of the integration is to provide visual feedback of the static analyses
results and automatically notify the end-user (developer) of changes in the results.
Figure 5.20 depicts a high level overview of the SAE’s integration into an IDE. The
visual feedback is provided by IDE views (uppermost component), that register
themselves as observers to various static analyses. The observers are notified of
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all changes in the results of the analyses via the API shown in Figure 3.13 in
Section 3.4.1 and take appropriate actions to visualize the results. For example in
the case of the Eclipse IDE, results are shown in the Eclipse “Error View”. In the
following the components that the visualization relies on are discussed from top to
bottom as shown in the overview in Figure 5.20.

<<component>>
SAE Incrementalized
Database

<<bridge>>
SAE Data Preprocessor

<<component>>
Incrementalized
Static Analyses

<<subsystem>>
Editing/Compilation/Build

<<system>>
IDE<<subsystem>>

Incrementally Updated Views

Query Interface

Change Events

Base Relations

<<notify>>
<<use>>

Visual Paradigm for UML Standard Edition(TU Darmstadt)

Figure 5.20: High-Level overview of the SAE IDE integration

Incrementalized static analyses
The analyses are represented by the queries defined on the Java bytecode as

shown in the four examples in the previous sections. Each query can be instantiated
to a compiled and incrementally maintained operator tree via an apply method as
shown in Figure 5.10. The IDE then registers appropriate observers to a compiled
query. Note that the assumption is that the IDE is written in the same programming
language as the host language of the database, or based on the same execution
platform, i.e., a Java VM. Hence, efficient integration is possible via direct method
calls and no communication overhead between the database and the IDE exists.
Thus the analyses in the presented form can be efficiently integrated into any Java-
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based IDE such as Eclipse5, NetBeans6 or IntelliJ7. From these Java-based IDE’s we
have integrated the SAE into the Eclipse IDE, but the concepts are generalizable to
other IDE’s as well.

To allow the IDE to choose which analyses are to be executed, a list of available
analyses is provided. For example in the case of the Findbugs analyses – from which
the previous examples are drawn – a list of available analyses is provided via a
respective identifier for each analysis stemming from the Findbugs website8. The
IDE – in the case of Eclipse a respective Plugin – then instantiates the analyses,
registers itself as an observer and delegates visualization, e.g., to the Eclipse “Error
View”.

For the IDE integration analyses can also be de-constructed when they are not
needed any further or should not be displayed for other reasons. The deconstruction
entails the clearing of the chain of operators that contributes to the query result
until a base relation is reached. Conceptually, the idea is to traverse the registered
observers top-down and remove all observers that contribute to the result. Since
operators can contribute to the results of more than one analysis, the traversal is
stopped, if – after the removal – further observers are registered to an operator.
There is a small catch, namely that the process should not de-construct the derived
relations defined in Section 5.3. There queries are currently compiled once during
the creation of the database and should not be de-constructed. For example, if
the query in Figure 5.18 is the only query that uses the subTypes relation, the
subTypes query must not be de-constructed even if (currently) no further analyses
have registered observers to it. Hence, a cleanup operation is defined for each query
that stops the top-down traversal at specified child operators.

1 def clean(db: BytecodeDatabase ,

2 query: Relation[MethodDeclaration]) = {

3 query.cleanObserversWhile(

4 _ != db.subTypes

5 )}

Figure 5.21: Deconstruction of the query for clone defined in non-cloneable class

For example Figure 5.21 depicts the deconstruction for the example in Figure 5.18.
The call to cleanChildrenWhile (line 3) de-constructs all operators until a specified

5 http://www.eclipse.org
6 http://netbeans.org
7 http://www.jetbrains.com/idea
8 http://findbugs.sourceforge.net/bugDescriptions.html
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child is reached. In this case the query depends on the subTypes relation, which is
not visited due to the check in line 4.

SAE incrementalized database
All queries are formulated on a single incrementalized database. Concretely the

database corresponds to a single instance of the class BytecodeDatabase. The IDE
is then responsible for providing data to the base relations (cf. Section 5.1) of the
database. The data corresponds to the Java program currently developed by the
user of the IDE, together with any libraries that must be checked by an analysis.

The idea of the integration is to provide data via the code compiled by the IDE
for a given Java program. During the development in the IDE each editing of code
triggers the IDE’s compiler and a new class file is generated (given that the code
compiles). The class file is then parsed and its data added to the base relations of the
SAE. Since, the main motivation of the SAE is to have a minimal memory overhead,
the deletion and update of the base relations revolves around re-reading the old
versions of a class file and generating deletion/update events instead of addition
event. Hence, the analyzed data can be seen as persisted in the form of class files.

For the integration, the BytecodeDatabase provides several methods for reading
class files compiled by the IDE. Figure 5.22 depicts the API, which features methods
for adding (line 3), removing (line 8) and updating (line 10) the base relations
from the data found in the respective class file. The methods all behave similarly; a
class file is read (parsed) by a reader (line 4). Different readers exists that generate
add/delete or update events on the base relations during the parsing of a class file.
In addition, libraries used by a Java project are added to the analysis process via
respective methods that read a whole archive – jar file – via the methods in line 13
and 15.

To trigger respective calls for adding and removing class files an integration into
the IDE’s build process is necessary. This integration entails tracking additional
information, such as where the IDE stores compiled classes. Since this is very IDE
specific, the task is performed by a dedicated component called Buildsystem Bridge.

SAE buildsystem bridge
The buildsystem bridge registers to the low level services of the IDE (bottommost

component), e.g., source code editing, compilation or other build facilities and
translates the received events into calls to the BytecodeDatabase. Notifications
from said facilities are provide by most modern Java IDE’s, i.e., Eclipse, IntelliJ or
NetBeans. The bridge has two important tasks. First, the bridge tracks where the
IDE stores class files for a given project. Thus the bridge can translate modification
events to concrete file streams that are parsed and added to the BytecodeDatabase.
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1 class BytecodeDatabase{

2 ...

3 def addClassFile(stream: InputStream) {

4 val reader = ClassfileAdditionReader(this)
5 reader.readClassfile(stream)

6 }

7

8 def removeClassFile(stream: InputStream)

9 ...

10 def updateClassFile(streamOld: InputStream ,

11 streamNew: InputStreams)

12 ...

13 def addArchive(stream: InputStream)

14 ...

15 def removeArchive(stream: InputStream)

16 ...

17 }

Figure 5.22: API for providing data of analyzed code

Second, the bridge performs a bookkeeping over already compiled class files. Since
the remove (and update) methods to the database require the old (and new) class
file both must be readable at the same time. In the case of the Eclipse IDE this poses
the practical problem that the compiler writes the new class file and then produces
a change event. Hence, the previous version is lost without a form of bookkeeping.
Thus the bridge provided for the Eclipse IDE stores for each class file a “shadow” file
that represents the previous state of the compiled class. In practice, this process
produces practically no overhead, since the class file as a whole is simply copied.
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6 Incrementalized Static Analyses for Software Quality Assessment

To evaluate the SAE, a rigorous performance measurement is performed over a
large variety of queries that assess the quality of a software system in terms of
correctness and maintainability. The queries presented in this chapter represent
queries with largely different characteristics that employ lightweight analyses, metrics
and intra-procedural dataflow.

The lightweight analyses focus on (i) searching for declarations of classes, meth-
ods, or fields with specific properties, (ii) inspecting the type hierarchy or (iii)
locally analyzing method implementations for specific instruction patterns, without
resorting to a full control-/dataflow analysis of the methods (i.e., analyzing the
effect of bytecode instructions on the stack).

The metrics are frequently cited as indicators for code styles that are problematic
during software maintenance. The metrics are mainly included, since they provide
a set of queries that excessively uses aggregations, i.e., metrics are inherently based
on the notion of counting different relations between entities in Java (byte-)code.

The intra-procedural dataflow analyses are a means to find bugs more precisely.
The analysis performed in this chapter is a low level form of intra-procedural
dataflow analysis that basically models the stack and local variables of a Java
program and evaluates the effect of instructions on this model. Note that intra-
procedural dataflow analyses as found in static analyses text books (e.g., [NNH99])
use higher level mathematical abstractions to formulate the analyses, but are in
principle comparable.

To obtain a realistic evaluation of the SAE the measurements are performed
on real-world queries. The first set of real-world queries stems from the tool
Findbugs [HP04], which is a popular open source bug-finding tool that analyzes
Java bytecode. Findbugs was selected as a source of queries because the Findbugs
analyses represent typical non-trivial queries over Java bytecode and is used as
the source for lightweight and intra-procedural analyses. The second set contains
object-oriented metrics as they are found for example in the open-source Java tool
Metrics1. The Metrics tool is primarily inspired by the object-oriented metrics found
in Henderson-Sellers [HS96]2 and Robert C. Martin [Mar03].

The actual queries for the evaluation were chosen in the following manner. In
Findbugs we sampled queries in two batches that together contain 24 queries from

1 http://metrics.sourceforge.net/
2 Henderson-Sellers is a very good text book on object-oriented metrics that also includes correc-

tions to some metrics that can be found in earlier published papers
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approx. 400 analyses in Findbugs. The first batch contains 12 manually selected
queries that were chosen mainly to get a good distribution over the queried entities
(classes, fields, etc.). Subsequently, a second batch was randomly selected to
avoid any bias in the range of sampled queries. This second batch consisted of 19
additional Findbugs queries, from which 12 do not use control-/dataflow analyses
and hence fall into the measured category of lightweight analyses. The other 7
randomly selected queries are presented in the context of control-/dataflow analyses.
From the Metrics tool, we manually selected queries with different properties that
(i) reason over all dependencies found in the bytecode, (ii) count and correlate
multiple properties and (iii) count elements in the inheritance hierarchy.

In the following the basic evaluation procedure is defined first and the datasets
on which the evaluation is performed are characterized. Then the different analyses
are evaluated in detail in the order of lightweight analyses, metrics and finally intra-
procedural dataflow. For each of these analyses the general shape of the used queries
is characterized first before presenting the results of the evaluation.

6.1 Evaluation Procedure

To evaluate the SAE’s performance for executing the above defined static analyses,
the runtime and memory consumptions are measured by running the analyses on a
variety of existing code bases.

All measurements were performed on a 4-core/8-thread Intel Core i7-870 proces-
sor with 2.93 GHz and 4096 MiB RAM running a 64-bit version of GNU/Linux (De-
bian “Squeeze” 6.0.4, kernel 2.6.32). Each analysis is executed multiple times,
which allows us to assume that the arithmetic mean of the execution times and
memory consumptions follow a Gaussian distribution [GBE07]. There are several
factors of the Java virtual machine (JVM) that are diminished by multiple executions.
First, the just-in-time compiler (JIT) of the JVM also consumes time and memory
for compiling executed methods. Second, frequently executed methods are re-
compiled with higher optimization levels by the JIT. All performance measurements
are averaged across 100 invocations with a warm-up phase of 50 invocations. The
latter are not counted into the measurements. Overall this achieves a steady-state
performance with a coefficient for variation below 3.0 % for all measured analyses.
Hence, all measured values are sufficiently stable so that a detailed presentation of
error bars will be omitted.

Each analysis is evaluated using the following three steps, which are each dis-
cussed in more detail in the following sub sections. First, the SAE is compared to a
non-incrementalized analysis in BAT for its performance w.r.t. the initial execution
time of the analyses over large datasets. Second, the SAE’s incrementalization is
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measured to analyze that the principle of inertia indeed holds and incremental compu-
tations are fast. This second step also compares the impact of the @LocalIncrement

optimization w.r.t. the runtime. Two different scopes for the optimization are com-
pared: (i) entire classes and (ii) entire methods. Third, the evaluation measures the
memory that is permanently materialized by the SAE to hold auxiliary data. This
third step also measures the impact of the @LocalIncrement optimization (defined
in Sec. 4.2.5) on memory materialization. Note that for all three steps we use
the SAE in a fully indexed mode, i.e., every join will index relevant data from the
underlying relations. Thus we have measured the best possible runtime along with
the highest possible memory allocation.

6.1.1 Non-incremental Runtime

The initial runtime of the analyses on large datasets is compared to a non-
incremental implementation. The latter was developed using an object-oriented
representation of the bytecode, which is the default output of the byteocde toolkit
BAT. The comparison is performed to ensure that the time required for the initial com-
putation of the incrementalized analyses is comparable to the non-incrementalized
analyses. A negative result in this evaluation would mean that the performance gain
of incremental computation does not amortize quickly, e.g., if the incrementalized
analyses require an initial computation that is ten times as high, we could simply run
the non-incrementalized analyses ten times, before incrementalization amortizes
itself.

The re-implementation in BAT was chosen mainly to obtain a uniform comparison.
First we used analyses from different tools, i.e., Findbugs and the Metrics tool, which
are very differently implemented. Second, a direct comparison to the tools is not
possible in a rigorous and fair manner. Findbugs, for example, has bug detectors
that are not fully modularized. A visitor pattern is used, where each visitor receives
the underlying bytecode data and analyzes it for a large variety of bug patterns. For
example many bug patterns related to fields are implemented in one visitor, which
includes checking for unread fields, as well as self-assignments to variables where
an identical named field exists.

As part of the evaluation it was ensured that the implementations are compa-
rable to the original Findbugs and Metrics implementations. Note that we omit
a presentation of the number of detected bug or the values for the metrics. In
general, the implemented analyses yield the same results as their counter-parts in
tools. Albeit, in rare cases Findbugs uses intricate heuristics that filter out some
results, but are hard to reproduce due to the non-modular implementation of the
tool. Nevertheless, the implementations in BAT and the SAE produce the exact same
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results. Furthermore, it should be noted that the number of bugs is not a relevant
indicator for runtime performance. In fact, it can be misleading, since an analysis
can perform a large amount of computation to conclude that there are 0 bugs and
vice versa a large amount of bugs can be detected without heavy computations.

Example of a comparable BAT analysis
To give a short account of what the SAE is compared against, a small example

is in order. The object-oriented representation in BAT is fairly straightforward
and features classFiles as the top-level abstraction, which include lists of fields
and methods. Each method includes an array of instructions as we have seen in
Section 5.3. Type information is represented in the same manner as in the SAE,
since the BAT representation was simply reused for the SAE (cf. Section 5.1.1). The
queries are formulated as for-comprehensions over the object-oriented structure.
For example, Figure 6.1 depicts the same query as previously shown in Figure 5.10
that finds protected fields in final classes.

1 def apply(classFiles: List[ClassFile]) =

2 for (

3 classFile <- classFiles if classFile.isFinal;

4 field <- classFile.fields if field.isProtected

5 ) yield (classFile , field)

Figure 6.1: BAT query for protected field declarations in final classes

In some cases the analyses require more elaborate auxiliary structures, such as the
inheritance hierarchy or all fields that are read at least once in the program. These
structures are in general computed prior to an analysis (as hash sets or hash maps)
and are either used inside the for-comprehensions, or are used as the input to the
comprehension (in cases where only selected elements are searched). This ensures
that no unnecessary computations are duplicated as sub-loops in each iteration of
a for-comprehension and ensures competitiveness to the fully-indexed SAE. Note
that it is exactly this usage of auxiliary data structures that complicates a manual
incrementalization of the analyses.

Measured values for comparing to non-incrementalized analyses
For the evaluation the non-incremental runtime is measured once for each analysis

in a particular category, i.e., each lightweight analysis, each metric, etc. Measuring
each analysis in isolation allows us to identify which queries exactly perform better
or worse in comparison to BAT. The total time for all analyses is not compared, since
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BAT is naturally at a disadvantage here, i.e., each analysis in BAT is phrased as a
single for-comprehension and iterations over the data are re-performed by each
analysis.

The runtime is measured – for both the SAE and BAT – from an end-user per-
spective, that is, from reading and parsing the respective bytecode until the analysis
results are delivered. While the parsing time is not relevant for the individual
analyses there are three main reasons to measure the time in this manner. First,
the end-user perspective indicates how long an IDE user must wait until results are
delivered and thus more aptly reflects the real-world scenario. Second, the SAE is
tightly integrated into the parsing process, i.e., during parsing respective event are
triggered that already perform computations and yield analyses results. In contrast
BAT builds a complete in-memory representation and traverses the object structure
to generate a list of results. These two schemes are architecturally different and
naturally require different runtimes. BAT traverses structures twice, once during
construction and once during the analysis, whereas the SAE only traverses the
structure once during construction and then only propagates events. Separating the
SAE from the parsing process would be unfair to the architecture of the SAE. For
illustration, in this scenario one would simply read the whole structure into memory
and then traverse the structure and trigger events to all base relations. However, this
scenario includes a traversal of the entire dataset, whereas BAT will traverse only
the parts of the dataset relevant for the respective analysis. Thus, the measurement
would include more time for the SAE and less for BAT. Third and finally, the inclusion
of the parsing process is the natural work that has to be re-performed by BAT, since
it has no inherent support for incrementalization.

6.1.2 Incremental Runtime

The incremental runtime is compared to the non-incremental case. The runtime
is compared for executing all analyses of a particular category together, e.g., all
lightweight analyses. Naturally, the expectation is that incremental runtime should
be much smaller compared to a full (non-incremental) computation. Hence, we eval-
uate the orders of magnitude saved by incremental view maintenance. Furthermore,
the absolute values for the incremental runtime are used to evaluate, if incremental
maintenance can really be considered real-time, or in which cases it fails.

A second comparison takes into account the @LocalIncrement optimization
using two different scopes. First the class scope is measured, since this is the largest
possible incremental scope and, hence, provides the largest possibility for saving
memory, i.e., all analyses confined to a single class require no materialized memory.
Yet the class scope also requires the largest amount of re-computations, i.e., all class
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members such as methods and fields are re-analyzed. The second scope are method
declarations, thus methods in a recompiled class require a re-analysis only if they
have really changed w.r.t. their instructions; other methods are not re-analyzed.

Measured values for incrementalized analyses
The incremental runtime is obtained by replaying a large set of change events

recorded in a developer’s IDE. A change event can include several classes that
were re-compiled by the IDE. The measured time reflects how long it takes to
incrementally maintain the analysis results for each complete change event, i.e.,
all contained classes. These values are compared to a non-incremental runtime
obtained by using the SAE. The SAE is used (and not BAT), since BAT is unfit to run
all analyses together, i.e., each analysis is phrased as a single for-comprehension and
iterations over the data are re-performed by each analysis. All runtimes (incremental
and non-incremental) are measured from an end-user perspective, that is, from
reading and parsing the respective bytecode until the analysis results are delivered.

The second comparison (@LocalIncrement scopes) measures three values. First
the time to incrementally maintain the whole change set by removing and adding
all classes and all therein contained members (class scope). Second the time to
incrementally update methods in the classes only if they have changed (method
scope). The method scope requires some pre-computation, i.e., for each class the
difference between the old methods and the new methods – in terms of instructions
– must be computed. The runtime for the pre-computation is included in the
measurements for two purposes. First, it naturally affects the overall runtime of
using the method scope. Second, this work must be performed in general for any
IDE integration where the IDE typically does not produce fine-grained events, such
as changes for a single method.

6.1.3 Memory Materialization

This third step of the evaluation compares the amount of memory that is materialized
for incremental maintenance to an approach where the base relations are fully
materialized. The values for the incrementalized analyses are compared to the
values for materializing each dataset entirely in memory. The latter measurement
includes two values. One for simply reading all data into the SAE with materialized
base relations and one for reading the data into a deductive logic engine (SWI-
Prolog3). The latter is possible, since BAT is able to produce a logic representation
of the Java bytecode. Hence, we can compare how a deductive database handles

3 http://www.swi-prolog.org/
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the large amount of data. The overall memory requirements for the complete
materialized datasets are presented in the next section together with a general
characterization of the datasets.

Note that we use SWI-Prolog and not XSB for our comparison. XSB would have
been preferable, since it also provides incrementalization, whereas SWI does not.
However, we were unable to use XSB for the larger datasets, since the engine ran
out of memory. Furthermore, note that the values for materialized base relations
in the deductive database are an optimistic measure. In particular, these systems
would require additional indexing in order to be competitive for analyses that use
joins. Hence, the evaluation actually favors the compared approaches, i.e., SWI.
Nevertheless, a measurement with incorporating special indices for a fair comparison
is hard, since – to be fair – the indices should be filtered indices such as the SAE uses.
An indexing of the complete base relations is infeasible for all approaches (even for
the SAE), since we have for example expressed joins over consecutive instructions
(cf. the boxing analysis in Figure 5.19) and indexing 4 000 000+ instructions as
found in our datasets requires enormous amounts of memory.

Measured values for memory materialization of incrementalized analyses

For the evaluation the materialized memory is measured in general for all analysis
in a particular category. The memory comparison takes into account three values
for the incrementalized analyses of the SAE. First the memory required due to the
auxiliary data in the change propagation expressions defined in Sec. 3.4.3. Second,
the memory required when the @LocalIncrement optimization is considered at the
scope of entire classes and third the memory for the same optimization at the scope
of methods. Where optimizations are possible the memory is measured for each
optimized analysis in isolation, which allows us to identify which queries provided
the most savings.

6.2 Overview of Measured Datasets

Throughout this chapter the following datasets are used for the evaluation. The
comparison for non-incremental runtime and materialized memory are performed
over two large datasets: (i) the runtime library of the JDK (version 7, windows 64
bit) and (ii) the Scala compiler (version 2.9.2). The runtime of the incremental
maintenance is measured using a set of real-world changes performed by student
developers that worked in our lab.
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6.2.1 Non-Incremental Runtime and Memory Materialization

Both the JDK and the Scala compiler (Scalac) are large in terms of number of
classes, methods and instructions. Table 6.1 summarizes the overall amount of data
contained in each dataset, together with the time required for parsing the bytecode
and the amount of memory required, if the entire dataset were materialized.

Dataset
# elements parse

time (s)
mat. mem. (MB)

classes fields methods instr. SAE SWI

JDK 18 663 76 399 165 512 4 505 310 1.97 s 466,8 1 160,0
Scalac 7 710 20 137 66 531 808 084 1.60 s 92,5 295,4

Table 6.1: Overview of the benchmarked dataset

The number of elements (2nd − 5th columns) and the time required for parsing
(6th column) are rather self-explanatory. To obtain a measure of how in-memory
databases with materialized base relations deal with the datasets, we have materi-
alized all base relations in the SAE (7th column) and in the logic engine SWI (8th

column). Note that the 7th column is used solely for comparison and the memory
is not required by the SAE. The value in the 8th column, however, is a strict re-
quirement when using SWI, i.e., the amount of memory is always materialized and
permanently blocked on a developer’s machine.

Note that the measurements for the materialized memory represent only the
base relations. That means that we did not consider special indexing on the data.
However, XSB – and other deductive databases – automatically index atoms based
on their first parameter, e.g., the atom parent(john, sally) can be quickly retrieved
for the value john, which is a good match for some queries, yet others would require
a lookup for the value sally.

Overall, it is interesting to see that the logic representation consumes considerably
more memory compared to the SAE. Partially this is due to the above mentioned
indexing on the first parameter of an atom. Furthermore the SAE benefits from the
object-oriented representation of data. For example, the same types – in terms of
the same objects that represent them – can be referenced in many places in the
bytecode, e.g., in method parameters as well as in method call instructions. The
logic engine simply treats them as different atoms.

6.2.2 Incremental Runtime

The change set used to measure incremental runtime reflects 12+ hours of developer
time on a small scale project that initially comprised 381 classes at the level of
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Java bytecode, i.e., including inner classes, and increased to 389 classes during the
course of development. Table 6.2 depicts the initial size of the project and the time
required to parse the bytecode (in milliseconds).

# elements parse time
(ms)classes fields methods instr.

381 2 563 900 54 712 80.82

Table 6.2: Initial data of the incrementally analyzed project

Changes were recorded in the Eclipse IDE and a change event was recorded
whenever Eclipse compiled a class. Compilation is performed when the developer
saves the edited class(es) or when Eclipse performs re-builds of a project. A change
event consists of all classes that are compiled together at a particular time, e.g., if
Eclipse performs a full rebuild the change event consists of all classes in the project.
The change set contains all recorded events and originally consisted of approx. 250
replayed events. However, we reduced the presented data, since such a large amount
of values becomes unwieldy. First, we removed approx. 50% of the events, since
they only perform a small line number change in a single class, i.e., due to changing
comments. Second, we removed another 30% of the events that all perform only a
single code change in a small method. All these events have a very low runtime; yet
showing them all only clutters the presentation without giving further insights. We
left representatives in the data, but were more interested in the performance when
actually more computation takes place. The final change set features 52 events,
of which two are large rebuilds by Eclipse, which were included intentionally to
illustrate the limitations of incremental maintenance.

The data in the change set is characterized in tables 6.3 and 6.4. The first column
in the tables sequentially numbers all change events. The numbering is later used as
the x-axis for the measured incremental runtime. Hence, the x values can be used
to put the measured runtime values into perspective with the necessary information
from the change set.

Note that a real-world change set is more complex to characterize than artificially
induced changes, such as “a single method was removed”. Hence, as a short
overview, we can say that the change set contains a diverse range of events ranging
from (i) changes in only one or two very small methods (e.g., x = 16), over (ii) a
medium number of 10-30 methods (e.g., x = 23) and includes two large re-builds
(x = 17, x = 44). The latter are not complete rebuilds of all classes. The analyzed
project is subdivided into several Eclipse projects, which can each be rebuilt by
themselves or in groups. Yet the change at x = 17 comes very close to a full rebuild.
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x ∆
class scope (◦) method scope (Î) Î/◦

∆add
m ∆del

m ∆add
i ∆del

i ∆add
m ∆del

m ∆add
i ∆del

i

1 1 23 21 1176 1077 3 1 278 179 20%
2 1 4 4 190 408 1 1 10 228 40%
3 1 4 4 404 190 1 1 224 10 39%
4 1 3 4 341 401 0 1 0 60 8%
5 4 28 28 1303 1787 3 3 10 484 16%
6 1 3 3 270 130 1 1 150 10 40%
7 1 23 23 1026 927 2 2 109 10 6%
8 1 23 23 1160 1026 1 1 134 10 7%
9 1 4 3 408 270 2 1 288 150 64%

10 1 21 21 2798 2750 2 2 956 908 33%
11 2 25 23 1189 1160 3 1 68 29 4%
12 2 23 25 1160 1189 1 3 29 68 4%
13 2 25 23 1189 1160 3 1 68 29 4%
14 2 23 25 1160 1189 1 3 29 68 4%
15 1 22 24 1115 1184 0 2 0 69 3%
16 1 2 2 63 16 1 1 57 10 83%
17 312 2127 2079 36335 36680 52 4 2095 739 4%
18 5 56 52 2529 2451 14 10 2059 2009 80%
19 1 11 10 320 303 3 2 171 96 42%
20 6 62 67 2743 2800 12 17 2105 2230 77%
21 6 67 62 2992 2743 16 11 2193 1913 70%
22 1 24 24 1033 1214 1 1 11 192 9%
23 1 24 24 1188 1033 8 8 623 468 49%
24 1 26 25 1227 1188 3 2 152 113 11%
25 1 2 2 81 34 1 1 75 28 88%
26 3 54 54 2058 2508 8 8 1124 1501 57%

Table 6.3: Overview of the change set

In detail the tables contain the necessary information to characterize the work-
loads performed during each incremental change. The 2nd column denotes the
overall size of the change set in terms of number of classes recompiled by Eclipse.
The 3rd − 6th columns characterize the workload when performing incremental
maintenance at the class scope and the 7th − 10th columns include the same charac-
terization for the method scope. The two scopes will in the following be denoted by
◦ (class scope) and Î (method scope). For each scope four values are listed:

∆add
m number of added methods
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x ∆
class scope (◦) method scope (Î) Î/◦

∆add
m ∆del

m ∆add
i ∆del

i ∆add
m ∆del

m ∆add
i ∆del

i

27 3 54 54 2190 2058 8 8 1183 1124 53%
28 1 24 24 1243 955 7 7 678 390 48%
29 1 24 24 1273 1243 1 1 41 11 2%
30 4 64 65 2797 2824 4 5 1023 1108 37%
31 1 2 2 34 81 1 1 28 75 88%
32 1 2 2 81 34 1 1 75 28 88%
33 2 23 24 10 1263 23 24 10 1268 100%
34 2 24 23 1263 10 24 23 1268 10 100%
35 11 55 57 263 346 10 12 10 107 19%
36 8 87 91 5741 6073 11 15 2776 3052 49%
37 1 21 21 1119 1060 1 1 221 162 17%
38 1 21 21 1060 1119 1 1 162 221 17%
39 3 30 30 1685 1631 1 1 55 1 2%
40 1 21 21 909 1068 1 1 11 170 9%
41 1 21 21 1078 909 1 1 180 11 10%
42 1 21 21 909 1078 1 1 11 180 10%
43 1 21 21 1078 909 1 1 180 11 10%
44 175 1265 1258 27355 27355 20 13 4208 4154 15%
45 1 21 21 898 1078 1 1 37 180 11%
46 5 11 15 10 192 11 15 10 192 100%
47 5 15 11 342 10 15 11 342 10 100%
48 1 19 21 717 898 2 4 84 265 21%
49 3 29 30 1425 1630 1 2 10 282 9%
50 3 29 29 1626 1425 1 1 201 10 7%
51 11 90 90 1100 1749 19 19 10 717 25%
52 1 19 19 717 10 19 19 717 10 100%

Table 6.4: Overview of the change set (cont.)

∆add
i number of added instructions in the added methods

∆del
m number of removed methods

∆del
i number of removed instructions in the removed methods

The characterization is focused in methods and instructions, since these contribute
the highest amount of work during incremental maintenance. The change set also
features changes to fields, e.g., renaming a field. However, these changes are rare
and not discussed in detail for brevity. Also for brevity all the above values include
updates as deletions followed by insertions.
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Finally, the difference between class scope (◦) and method scope (Î) requires
some discussion. At the class scope all methods – and all instructions – of all
classes in a change event will be re-analyzed. Hence, the 3rd − 6th columns can
be understood as the number of methods and instructions in the changed classes,
which are naturally rather large numbers. At the method scope basically all methods
that have not changed, i.e., have the same name, same signature and exact same
instruction sequence, are not re-analyzed. Hence, the 7th − 10th columns can be
understood as showing those methods that really have changed.

In the majority of cases the method scope contains only a small fraction of the
changes found at the class scope. Hence, we can indeed expect that the method
scope will perform better in terms of runtime for the incremental maintenance.
However, there are cases where both scopes are equally sized, e.g., x = 33 and
x = 34. Since the method scope must be pre-computed first these events can be
expected to have a larger runtime in the method scope than in the class scope. For
easy comparison of the method scope to the class scope, the last column in each
table shows the ratio between the number of changes at the method scope and the
number of changes at the class scope (Î/◦). For example at x = 1 the method
scope contains only 20% of the changes found at the class scope. The ratio is simply
computed by taking the quotient over the sum of all changes in each scope, i.e., the
sum over all additions and deletions of methods and instructions.

6.3 Lightweight Findbugs Analyses

In the following the measured lightweight analyses from the Findbugs tool are first
briefly described w.r.t. their semantics – in terms of detected bugs – and the queries
are characterized w.r.t. the underlying relations and used operators. An overview
of the analyses is given in Table 6.5 and Table 6.6 for the manually the randomly
selected queries respectively. Both tables are identical in their layout. The first
column contains an abbreviated identifier for the query. The identifier is based on an
original identifier that can be found in Findbugs4; the tool categorizes detected bug
patterns by these identifiers. The Findbugs categorization already groups related bug
patterns together, e.g., the prefix CN denotes bug patters related to violating Java’s
conventions for defining a clone() method. The presented abbreviated identifiers
share the prefix found in Findbugs; a mapping to the original identifier can be
found in Appendix A. The second column features a short description of the bug
pattern detected by each analysis. The description provides an idea of the detected
bug patterns. The third column lists the relations used by each analysis and the
fourth column the operators used to formulate the queries based on these relations.

4 http://findbugs.sourceforge.net/bugDescriptions.html
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Note that the relations are the either the base relations (declared in Section 5.1)
or the derived relations (declared in Section 5.3), i.e., the queries are not “broken
down” into queries to only base relations. The derived relations are included since
they provide standard abstraction (relations) used by many queries and provide no
further optimization potential.

The queries for the selected analyses are not all discussed in detail. The listed
bug patterns mostly represent bad practices or violations of Java conventions. The
exceptions are the analyses EQ, DMI and UR, which detect situations that can lead
to incorrectly executing code. An in-depth discussion was presented for four of the
analyses; as examples for formulating static analyses in Section 5 (in the order CI,
FI1, CN3, BX). Most of the remaining analyses have similar qualities, in the sense
that they either (i) filter specific elements (as seen in CI, FI1), (ii) find specific
elements where some other element does exist or does not exist (as seen in CN3) or
find specific sequences of instructions (as seen in BX).

There are three notable queries (all found in Table 6.6) that perform different
and/or more complex analyses compared to other queries. First, the FI2 analysis
counts the number of instructions in a method as a heuristic to find methods that
only perform a super call. Second, the SIC analysis finds inner classes that do not
require an reference to their enclosing object. The analysis combines checking
that the outer this field is never read or written and that the constructor of the
inner class does not use the parameter containing the instance of the outer class;
except to initialize the outer this field. The latter is checked via a heuristic that
counts accesses to the parameter, i.e., exactly one access is required to initialize the
field. Third the UR analysis features many joins: the query must find a field that is
declared and read in the same class (◃▹); the reading method must override a super
class method (◃▹); the super constructor must call the reading method (◃▹); and the
super constructor must actually be called from a constructor in the subclass (◃▹).

6.3.1 Non-incremental Runtime

The runtime for each single analysis is measured once for SAE and once for BAT.
All measurements are performed using the JDK and Scalac libraries introduced in
the basic setup (cf. Sec.6.2). The results for the manually and randomly selected
Findbugs analyses are given in the tables 6.7 and 6.8. The two tables have the same
layout where the first column contains the identifier of the respective analysis, the
second to fourth column contain the results obtained for the JDK where the second
column is the time measured for the SAE, the third column the time measured
for BAT and the fourth column contains the ratio between the SAE and BAT times.
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Id Description Used Relations Ops.

CI Class is final but declares protected field (cf.
Sec. 5.2)

fieldDecl. σ x 1

CN1 Class implements Cloneable but does not define a
clone() method

methodDecl.

subTypes

σ x 2
π x 1
Â x 1

CN2 clone() method does not call super.clone() methodDecl.

instructions

σ x 3
π x 1
Â x 1

CN3 Class defines clone() but doesn’t implement Clone-
able (cf. Sec. 5.4)

methodDecl.

subTypes

σ x 2
π x 1
Â x 1

CO1 Abstract class defines covariant compareTo()
method

methodDecl.

subTypes

σ x 3
π x 2
n x 1

CO2 Covariant compareTo() method defined methodDecl.

subTypes

σ x 2
π x 2
n x 1

DM1 Explicit call to garbage collection; extremely dubi-
ous except in benchmarking code

instructions σ x 4
π x 2
⊎ x 1

DM2 Call to the unsafe method runFinalizersOnExit instructions σ x 2
π x 1

EQ Abstract class defines covariant equals() method methodDecl. σ x 1

FI1 Finalizer should be protected by convention, not
public (cf. Sec. 5.2)

methodDecl. σ x 1

IM Dubious catching of IllegalMonitorStateException code σ x 1
π x 1

SE1 Class implements Serializable, but its superclass
does not define a void constructor

classDecl.

methodDecl.

σ x 3
π x 1
n x 1
Â x 1

UuF Class declares an unused field, i.e., no read or
writes are performed on the field

fieldDecl.

instructions

σ x 2
π x 1
Â x 1

Table 6.5: Description and characterization of manually selected Findbugs analyses
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Id Description Relations Ops.

BX Primitive value is boxed then unboxed to perform
primitive coercion (cf. Sec. 5.4)

instructions σ x 4
π x 3
◃▹ x 1

DMI Integer argument (with wrong bit layout) provided
in call to Double.longBitsToDouble(long)

instructions σ x 4
π x 3
◃▹ x 1

DP Privileged method called outside of a doPrivileged
block

instructions

classDecl.

σ x 3
π x 1
Â x 1

FI2 Finalizer does nothing but call superclass final-
izer; determined via the existence of the call and a
heuristic that counts the number of instructions

instructions σ x 3
π x 1
n x 1
γ x 1

ITA Method performs inefficient call on toAr-
ray(Object[]) by providing zero-length array ar-
gument

instructions σ x 6
π x 4
◃▹ x 2
n x 1

MS1 Field should be package protected, since it is never
read from outside of the package

fieldDecl.

instructions

σ x 4
π x 1
Â x 1

MS2 Static public field should be final fieldDecl. σ x 1

SE2 Non-serializable class has a serializable inner class classDecl. σ x 3
◃▹ x 1
Â x 1

SIC Anon. inner class can be refactored into a static
inner class. Note requires naming the inner class

classDecl.

fieldDecl.

instructions

σ x 5
π x 2
◃▹ x 1
Â x 2
γ x 1

SW Certain swing methods needs to be invoked in
Swing thread

instructions σ x 2
π x 1

UG Declaration of synchronized set method, but un-
synchronized get method

methodDecl. σ x 2
◃▹ x 1

UR Uninitialized read of a field, due to access in over-
ridden method that is called from super construc-
tor

methodDecl.

instructions

σ x 4
π x 2
◃▹ x 4

Table 6.6: Description and characterization of randomly selected Findbugs analyses
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The final three columns contain the results obtained for the Scalac and mirror the
previous three columns in their layout.

Id
time (s) - JDK time (s) - Scalac

SAE BAT SAE
BAT

SAE BAT SAE
BAT

CI 2.1 2.2 x1.0 1.6 1.6 x1.0

CN1 2.2 2.2 x1.0 1.7 1.6 x1.1

CN2 2.8 2.2 x1.3 1.9 1.6 x1.2

CN3 2.3 2.2 x1.0 1.7 1.6 x1.0

CO1 2.3 2.2 x1.0 1.7 1.6 x1.1

CO2 2.3 2.2 x1.0 1.8 1.6 x1.1

DM1 2.9 2.7 x1.1 1.9 1.8 x1.1

DM2 2.7 2.5 x1.1 1.8 1.7 x1.1

EQ 2.0 2.2 x0.9 1.7 1.6 x1.1

FI1 2.1 2.2 x0.9 1.6 1.6 x1.0

IMSE 2.1 2.5 x0.8 1.7 1.7 x1.0

SE1 2.2 2.2 x1.0 1.7 1.6 x1.1

UUF 3.2 2.8 x1.2 2.0 1.7 x1.2

Table 6.7: Non-incremental runtime comparison of manually selected Findbugs anal-
yses

Overall, we can establish that the runtime performance does not differ much for
the SAE and BAT when running the analyses. The ratio between the SAE and BAT
runtime is ±10% in the vast majority of the analyses. Some analyses even perform
better in the SAE, especially those that benefit from indexing as for example the
BX analysis, which joins consecutive invokespecial and invokevirtual instructions
(cf. Sec. 5.4). Other analyses that fall into this category are DMI, ITA, UG and UR.
Although it has to be noted that indexing is not overly prominent due to the fact
that analyses in BAT also make use of hash tables for frequent data lookups (as
discussed in Sec. 6.1.1). If BAT were to use an approach purely based on iterating
over the data, i.e., without such optimizations, the benefit of indexing in the SAE
would be more prominent.

Many of the manually selected analyses are very short running and the parsing
time dominates the results quite heavily. For example, the analyses CI, CO∗ and EQ
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Id
time (s) - JDK time (s) - Scalac

SAE BAT SAE
BAT

SAE BAT SAE
BAT

BX 3.1 4.6 x0.7 1.9 2.0 x0.9

DMI 3.0 4.6 x0.6 1.8 2.2 x0.8

DP 2.8 2.9 x1.0 1.8 1.8 x1.0

FI2 3.0 2.2 x1.4 1.8 1.6 x1.1

ITA 3.6 4.4 x0.8 2.0 2.1 x0.9

MS1 3.2 4.0 x0.8 1.9 1.8 x1.1

MS2 2.1 2.2 x0.9 1.7 1.6 x1.1

SE2 2.3 2.2 x1.0 1.8 1.6 x1.1

SIC 3.2 3.8 x0.8 1.9 1.8 x1.1

SW 2.8 2.4 x1.2 1.8 1.7 x1.1

UG 2.2 2.3 x0.9 1.7 1.6 x1.1

UR 4.0 4.6 x0.9 2.1 1.9 x1.1

Table 6.8: Non-incremental runtime of comparison of randomly selected Findbugs
analyses

require almost no time for the actual computation of results. Recall that parsing
time for the JDK was 2 seconds and for the Scalac 1.6 seconds. The computations of
analysis results are truly performed in a manner of tens of milliseconds. One might
argue that the ratios are distorted by this, since the overall time is dominated by
parsing and not the analysis. Nevertheless, the comparison between the SAE and
BAT still shows when the SAE performs better or worse, e.g., the CO∗ values for the
JDK are still marked with 0.1 seconds overhead. Also, the argument swings both
ways, i.e., in cases such as EQ where the SAE performs better the comparison would
yield a higher ratio for the SAE.

Finally, it is important to note that the ratios can differ between the analyzed
datasets. The difference stems from the fact that the actual computation is not linear
in size, but depends also on the makeup of the data. For example, the instructions
that potentially have boxing errors BX are nearly non-existent in the Scala compiler.
Note that this does not mean that there are far more results in the JDK. There
are 3 bugs in the JDK versus 0 in the Scala compiler. The issue is simply that less
computation was performed in the Scala compiler to obtain this result.
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6.3.2 Incremental Runtime

The incremental runtime for the lightweight analyses is depicted in Figure 6.2. The
measured times for each event are plotted on a logarithmic scale y-axis that shows
the time taken to compute the incremental update in milliseconds. The x-axis shows
the change events in the order in which they appeared when the developer made
changes in the IDE. For simplicity the events are numbered from 1 to 52, though
the time between events naturally differs. The value at x = 0 denotes the initial
computation performed on the entire code base (right after starting the IDE).
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Figure 6.2: Incremental runtime of lightweight analyses

The majority of the incremental computations is performed between 1 and 10
milliseconds and is thus two orders of magnitude faster than the initial computation.
Note that we omitted 80% of the data, since it all falls into the category of the value
at x = 25 or below. However, that really places the vast majority in the complete
dataset in a range below 1 millisecond. The two major outliers in the range above
102 milliseconds are the re-builds initiated by the IDE. As discussed in Sec. 6.2 both
are not complete rebuilds. The first re-builds approx 3/4 of the classes and the
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second approx. 1/2. They fulfill the expectations on the incrementalization in the
sense that incremental updates for half of the code (x = 44) should be in the range
of the runtime for the initial code base, since 1/2 of the time is spent for maintaining
deletions and the 1/2 of the time is spent for insertions.

Between the class scope and the method scope for the @LocalIncrement opti-
mization there is no big difference. The method scope performs better in general,
which is to be expected. The general trend is very clear, and the reason is that many
analyses filter out methods early or do not require extensive computations on each
method in a class. Hence, the results are easily maintained by the class scoped
incrementalization while the method scoped incrementalization must ascertain that
a method has indeed not changed, which is only marginally faster to compute. There
are three outliers that place the method scope above the class scope; x = 33, x = 34
and x = 52. The outliers are also not unexpected and exist due to the fact that the
time to deduce that the method is irrelevant for the analysis is smaller than the time
to deduce that the method has changed and is irrelevant.

6.3.3 Memory Materialization

The presented analyses exhibit a diverse range of queries that have very different
requirements on the materialized memory. Tables 6.9 and 6.10 provide a clas-
sification of the queries w.r.t. their self-maintainability and the potential for the
@LocalIncrement optimization (cf. Sec 4.2.5). Table 6.9 features the manually
selected queries and Table 6.10 the randomly selected queries. Both tables list the
queries by their identifiers in the columns, and show the self-maintainability (1st

row), the potential to use the @LocalIncrement annotation optimization (2nd row).
Furthermore the potential for a subquery sharing optimization is shown in the 3rd

row. The latter is included in the evaluation to obtain a measure on how impor-
tant subquery sharing is (overall and for memory sharing) and will be discussed
separately.

Of all the manually and randomly selected queries, there are 9 fully self-
maintainable queries. Which means 36% of all sampled queries (i.e., roughly
one third) consume no memory per construction. The increment local optimization
is applicable to 8 queries in total. In these queries there are three main types of
join comparisons that can benefit from increment locality. The first category is joins
between method declarations and therein contained instructions, as for example the
CN2 query joins5 clone() declarations and call instructions inside that method. The
second category is joins on instruction sequences, as for example in the BX query,

5 The join in CN2 is performed as part of the existential quantification.
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CI CN1 CN2 CN3 CO1 CO2 DM1 DM2 EQ FI1 IM SE1 UuF

Self-Maint. Ø Ø Ø Ø Ø Ø
@LocalInc. Ø Ø Ø
Subquery-S. Ø Ø Ø Ø Ø Ø Ø

Table 6.9: Self-maintainable and optimizable queries (manually selected)

BX DMI DP FI2 ITA MS1 MS2 SE2 SIC SW UG UR

Self-Maint. Ø Ø Ø
@LocalInc. Ø Ø Ø Ø Ø
Subquery-S. Ø Ø Ø Ø

Table 6.10: Self-maintainable and optimizable queries (randomly selected)

where instructions are joined with to the next instruction by their sequence index.
The final category is joins between elements inside a single class. The UG query for
example joins setter and getter methods inside the same class and looks for pairs
where setters are synchronized but getters are not.

Subquery sharing
As part of the evaluation of the lightweight analyses we explicitly looked for the

amount of queries that can benefit from subquery sharing. The subquery sharing
optimization is enabled by the fact that many of the analyses are performed on
the same elements, yet with small differences in the bug patterns. The queries for
the common elements are typically trivial and, hence, developers might declare
them redundantly. For example the FI∗ queries look for methods that have the name
“finalize” (cf. Sec. 5.2 for the complete query). In contrast the analyses in other
categories depend on some complex queries that are in general not repeated, but
declared as a re-usable view.

There are 11 queries in total that share a subquery. In Tables 6.9 and 6.10 sharing
is counted only if the analyses exhibit some commonality besides using the same
derived relations (cf. Sec. 5.3), i.e., for this evaluation the focus is to find whether
queries elicit some commonality, besides using common abstractions such as the
subTypes relation. The Findbugs analyses indeed elicit further commonality. In
the sampled analyses the commonality is eminent between analyses that look for
similar bug patterns. In essence one can already deduce subquery sharing from
the identifiers, e.g., all queries labeled CN∗ share a common subquery. This is not
surprising, since we adopted the identifiers from Findbugs, which categorizes queries
quite well by the detected bug patterns. Most analyses share a single subquery. The
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CN1 and CN3 analyses are the only analyses that share two subqueries, i.e., one
query for all subtypes of Clonable and one for all classes that implement clone().

Subquery sharing can also affect the materialized memory. However, only the
subqueries shared by the CN∗, and the CO∗ queries consume memory. The FI∗, MS∗
and SE∗ analyses share a common selection of elements, which is self-maintainable,
e.g., the FI∗ analyses share the selection of all finalize() method declarations.

Overall materialized memory

The comparison between the memory required by the SAE vs. the materialization
of base relations and vs. the materialization in the logic engine is summarized in
Table 6.11. The table contains one row for each dataset and the memory materialized
by the SAE without @LocalIncrement optimization (2nd column) as well as the
materialized memory with the optimization (5th column). All measurements include
other optimizations such as subquery sharing. The @LocalIncrement optimization
is considered at the best level, i.e., the class scope. A differentiation of scopes for
each optimized query is discussed shortly. The measured values are compared to
materializing all data in the base relations in the SAE (columns 3 and 5), as well as
to the memory for materializing base relations in the logic engine (columns 4 and
6) – see Sec. 6.2 for the actually compared values.

Overall the memory used by the SAE is already very low. Approximately 1/4
of the data is materialized, which means the analyses make do with only 1/4 of
all actually available information. This reduction in memory required no special
optimization, save pushing selections early into the evaluation, which was performed
by construction in the IQL queries. Note again that the analyses were written with
the whole dataset in mind. Hence, by construction of the queries the SAE has ruled
out 3/4 of the data as unnecessary without the end-user having to think about what
to materialize. The latter would have been very difficult in the case of the lightweight
analyses, since these use very diverse datasets. In terms of the @LocalIncrement

optimization we can reduce the data by approx. another 50%. This leaves a very
low memory overhead of 10−14% compared to the materialization of the complete
base relations. In comparison to the SWI system the SAE naturally performs even
better leaving us with 4− 5% of the in-memory data required by the logic engine.

Note again, that the comparison is actually in favor of the materialized base
relations and the logic engine, since we did not measure indexed data for these
cases. In other words the SAE already consumes less memory and is completely
indexed where necessary.
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JAR
Mem. Plain (MB) Mem. Opt. (MB)
SAE SAE

Base
SAE
SWI

SAE◦ SAE◦

Base
SAE◦

SWI

JDK 118.71 x0.25 x0.10 50.10 x0.10 x0.04

Scalac 25.15 x0.27 x0.09 13.16 x0.14 x0.05

Table 6.11: Mat. memory of lightweight analyses with and w/o @LocalIncrement

Id
Mem. JDK (MB) Mem. Scalac (MB)
Plain Opt Plain Opt

CNÎ2 1.66 0.03 1.16 0.02

COÎ1 15.47 13.04 7.18 5.72

COÎ2 15.37 13.30 7.16 5.73

BXÎ 3.70 0.03 1.22 0.04

DMIÎ 2.05 0.02 1.22 0.01

ITAÎ 46.53 12.90 8.45 5.80

UG◦ 7.65 0.07 1.17 0.05

UR◦ 49.9 26.96 12.13 6.66

Table 6.12: @LocalIncrement optimization by query

Closeup of the optimization
To see how the different scopes affect the memory materialization Table 6.12 lists

the detailed savings for each of the optimized queries. The table lists the optimized
queries by their id (1st column) together with an annotation whether the scope
required is the class (◦) or the method scope (Î). The 2nd and 3rd columns show
the unoptimized and optimized memory requirements for the JDK and the 4th and
5ht columns for the Scalac respectively.

Overall only two analyses require the class scope. Note that classes are the
bigger scope and include the method scope, which means the other six analyses are
optimized in both scopes. At the class scope, the UG query correlates synchronized
and unsynchronized methods. Thus the analysis is basically for free after the
optimization. We have measured small residues of memory, yet they have error
margins that place them around 0. The UR analysis finds uninitialized field reads
from fields in the same class, hence these read instructions and fields are joined
for free. The analysis performs further correlations that are not for free, i.e., to
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methods in the super class, yet the optimization is the second largest contribution
to the overall savings by a single query.

Most optimized queries contribute small amounts to the total saving discussed ear-
lier. The CN2, BX and DMI queries are basically for free (as the UG), yet the amount
of instructions that contribute to these bugs, is not very large. The CO∗ queries
require a large amount of memory for the materialization of the type hierarchy, and
apart from that also did not require much memory for the materialization.

The largest amount of saved memory is contributed by the optimized ITA query,
which makes sense in the light of the instructions that are searched by this analysis.
It searches for patterns of toArray() calls, paired with array creations and iconst_0

which loads the constant 0 onto the stack. Especially in the JDK these instructions
are often found, hence the large savings. In the Scalac these instructions are not as
dominant and there are only smaller savings.

In total all queries add up to a respectable sum as seen in Table 6.11. Note that
the total saving is smaller than the sum over the individual savings in Table 6.12.
This is natural, since each individual measurement includes elements, such as class
and methods declarations that may be materialized by other queries.

6.4 Metrics

In the following the measured analyses from the Metrics tool are described w.r.t.
their semantics – in terms of measured values – and the queries are characterized
w.r.t. the underlying relations and used operators. An overview of the metrics is
given in Table 6.13 The table is identical in layout to the description in Sec. 6.3.

The first two analyses (CA, CE) perform a high amount of filtering and building
of unions as a result of computing the dependencies between different classes.
Dependencies stem in the majority from instructions, e.g., method calls, but to
a smaller degree also from signatures, i.e., method parameters or implemented
interfaces. The latter are both unnested first (µ) to obtain a uniform flattened
representation of all dependencies. The heavy use of unions combines all different
kinds of dependencies into a single relation (which is also reused across both
analyses). Both metrics consider dependencies at the level of classes and multiple
dependencies at lower levels, e.g., multiple method calls, are subsumed, hence,
the duplicate elimination (δ). The LCOM∗ metric has to perform three separate
aggregations and join them together, since the actual value of the metric is based on
(i) the total number of fields, (ii) the total number of methods and (iii) the number
of methods that actually use a field. The DIT metric is the simplest and just counts
how many edges the transitive closure to java.lang.Object has. This metric only
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Id Description & (Findbugs Id) Used Relations Ops.

CA Afferent Coupling determines for a given pack-
age the number of classes outside the package
that have dependencies to classes inside the
package

classDecl.

methodDecl.

fieldDecl.

instructions

σ x12
π x 3
⊎ x13
µ x 2
δ x 1
γ x 1

CE Efferent Coupling determines for a given pack-
age the number of classes inside the package
that have dependencies to classes outside the
package

classDecl.

methodDecl.

fieldDecl.

instructions

σ x12
π x 3
⊎ x13
µ x 2
δ x 1
γ x 1

LCOM∗ The (lack of) cohesiveness of a classes methods,
determined by measuring the overlap of class
attributes used by all methods in a class. The
measured value is normalized in the interval
[0..1] and signifies lack of cohesion. Hence, a
value close to 1 suggests that the class is better
split into two (or more) cohesive classes.

methodDecl.

fieldDecl.

instructions

σ x 3
π x 2
⊎ x 1
◃▹ x 2
γ x 3

DIT Depth of inheritance tree for declared classes classDecl. TC x1
γ x 1

Table 6.13: Description and classification of selected metrics

takes into account direct class inheritance, i.e., interfaces are not considered, which
is the definition used in the Metrics tool.

6.4.1 Non-Incremental Runtime

The results for the evaluated metrics are shown in Table 6.14. The table follows the
layout discussed in Sec. 6.3. Overall, the runtime performance between the SAE
and BAT is more distinguished than in the lightweight analyses. BAT outperforms
the SAE by a factor of 1.4 to 2.3 for the more complex metrics. The simple metric
DIT has the same runtime in both systems.

The reason for the discrepancies is that SAE has to maintain groupings and update
the results of aggregated values many times. For example, the CA analysis groups all
source code dependencies by their target package. Each event that adds a respective
dependency must find the respective group and update the value of the aggregation.
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Id
time (s) - JDK time (s) - Scalac

SAE BAT SAE
BAT

SAE BAT SAE
BAT

CA 7.0 3.0 x2.3 2.8 1.8 x1.5

CE 6.8 3.0 x2.3 2.7 1.9 x1.5

DIT 2.2 2.2 x1.0 1.7 1.7 x1.0

LCOM∗ 5.0 2.6 x1.9 2.4 1.7 x1.4

Table 6.14: Non-incremental runtime comparison of metrics

In comparison, BAT only computes a set of of dependencies once, traverses them
all and categorizes them by their target package during the traversal. Hence, there
are no updates to the aggregated values. This behavior is most eminent in the CA
and C E aggregations since here groups are maintained by packages, of which there
are few and thus many updates must be made to the aggregated value of a single
group. The LCOM metric groups members inside a class, which means more groups
and less updates to the aggregation value of a single group. Finally the DI T metric
groups classes in the inheritance hierarchy, where there are not as many elements
to group – classes contribute the smallest number of elements – and groups tend to
be small, hence no apparent difference in runtime performance arises.

6.4.2 Incremental Runtime

The measurements for the metrics (cf. Figure 6.3) are almost indistinguishable
from the measurements of the lightweight analyses (cf. Figure 6.2) in terms of
incremental runtime. Overall the runtime actually slightly decreased for the metrics.
The decrease seems intuitive, since we only considered 4 metrics and 25 lightweight
analyses. Yet, it is interesting to note that the decrease is not very prominent. This
means that a single metric is a rather expensive computation, and we can search
for a larger number of lightweight bug patterns in the same amount of time. This
expensiveness is also eminent in the definitions of the metrics (cf. Figure 6.13), e.g.,
the two metrics CA and CE are based on a rather complex query to computes the
dependencies.

Between the class and the method scope a more prominent differentiation is
visible compared to the lightweight analyses. This is expected, since metrics con-
sider every single method in their computations. In contrast, the majority of the
lightweight analyses is concerned with very specific methods, e.g., clone().
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Figure 6.3: Incremental runtime of metrics

6.4.3 Memory Materialization

The presented metrics are in general very efficient w.r.t. memory materialization
(shown in Table 6.15). Even without further optimizations only 7 - 18 % of the
complete data is used. The reason for the overall low memory requirement is that
much of the data can be efficiently filtered out early. For example, the CA and CE
metrics analyze all dependencies, yet the metrics only count dependencies between
packages, hence a vast majority of dependencies is filtered by selections. The JDK
requires a markedly lower fraction of the data than the Scalac. The reason is that the
metrics are dominated by materializations of all class data, yet the Scalac features
a much larger amount classes compared to other elements in the data set, such as
instructions. In other words, the Scalac contains a little less than half the amount of
classes as the JDK, yet it contains less than a fourth of the number of instructions.
Hence, the ratio to the overall amount of elements in each data set is different.

Of the presented metrics only LCOM∗ has the potential for the @LocalIncrement

optimization. The LCOM∗ metric only computes values confined to a single class, e.g.,
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JAR
Mem. Plain (MB) Mem. Opt. (MB)

SAE SAE
Base

SAE
SWI

SAE◦ SAE◦

Base
SAE◦

SWI

JDK 32.47 x0.07 x0.03 22.80 x0.05 x0.02

Scalac 16.69 x0.18 x0.06 11.44 x0.12 x0.04

Table 6.15: Mat. memory of metrics with and w/o @LocalIncrement

counting methods that use fields declared in the same class. Hence, the optimization
can be performed at the class scope (◦) and the entire metric requires no memory
after the optimization. Using the optimization approx. 1/3 of the memory can be
saved.

6.5 Intra-Procedural Findbugs Analyses

The analysis used here is a stack analysis similar to the one used in Findbugs.
Stack analysis is a data flow analysis that computes the effect of a Java bytecode
program on the stack and the local variables. The results of the stack analysis are
uniformly represented as states. A state defines the makeup of the stack and the
local variables at any given point of the program execution, i.e., at the point of any
given instruction. The states of the stack analysis are abstractions of the real values
in the execution. Every state uses “items” on the stack an in the local variables that
store type information (e.g. int, String etc.) and additional information such as
creation location (the instruction at which the item has been created). The stack
analysis relies on a control flow analysis that determines for each instruction the
set of predecessor instructions that are executed before. In essence the analysis
determines the edges in the control flow graph and makes them available as a
relation.

6.5.1 Control Flow Graph

The control flow graph is computed quite easily. There is a set of specific instructions
in Java bytecode that manipulate the control flow, i.e., conditionals, gotos, or table
lookups (switch case). Note that goto is a construct on the bytecode level, whereas
conditionals and table lookups have a corresponding statement in Java source code.

To exemplify the control flow graph Figure 6.4 shows a simple Java Program
(6.4a) and the corresponding bytecode and control flow (6.4b). There are
two instructions in the bytecode that manipulate the control flow. The if_cmpge
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1 int a = 0;

2 while( a < 10 ){

3 a++;

4 }

(a) Example Java Program

(b) Java bytecode and Control Flow of the Pro-
gram

Figure 6.4: Example of a control flow graph

instruction corresponds to the test in the head of the while loop (line 2 on the
Java side), yet the condition is phrased negatively, i.e., the loop will stop if the
value of a is greater or equal to 10. The goto marks the end of the loop and
jumps back to the beginning. The important thing to note is that some instructions
have multiple predecessors, e.g., the iload_1 instruction at pc= 2 and some have
multiple successors, i.e., the if_cmpge instruction.

The computation of the control flow is mostly straightforward, an excerpt is de-
picted in Figure 6.5. The computation selects different instructions that manipulate
the control flow. For example the goto instructions (i.e., unconditional branches)
(line 1). The selections are all based on the type of the particular instructions
(line 3). All control flow instructions are joined with other instructions in the code
(line 7) under the condition that (i) they are in the same method (line 8 and (ii)
the target pcs of the control flow are the pcs of the particular instructions (line 9).
For example in the program depicted in Figure 6.4, the join shown below finds an
edge from the goto at pc= 11 to the iload_1 at pc= 2. The complete control flow
graph (cfg) is the union over several such joins, i.e., for all the different kinds of
branch instructions together with all regular instructions, i.e., instructions that are
simply executed in the sequence in which they appear in the bytecode. Note that the
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complete control flow is slightly more complicated, since exceptions are taken into
account. Exceptions basically break the regular instructions into smaller blocks that
can jump to the exception handler, i.e., the catch block. However, their treatment
just adds a further sequence of joins and regular instructions are then filtered, to
ascertain they are not part of exceptional control flow. The important thing to note
is that all these concepts are well expressible in the SAE.

1 val unconditionalBranches =

2 SELECT (asGotoInstruction) FROM (instructions) WHERE

3 (_.isInstanceOf[GotoBranchInstruction])

4

5 val cfg =

6 SELECT (controlFlowEdge) FROM

7 (unconditionalBranches , instructions) WHERE

8 (declaringMethod === declaringMethod) AND

9 (branchTargetPc === instructionPc)

10 UNION ALL

11 ...

Figure 6.5: Excerpt of the control flow graph computation

6.5.2 Dataflow Analysis

The computation of the dataflow is in essence a fixpoint computation over the
possible states for each instruction. That means for each instruction we take the
state of the previous instruction in the control flow graph and calculate the effect of
the instruction on that state. Since some instructions have multiple predecessors,
i.e., jumps from instructions further down in the cfg, this process is repeated until
no new states can be inferred.

States and instruction effects
States in our analysis represent triples of (i) the current instruction, (ii) the stack

before the current instruction is executed and (iii) the local variables before the
instruction is executed. The stack and local variables each contain a list of items
that contain type information and the information at which program counter the
item was created. Given an edge in the control flow graph we can simply deduce
the state before the next instruction in the graph, by applying the changes from
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the current instruction. To illustrate the application of state changes, Figure 6.6
depicts a very small excerpt of how new states are computed. In the example, the
current instruction pushes the constant zero on the stack. Hence, the state before
the next instruction (line 4) is the old stack with the pushed constant (line 6) and
an untouched copy of the local variables (line 8). The item on the stack contains
the type information (IntegerType) as well as the pc at which it was created. The
complete set of cases that are transformed is rather large, since it must deal with
all instructions found in the Java Language Specification, yet all cases follow the
principle of the example.

1 def nextState(edge: ControlFlowEdge , oldState: State): State =

2 edge.current.instr.opcode match {

3 case 0x03 => //ICONST_0

4 State(edge.next,

5 oldState.stack.push(

6 Item(IntegerType , edge.current.instr.pc)

7 ),

8 oldState.variables)

9 ...

10 }

Figure 6.6: Excerpt of computing instruction effects on the state

Upper bounds for states
It is important to note that the amount of states can be become quite large;

hence, for efficiency we need a notion of combining states to an upper bound.
The large amount of states is due to an exponential growth in the possible paths
through a method. For example, an if-instruction will have two possible control
flows (i.e., if and else branch). Yet a method with 2 sequential if-instructions
will have two possible states after the first branch and both can enter the second
if-instruction. Hence, there will be 4 possible states after the second branch. A
repeated computation of possible states multiplies exponentially for such possible
branches. To alleviate this problem states are combined and an upper bound is
computed for the data in the states.

Upper bounds are typically formulated as part of the domain (i.e., the abstraction
of the state) on which a particular dataflow analysis operates. For example a
standard live variables analysis builds a set of variables that is used at a particular
point in the program. The important fact is that, if multiple possible live variable
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sets reach an instruction (i.e., due to branching) they are combined – to an upper
bound – via set union. Thus, for a given instruction the live variables analysis can
be used as a single input and a single output set can be computed. Note that live
variables are determined in a backward fashion, i.e., from the end of a program to
the start and in general treat blocks of instructions, but the argument remains the
same.

For the purpose of our stack analysis we use a simple approach to upper bounds,
which is sufficient to detect the bugs found by Findbugs (at least for the sampled
analyses), yet is in general not very precise. A complete description of the upper
bound is omitted for brevity, yet we give a brief description. In short, if an instruction
has multiple predecessor states we build an upper bound for the local variables of
these states and stacks in the following way: Given two lists of items that represent
the current local variables (or stacks), we compare each two items – at the same
index in the list – w.r.t. their values for their type information and their program
counter. If both are equal, the upper bound is an item with the same values. In case
of differing type information, the result contains a bound of AnyRef for reference
types (e.g., String) and of Any for value types (e.g., int). In the case of differing
pcs, their result contains a value of −1 (for undefined). In terms of precision this
means that states are only precise if their storage is performed in a sequence of
instructions with a single entry and a single exit point (also called a basic block).

While some precision is lost, the important part for this evaluation was to declare
an intra-procedural dataflow analysis that is comparable to standard analyses in
terms of the performed operations, i.e., computing an upper bound. For example, a
standard single static assignment form (SSA) also computes a – different – upper
bound. SSA uses an abstraction termed Φ-function to denote variables that were
modified in different control flows. The Φ-function can be understood as a different
form of upper bound that does not loose information. Yet, the basic step that must
be performed by the analysis is the same, i.e., if at a given point in the execution
two possible states arise, an upper bound must be computed.

Fixpoint computation

The formulation of the fixpoint for the dataflow is very short and succinct. How-
ever, the computation of upper bounds does complicate matters. Figure 6.7 declares
the dataflow analysis in IQL, which features a query that computes the start states for
each method (line 1) and a recursive query that performs the fixpoint computation
to deduced states for all instructions (line 7)

The start states are computed via a function startState (line 2) that takes as
input the first instruction of each method (selected via the condition in line 4) and
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1 val startStates =

2 SELECT (startState) FROM

3 (instructions , codeAttributes) WHERE

4 (_.pc == 0) AND

5 (declaringMethod === declaringMethod)

6

7 val dataflow =

8 WITH_RECURSIVE (

9 startStates ,

10 SELECT (UpperBoundState) FROM (

11 SELECT (nextState) FROM

12 (cfg, startStates) WHERE

13 (current === instruction)

14 ) GROUP_BY instruction

15 )

Figure 6.7: Fixpoint recursion of the Dataflow

in addition requires information about the maximum size of the stack and the local
variables which is obtained via a join with the relation codeAttributes (line 3).

The fixpoint computation (dataflow) is a recursive query (line 8), where the
recursion is performed on the start states (line 9), i.e., any deduced state enters the
recursion again as a new “start” state. The fixpoint computation is split into two
queries, an outer aggregation for the upper bounds (line 10) and an inner query
that actually deduces the next states (line 11). We discuss the inner query first. The
next state is computed via the respective function shown in Figure 6.6. To deduce
the next state, the current state is joined to the control flow graph (line 12), where
the current instruction of the edge in the graph equals the instruction for which
we have computed the current state (line 13). The computation of upper bounds
must be performed by an aggregation function (line 10). We use the function
UpperBoundState, which is an incrementally maintained aggregation function that
takes a collection of states and returns the single upper bound. The aggregation
groups states by the current instruction (line 14). Thus if we have deduced multiple
states for the same instruction they are categorized into the same group.

It is important to note that for the computation of upper bounds we require an
aggregation inside the recursion. Note that a definition without the aggregation is
also correct, but its practicability depends on the input programs. For example the
JDK features methods that have 3 000+ instructions with many branches, which
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explode the number of states to 4 000 000+ states. In this case the analysis takes
minutes for only one method. In our definition of recursion we have stressed
that the use of aggregation functions inside a recursion is forbidden (cf. Sec.3.3.4
for the definition of the recursion operator). Nevertheless, such aggregations can
surely be computed, since standard static analyses frameworks rely on them. There
are two properties of the dataflow query that allow us, yet to use aggregations.
First, the UpperBoundState will always converge to one upper bound value. In our
case convergence is simple to verify, since the upper bound looses concrete path
information as discussed earlier. Second, the dataflow will be computed in a local
increment scope. This means that the fixpoints can be computed independently
for deletions and additions. Thus the semantics discussed in Sec.3.3.4, where the
fixpoint will essentially support itself indefinitely, i.e., will never be removed, is
actually not a problem. The fixpoint will be computed once for deletions and once
for additions and after the scope of the method (or the class) is left the data is
removed from main-memory.

6.5.3 Findbugs Analyses

The dataflow query depicted in Figure 6.7 was used as the basis for 7 bug detectors
from Findbugs. Table 6.16 gives an overview of the different analyses. In general
the queries are rather simple once the dataflow is computed, i.e., each makes only a
single selection (σ). However, it must be noted that the simplicity is in some cases
due to additional information that we store inside the items used to emulate data on
the stack (and in the local variables). For example, the SA1 requires the knowledge
whether the data was read from a field. The specific property is stored in an item
as item.isReadFromField, along with other properties such as item.mayBeNull.
It is not strictly necessary to carry the information in the items; however it greatly
simplifies query writing. The decision to carry this information in items affects the
runtime of the analyses only in so far that the general computation of the dataflow
performs more work, while each individual analysis does less work. Hence, – if at all
– we have raised the overall runtime (for the sake of simpler query writing), since
each analysis can effectively filter out items before computing the same information.

6.5.4 Non-incremental Runtime

The runtime for each single dataflow analysis is measured once for SAE and once
for BAT. The BAT implementation performs in essence the same work as the fixpoint
computation shown in Figure 6.7. However, the BAT version performs an iteration
over an array containing all instructions (as shown in Sec. 5.1.3). The iteration is
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Id Description Used Relations Ops.

DL Synchronization on a boxed primitive constant,
e.g., of type Integer.

dataflow σ x 1

DMI2 The method toString() is called on an array
variable (the generated string is in general un-
intelligible).

dataflow σ x 1

RC Use of == or != operator on references should
be replaced by equals() method.

dataflow σ x 1

RV The return value of a method is ignored. dataflow σ x 1

SA1 Value of a field is compared with itself. dataflow σ x 1

SA2 A self assignment to a local variable; e.g. x = x dataflow σ x 1

SQL A call to set...() on a prepared statement
with the parameter index given as 0 (note, in-
dexes start at index 1).

dataflow σ x 1

Table 6.16: Description and classification of dataflow Findbugs analyses

performed twice; once to compute predecessor instructions for the control flow and
once to compute actual dataflow. The computation of next states and upper bounds
is performed by the same functions as in the incrementalized versions; hence the
performed work is comparable.

The results for the non-incremental runtime over the JDK and Scalac datasets
are shown in Table 6.17. Overall, the times for the individual analyses are very
similar, because dataflow is computed for all methods, which is the most dominating
operation.

In comparison the SAE takes approx. 3 times as long as the implementation in BAT.
This increase is comparable over both measured datasets and all measured analyses.
The additional time is naturally due to the fact that the SAE performs real recursions
that propagate results through the operator tree, whereas the BAT implementation
performs a simple looped iteration over the instructions. Nevertheless the total time
taken by the SAE is not considerably worse, i.e., the incrementalization already pays
off after three changes.

6.5.5 Incremental Runtime

The maintenance of the dataflow for all methods is naturally a more expensive
operation and takes longer than the incremental computations for the lightweight
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Id
time (s) - JDK time (s) - Scalac

SAE BAT SAE
BAT

SAE BAT SAE
BAT

DL 49.91 15.92 x3.1 14.32 4.10 x3.5

DMI2 46.79 15.81 x3.0 14.57 3.99 x3.7

RC 48.71 15.61 x3.1 14.55 3.97 x3.7

RV 45.22 15.66 x2.9 11.91 4.35 x2.7

SA1 47.92 15.66 x3.0 14.73 4.41 x3.3

SA2 48.11 14.81 x3.3 14.77 4.23 x3.5

SQL 48.28 16.15 x2.99 13.46 3.94 x3.4

Table 6.17: Non-incremental runtime comparison of intra-procedural dataflow anal-
yses

analyses or the metrics. The runtime for the incremental changes in our dataset is
depicted in Figure 6.8.

As expected all changes have a higher runtime compared to the previous measure-
ments, however the majority of the changes can still be computed in a time frame
of 10 milliseconds. Another notable difference is the greater gap between class
and method scope. This is also not unexpected, since the class scope recomputes
dataflows for all methods in a given class, whereas the method scope has to consider
only a smaller number of methods. Nevertheless, the class scope is still a choice
under which the majority of the changes can be recomputed in real-time.

Note that there are some distinctive outliers for the events at x = 4, x = 16,
x = 31 and x = 32, where the method scope takes longer than the class scope,
which was not the case in the previous measurements. In these events only a
single class with very few and very small methods was changed. Hence, even the
class scope is recomputed quickly. For comparison the prominent differences at
11< x ≤ 15 are due to events that changed classes with 20+ methods.

6.5.6 Memory Materialization

Without optimizations the memory materialization for the intra-procedural dataflow
is quite enormous. As shown in Figure 6.7 we join control flow edges to states,
perform an aggregation and compute states recursively. Without any optimizations
this means that we have to materialize the control flow edges, the states, the
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Figure 6.8: Incremental runtime of intra-procedural dataflow analyses

groupings of states by instructions and keep track of recursively computed values
for the delete and re-derive (DRed) algorithm.

The only optimization that helps us in this respect is the local increment scope.
The scope basically reflects the knowledge that an intra-procedural dataflow will
never require values from other methods and, hence, the computation results are
not required to be retained in memory. Note that in this case the method scope (Î)
is sufficient, but the class scope serves just as well to reduce the amount of memory.
Also note that for the optimization to be applied automatically – according to the
definition in Sec. 4.2.5 – we have to rewrite the join condition in Figure 6.7 (line 13)
slightly, i.e., instead of checking equality on entire instructions we phrased the
condition as: the instructions have the same class, the same method, the same
pc, etc. However, a more sophisticated check of the respective equals method for
instructions can automatically derive this information.

The memory required by the dataflow analysis with and without the optimization
is depicted in Table 6.18. Note that the dataflow dominates the memory for all
Findbugs analyses and, hence, no detailed discussion w.r.t. each analysis is required.
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JAR
Mem. Plain (MB) Mem. Opt. (MB)
SAE SAE

Base
SAE
SWi

SAEÎ SAEÎ

Base
SAEÎ

SWI

JDK OoM - - 0.06 x0.00 x0.00

Scalac OoM - - 0.03 x0.00 x0.00

Table 6.18: Mat. memory of data flow analyses with and w/o @LocalIncrement

The notable fact is that without the optimization the Java Virtual Machine runs out
of memory (OoM) for both datasets. With the optimization the dataflow analysis is
basically for free. Although as in previous sections we have measured small residues
of memory.

The “out of memory” values in our measurement deserve some further perspec-
tive. Note that this only means that materialization and indexing of all states and
control flows is too memory intensive. In general there are certainly other ways of in-
crementally re-computing dataflows, even in databases without our local increment
optimization. An alternative solution can even be given in the SAE. The solution is
to use the array of all instructions as BAT does and write the dataflow analysis as a
single function that iterates over this array and produces an array of possible states6.
In this case the dataflow computation becomes a simple projection, i.e., projecting
the array of instructions to an array of states, which is also a self-maintainable
operator and does not require materialized memory. However, this means that
a part of the analysis, i.e., the array transformation, is written in an imperative
style. Hence, the case we make here is for an end-to-end declarative specification of
queries, which are phrased with the full dataset in mind. In this setting the local
increment scope is required to make the dataflow analysis feasible. The scope can
– in this setting – be understood as a high-level indicator to the database on how
a query over the full dataset can be broken down into computations over smaller
blocks of the dataset. This declarativeness has the advantage that we rely less on
the concrete data representation. For example, the array of all instructions is not
strictly required by the SAE. As discussed in Sec. 5.1.3 we keep it as a residue of
the current bytecode parser. Deeper integration into the parser can alleviate our
dependence on this array and even improve performance, since instructions can
directly be propagated instead of doing a cumbersome unnesting of the array.

6 In traditional databases this computation can for example be performed using stored procedures.
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6.6 Discussion

In this chapter we have applied the SAE to three categories of static analyses,
lightweight bug detectors, metrics and bug detectors using intra-procedural dataflow.
The SAE allows to declaratively specify all these analyses while materializing only a
necessary minimum of data. The following points deserve some closer discussion:

6.6.1 Comparing to the Incremental Runtime in a Deductive Database

The measured incremental runtime for the SAE was currently not compared to a
deductive database. The main reason is that, even if the deductive database were
to perform better, it still is based on materialization of base relations. The amount
of memory used for this data alone is quite high. Moreover, to be competitive the
deductive database must use indices as we have used in the SAE. The additional
memory for indexing makes this approach more unattractive. Furthermore, such a
comparison must take into account that we provide end-to-end measurements, i.e.,
including parsing time and creating a relational representation. Hence, for using a
standard deductive database engine additional time is required to transition data
from our bytecode parser to the engine. Given that we have seen comparatively
short runtime windows (below 10 milliseconds) for several hundreds of instructions,
the communication between parser and deductive database is an impeding factor
to achieve comparable results. Nevertheless, such a comparison is interesting as
a future work, but must also be performed with great care to obtain a performant
implementation in the deductive database. It has been noted by Hajiyev et al.
[HVdM06] that the elegant logic rules must be polluted with mode annotations
(to mark input and output variables) or usages of the cut operator to control
backtracking, otherwise the programs are comparatively slow.

The use of aggregations inside the dataflow deserves some discussion, since we
said that logic languages are being used for static analyses, yet, we were only able to
give a valid execution model for the dataflow query due to the specific circumstances
of the local increment optimization. In general, aggregations are seldom mentioned
when describing static analyses in logic languages. Mendez et al. [eNH07] discuss
fixpoint iteration explicitly and show a logic-language representation of bytecode
that features all instructions in a list, which is comparable to our array representation.
Yet, their focus is to provide a novel algorithm for fixpoint iteration and not to use
standard deductive databases.

Other related works, either do not discuss the aggregation step, e.g. [WACL05],
or use a logic-representation where this information is already computed, e.g.,
[EKS+07] use an SSA form where the aggregation according to Φ-functions is
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already performed. Still others must be noted for considering different domains
that are already expressed as logic facts tailored towards the specific problem, e.g.,
[BJ03] encode call graph algorithms or [WL04] consider points-to analyses with
precomputed representations for variable reads/stores. Nevertheless, Saha et al.
[SR06] propose an extended DRed algorithm that is said to treat aggregations and
non-stratified negations for incremental maintenance of tabled datalog. Yet, how
this algorithm can be applied to make aggregations available for general recursions
in our database – and thus the SAE – is not entirely clear yet. The algorithm relies
on a first-class representation of logic programming calls with partially instantiated
variables, e.g., p(3, X ), which have no correspondence in our approach.

6.6.2 Inter-Procedural Data Flow

The analyses in this chapter have not considered inter-procedural data flow analyses.
Nevertheless, these analyses are well expressible using the SAE. In general, such
analyses require a recursive analysis of called methods. Unlike intra-procedural data
flow an aggregation of results is typically not required. We have performed some
preliminary experiments for inter-procedural data flow by formulating incremental
call graph construction algorithms. The call graph is the basis for further inter-
procedural analyses. The early experiments were conducted using an algorithm
termed rapid type analysis and the results are encouraging. The non-incremental
performance places the SAE in a range below 2 times that of a reference implemen-
tation (with an absolute value of approx. 2 seconds for the computation). However,
the incremental maintenance must be studied more carefully, since removal of
methods cascades along the recursively computed method calls. The memory con-
sumption for call graph construction is naturally greater than for any of the analyses
evaluated in this chapter, since method calls are globally correlated data and can not
benefit from the local incremental scope optimization. Nevertheless, a fully indexed
and and recursively computed call graph for the Scala compiler dataset – used in
this chapter – required only approx. 50% of the fully materialized data in the SAE
(approx. 48 MB).

6.6.3 Non-Incremental Runtime

In the measured analyses the SAE is competitive to a non-incremental approach
that uses iterations over an object-oriented structure (BAT). The non-incremental
approach was augmented with hash tables and hash maps for recurring data, which
(i) reflects a real-world programming model for the analyses and (ii) ensures that the
approach is competitive to the indexing used in the SAE. The lightweight analyses
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have shown a relative even match, where both approaches are sometimes better
and sometimes worse; yet always in a small measure of approx. 10% of the overall
runtime. The metrics and intra-procedural analyses have shown an increased ratio
of the runtime that places the SAE in a range of 2-3 times slower. Yet, this measure
is quickly amortized in the light of incrementalization.

6.6.4 Incremental Runtime

The incremental runtime for all analyses was extremely small. The majority of the
changes to the code base were re-computed in a manner of 10 milliseconds. Even
the intra-procedural dataflow analyses stayed close to 10 milliseconds and required
only 20-30 milliseconds for larger changes. Larger in our case means changes that
removed and added 20-30 methods with a total of approx. 2 000 - 3 000 removed
(and the same amount of added) instructions. The largest change that we did not
consider a re-build was (x = 36) which added and removed approx 90 methods in
8 classes with respective numbers for added and removed instructions at approx.
6 000. This change still took only 50 milliseconds for the intra-procedural analysis.

In a broader context we can take a quick look at how representative the methods
in our change set are, by using statistical data obtained by Collberg et al. [CMS07].
They place the average size of Java methods – in terms of instructions – at 33.2 with
a very high standard deviation of 156 (their statistics were obtained using a very
wide set of Java Programs). The methods we analyzed in our change set had on
average 45 instructions and a maximum of over 200 instructions, which places us
well into that average.

This means that the incremental maintenance of the SAE can be considered real-
time at least for the shown analyses when using Java programs as input that have
typical average method sizes. In such programs we can incrementally maintain small
changes in 10 milliseconds and smaller refactorings covering approx. 10 classes will
be computed in 100 milliseconds and probably less time. Nevertheless, it is hard
to generalize the incremental maintenance performance, since Java Programs can
have a large variety of methods sizes and, hence, more diverse workloads.

6.6.5 Materialized Memory

The memory required by the individual analyses is in general low compared to the
overall amount of data found in the code base. The memory requirements have
dropped by such a significant amount that the SAE is truly feasible for using inside
an IDE. That is, even for large projects – such as the JDK – the amount dropped
below 100 MB that are permanently blocked for the incremental maintenance.
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For the lightweight analyses and the metrics a large amount of irrelevant data is
already omitted from materialization by basic filtering. The lightweight analyses
require approx. 10% of the total memory for all data and the metrics closer to
5%. The local increment scope optimization further reduces the memory. In the
lightweight analyses a considerable reduction by 50% of the memory was shown.
The metrics had only one query where the optimization was applicable, yet this
already amounted to approx. 30% of the required memory. The intra-procedural
dataflow analyses are different in the sense that they absolutely required the local
increment scope to be feasible with low memory when they are specified in a
declarative manner.

The memory savings are provided automatic – or with the help of one annotation
for the local increment scope – and the analyses as well as the integration into the
IDE were written with the full data sets in mind. That means no manual filtering of
the data to suit exactly the provided analyses was necessary. As can be seen from
the lightweight analyses, such a filtering would be very tedious due to the diversity
of the written queries.

Furthermore, the materialized memory of the SAE includes heavy indexing and
is still comparatively low. Many of the lightweight queries rely on joins, or use
existential quantification that relies on joins. Hence, these queries would be executed
much slower without our use of indexing.

6.6.6 Class Scope vs. Method Scope

Given the data provided in this chapter we can better judge the trade-offs between
using the class scope (lower memory, higher runtime) and the method scope (higher
memory, lower runtime).

In our sampled analyses the memory savings of the class scope only applied to
three analyses, whereas the method scope provided optimizations for 8 analyses.
Nevertheless the savings contributed were quite considerable. In the lightweight
analysis the optimization at the class scope for the UR and UG analyses together
contributed a large amount of the savings. Likewise, the only metric where the
optimization was applicable required the class scope. Note that we can of course
expect to find other metrics that are also optimizable at the method scope, e.g.,
cyclomatic complexity comes immediately to mind. Nevertheless, the class scope is
worth having if the accompanying runtime is acceptable.

In general, the runtime for either scope stayed in the same order of magnitude for
our measured analyses. The dataflow analyses had the most distinguished difference
between the two scopes. Yet even here, the majority of incremental changes for
individual classes stayed within the time frame of 10 milliseconds. Nevertheless,
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the decision is really affected by measure of how complex the analyses are. The
beauty of the approach is that the scopes are declarative and easily changed. Hence,
if longer running analyses are encountered that do not benefit from the class scope,
they can easily be toned down to the method scope.
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7 Incrementalized and Modular Architecture Conformance Checking

In this chapter we use the SAE to check code against architectural specifications that
provide (i) architectural units for grouping source code elements, e.g., groups of
classes, and (ii) constraints for modeling valid and invalid dependencies. The depen-
dencies at the code level are then checked against valid and invalid dependencies in
the specification. The incrementalization is used for two distinct purposes in this
chapter. First, changes to the code are checked incrementally to quickly determine
whether the updated code still conforms to the architectural specification. Second,
changes to the specification are incrementally maintained to quickly determine
whether the same code base still conforms to the updated architectural specification.
In other words the first incrementalization uses a fixed set of expectations about the
dependencies in the code and allows us to continually enforce these expectations
w.r.t. changes in the code. The second incrementalization allows us to rephrase our
expectations and quickly determine whether the new expectations are sensible.

The second incrementalization – for maintaining the specification – enables us
to formulate a new approach to architecture conformance checking, that enables
architects to define intended architectural dependencies in modular units termed
slices. Existing approaches in architecture conformance checking require the whole
architecture and its intended dependencies to be specified in one single document.
Based on the experience gained when modeling the architecture of real systems
(e.g., Hibernate [BK04]), such approaches do not scale for large architectures in
the sense that the architecture specification is overloaded with a large amount of
information. In other words the specification features so many architectural elements
and dependencies, that architects can hardly focus on individual architectural design
decisions and the relevant parts of the system.

Incrementalization is an enabling factor for a modular architecture conformance
checking approach, since the modular units (slices) must be independently checked.
Hence, modularizing a non-incremental conformance check is not efficient, since
an analysis must run multiple times for each slice. The inefficiency is mainly due
to the fact that architecture analyses are whole program analyses that consider
a large amount of data and, hence, are expensive. Furthermore, the automated
incrementalization made the development of such modularized analyses very easy.
The reason being, that slices can overlap in terms of the architectural units whose
dependencies are described. Hence, each different slices must be notified when
architectural units change. Using the automated incrementalization this notification
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is performed by the database, but otherwise requires an extra implementation of
the update logic.

The remainder of the chapter is organized as follows. Section 7.1 gives an
overview of architecture conformance checking and related approaches and discusses
the issue of modularization in more detail. In Section 7.2, we briefly introduce the
Hibernate framework [BK04], which we use to illustrate concepts of the proposed
approach and to evaluate its effectiveness. Section 7.3 introduces the tool Vespucci
that implements the modularized specification language. In Section 7.4 we present
an in-depth evaluation of the modularization based on the Hibernate cases study
performed using Vespucci. After that, we discuss related work in Section 7.6. Finally,
we give a summary and discuss future work.

7.1 Modularized Architecture Conformance Checking

A documented software architecture is an acknowledged success factor for the
development of large, complex systems [SG96]. Traditionally, architecture descrip-
tion languages (ADLs) have been used to specify the architecture and verify its
properties. Generally, this process has been detached from coding and the archi-
tecture specification has been considered as a means to prescribe the structure of
the code resulting from programming or eventually to generate a first skeleton
of that code. However, as systems evolve over time, due to new requirements
or corrections, the implemented architecture starts to diverge from the intended
architecture [EGK+01, GL00, MRB06] — resulting in architecture erosion [PW92].

To combat architecture erosion, several approaches have emerged that focus on
structural dependencies [EKKM08, MNS95, SJSJ05, TV09] and whose proponents
argue for automated checking of architecture specifications w.r.t. the static structure
of the source code. These approaches generally allow to group1 source code elements
into building blocks — cohesive units of functionality in the software system — and
to specify in which way a building block is allowed to statically depend on which
other building block. The specification formalisms in these approaches vary and
can be summarized as: (i) a flat graph with building blocks as nodes and allowed
dependencies as edges [MNS95]; (ii) a matrix notation with building blocks in
rows/columns and their dependencies in the cells [SJSJ05]; (iii) a graph with
hierarchical nodes and component-connector style ports to manage internal/external
dependencies [EKKM08]; (iv) a textual specification of access restrictions on target
building blocks [TV09].

Such specifications are used either analytically [MNS95] — to analyze already
written code for conformance with an intended static structure — or constructively

1 using, e.g., regular expressions over classes or source files
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[EKKM08, TV09] to enforce the code’s compliance with the specification of the
static structure continuously during development. Constructive approaches were
proven to help developers in realizing the intended architecture. Several case
studies [Her10, KMHM08, KMNL06] show that constructive approaches can prevent
structural erosion [RLGBAB08, WCKD11].

Though current approaches have proven to be valuable, they all share the property
that a single monolithic specification is used and – as in case of a monolithic
software system — a monolithic description of the structure does not scale and
becomes unmaintainable once the software reaches a certain complexity. Sangal et
al. [SJSJ05] explicitly try to solve the maintainability and scalability issues using
a special notation called dependency structure matrices (DSMs). However, we
believe that the problem is not so much the notation. The root of the problem is
the monolithic nature of the specifications. Based on some preliminary experience
with modeling the architecture of real systems, such as Hibernate [BK04], we doubt
that any such approach can scale, even with compact notations such as dependency
structure matrices. As a result, typically only the highest level of components
and/or libraries is considered [TV09, RLGBAB08]; requiring different notations and
tools for different levels of the design. This precludes a seamless design at various
granularity levels.

In this chapter, we argue that modeling a software’s static structure should consist
of multiple views, that focus on different parts and on different levels of detail. We
take the position that like programming languages, architecture modeling languages
in general should support modularity and scoping mechanisms to support modular
reasoning about different architectural concerns and information hiding to facilitate
evolution.

Accordingly, we propose a novel modeling approach and tool, called Vespucci,
that allows to separate the specification of a software’s static structure into multiple
complementary views, called slices throughout this chapter. Each slice can be
reasoned over in separation. Multiple slices can express different views on the same
part of the software and each slice can be evolved individually. Hence, evolution
of large scale specifications consisting of several slices is facilitated by distributing
work to systematically update the architecture in a modular fashion. Contrary
to a monolithic specification, our approach also has the benefit that individual
concerns can remain stable. Stable parts can be modularized into different slices to
be separated from architectural “hot-spots”, i.e., slices that require frequent changes
during the evolution.

The contributions of this chapter are:
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• A first approach towards the specification of a software’s structural depen-
dencies that supports a modularized specification by means of individual
slices.

• A new approach for modeling a software’s structural dependencies that com-
bines the advantages of hierarchical and graph-based modeling approaches
to enable reasoning over a software’s static structure at different abstraction
levels.

• Discussion of an implementation of the proposed approach that enables the
specification and checking of a software’s structural dependencies.

7.2 Architecture of Hibernate

As part of the development of Vespucci, we did a comprehensive analysis of the
architecture of the object-relational mapping framework Hibernate [BK04]. We
provide a short overview of Hibernate and its architecture in this section since we
will refer to it to discuss and motivate various features of Vespucci.

We chose Hibernate as it is a large, mature, widely-adopted software system,
which has been continually updated and enhanced. We reengineered the architecture
of the core of Hibernate in version 1.0.1 (July 2002) and played back its evolution
until version 3.6.6 (July 2011)2. During this time the core grew from 2 000 methods
in over 255 classes organized in 18 packages to 17 700 methods in over 1 954 classes
in 100 packages.

In the following, the major building blocks of Hibernate’s architecture are pre-
sented. A building block is a logical grouping of source code elements that provide a
cohesive functionality, independent of the program’s structuring, e.g., in packages
or classes. The scope of a building block depends on the considered abstraction
level and ranges from a few source code elements up to several hundreds. For ex-
ample, Hibernate’s support for different SQL dialects is represented by one top-level
building block with many source code elements, but further structured into smaller
building blocks for elements that abstract over the support for concrete dialects and
those that actually implement the support.

The architectural model of Hibernate 1.0 consists of the 22 top-level building
blocks shown in Table 7.1. Of these 22 top-level building blocks, 16 were further
structured. In total, we identified 73 second-level building blocks. Given the size of
Hibernate 1.0, we did not analyze lower levels. On average each top-level building
block already only contains 11 classes and the 2nd level building blocks consist of

2 Hibernate 4.0 was released after the case study.
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Cache 4 6 60 ≡
CodeGeneratorTool 0 9 68 ⊂
ConnectionProvider 3 5 51 ≡
DatabaseActions 3 9 59 ⊂
DataTypes 10 37 410 ≡
DeprecatedLegacy 2 2 6 ⊂
EJBSupport 0 1 22 ≡
HibernateORConfiguration 2 2 39
HibernateORMapping 12 33 389 ≡
HQL (Hibernate Query Lang.) 3 9 130 ≡
IdentifierGenerators 4 12 92 ≡
MappingGeneratorTool 0 19 233 ⊂
PersistenceManagement 6 35 674
PropertySettings 0 1 43
Proxies 0 3 23 ⊂
SchemaTool 2 5 34 ⊂
SessionManagement 6 10 312
SQLDialects 3 12 119 ≡
Transactions 2 4 37 ≡
UserAPI 9 9 63
UtilitiesAndExceptions 2 33 235
XMLDatabinder 0 2 21

Table 7.1: Overview of Hibernate 1.0

even fewer classes. The key figures of the architecture are given in Table 7.1. In
the following, we discuss those elements of the architecture that are most relevant
when considering the modeling of architectures. The complete architecture can be
downloaded from the project’s website [Ves12].

For Hibernate 1.0 nine of the building blocks have a one-to-one mapping to a
package (cf. Table 7.1 – Relation to Packages ≡). Six building blocks map to a
subset (⊂) of the code of some non-cohesive package. For example, the package
cirrus.hibernate.impl contains classes for creating proxies as well as classes
related to database actions. These sets of classes have no interdependencies and
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belong to different building blocks. The source code elements of the remaining
building blocks are spread across several packages. For example, the code related to
session handling is spread across two packages in version 1.0.

Overall, the architecture features several well modularized building blocks, such
as the Cache, HQL or Transactions building blocks, which are only coupled with at
most three other building blocks. The number of well modularized building blocks
with few dependencies is, however, small. The majority of Hibernate’s functionality
belongs to building blocks that exhibit high coupling, such as PersistenceManage-
ment, SessionManagement and DataTypes.

7.3 The Vespucci Approach

In this section, we first describe the three major parts Vespucci [Ves12] consists of:
(1) a declarative source code query language to overlay high-level abstractions over
the source code, (2) an approach that enables the modular, evolvable, and scalable
modeling of an application’s structural dependencies, and (3) a runtime for checking
the consistency between the modeled and the implemented dependencies. After
that, we present in Section 7.3.4 the different modeling approaches supported by
Vespucci. Finally, we discuss in Section 7.3.5 how the proposed approach facilitates
the evolution of the specification and the underlying software and how it supports
large(r) scale software systems.

7.3.1 High-level abstractions over source code

Vespucci is concerned with modeling and controlling structural dependencies at the
code level. But, it does so at a high-level of abstraction.
Ensembles are Vespucci’s representation of high-level building blocks of an ap-
plication, whose structural dependencies are modeled and checked. Specifically,
Vespucci’s ensembles are groups of source code elements, namely type, method, and
field declarations. The definition of an ensemble involves the specification of source
code elements that belong to it by means of source code queries. We refer to the set
of source code elements that belong to an ensemble as the ensemble’s extension.

The visual notation of an ensemble is a box with a name label. For example,
Figure 7.1 shows two ensembles, one called SessionManagement and one called
HQL. Vespucci explicitly predefines the so-called empty ensemble that never matches
any source elements and is depicted using a simple gray box ( ). The empty
ensemble supports some common modeling tasks, e.g., to express that a utility
package should not have any dependencies on the rest of the application’s code.
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The source code query language is introduced – mostly example-driven – in the
following paragraphs. The language is not the primary focus of this chapter, which
is rather on modularity mechanisms for modeling structural dependencies. In fact,
the approach as a whole is parameterized by the query language, in the sense that
the modularization mechanisms can be reused with other more expressive query
languages and more sophisticated query engines. For a more systematic definition
of the current query language, the interested reader is referred to the website of the
project [Ves12].

The query language provides a set of basic predicates that can select individual
fields or methods, entire classes, packages, or source files. Predicates take quoted
parameters, which filter respective code elements by their signature, e.g., the predi-
cate package(’cirrus.hibernate.helpers’) selects code elements in Hibernate’s
helpers package, using the package name as the filter. The query defines the Utilities
ensemble, which we have used in modeling Hibernate’s structural dependencies.

In the above example, source code elements are precisely specified by their fully
qualified signature. Furthermore, wildcards (“*”) can be used to abstract over
individual predicate parameters. For example, the field predicate below selects
field declarations in class Hibernate with any name (the second parameter is “*”),
of a type that ends with the suffix Type. We have used the query to define an
ensemble called TypeFactory which serves as a factory for Hibernate’s built-in types.

field(’*.Hibernate ’,’*’,’*Type’)

Queries can be composed using the standard set theoretic operations (union,
intersection, difference), or by passing a query as an argument to a type parameter
of another query. This form of composition is useful to reason over inheritance for
selecting all sub-/supertypes of a given type. For example, consider the query:

class_with_members(subtype+(’Dialect ’))

It uses the basic predicate class_with_members, which selects a class and all its
members. Since the predicate expects a type to be selected, we can instead pass a
sub-query. The subtype+ query returns the transitive closure of all subtypes of the
class Dialect. Hence, the example query selects all classes (and their members)
that are a subtype of the class Dialect. In Hibernate these represent all supported
SQL dialects – the shown query actually defines the ensemble ConcreteDialects.

As already mentioned, the query language is interchangeable. What is interesting
about the use of the source query language as an ingredient of our approach is
that it enables modeling structural dependencies at a high-level of abstraction.
Furthermore, it supports the definition of ensembles that cut across the modular
structure of the code, e.g., TypeFactory cuts across the class-based decomposition
of code. This enables feature-based control of structural dependencies.
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Vespucci provides an ensemble repository that stores the definitions of all en-
sembles. It serves as a project-wide repository and provides the starting point for
modeling an application’s intended structural dependencies. Capturing all ensemble
definitions in a single repository serves two purposes. First, it enables a model of
intended structural dependencies to be modularized with the guarantee that all
modules refer to the same extension for a particular ensemble. Second, it allows
modules to pose global constraints quantifying over all defined ensembles (see the
discussion about global constraints in the following section).

7.3.2 Modeling Structural Dependencies

Dependency slices are Vespucci’s mechanism to support the modularized specifi-
cation of an application’s structural dependencies. A slice captures one or more
specific design decisions, by expressing one or more constraints over ensemble
inter-dependencies, e.g., which ensemble(s) is/are allowed to use a certain other
ensemble.

For illustration, Figure 7.1 shows an an exemplary slice, which governs depen-
dencies to source code elements that implement the Hibernate query language,
represented by the HQL ensemble. Specifically, it states that elements pertaining to
HQL may be used ONLY by those pertaining to the SessionManagement ensemble.
The cycle attached to the arrow pointing to HQL states that globally, i.e., for all
ensembles in the ensemble repository, this is the only dependency on HQL’s elements
that is allowed.

Figure 7.1: Dependency rule for Hibernate Query Language

Figure 7.2 shows another example slice, which states that source code elements
pertaining to SQLDialects are only allowed to be used by PersistenceManagement’s
or SessionsManagement’s source code elements.

There can be an arbitrary number of slices in a model of structural dependencies;
the set of ensembles referred to in different slices may overlap. Deciding about the
number/kind of slices, in which one may want to break down the specification of
an application’s structural dependencies is a matter of modeling methodology, as
we elaborate on in section 7.3.4. Yet, we envision the default strategy to be one in
which each slice is used to express allowed and expected dependencies from the
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Figure 7.2: Users of SQL Dialects

perspective of a single ensemble; this strategy was used in the case study and in the
examples shown in this chapter. For this purpose, the visual notation features arrow
symbols that are shown next to the ensemble that is constrained3. For example,
by looking at Figure 7.1 we can reason about all dependencies that are allowed
for HQL and looking at Figure 7.2 we can reason about all dependencies that are
allowed for SQLDialects.

Ensembles that participate in a slice but which have no arrow symbols next to
their box are not constrained. For example, both slices refer to SessionManage-
ment, but make no statement w.r.t. the total of its allowed dependencies. From
these two slices we can see that SessionManagement’s source code elements are
allowed to depend on both SQLDialect’s and HQL’s source code elements. However,
SessionManagement and PersistenceManagement are not constrained.

Constraint types are classified into two basic categories: constraints that are defined
w.r.t. the allowed and those w.r.t. the not-allowed dependencies. Constraints on
allowed dependencies are further classified as Outgoing and Incoming Constraints
and Local and Global Constraints. The rationale for distinguishing between the
above types of constraints relates to enabling modular reasoning about individual
architectural concerns. Modular reasoning fosters scalability by allowing each slice
to be understood as a single unit of comprehension, and also fosters evolvability as
each slice can be adapted without the need to refer to other slices. We elaborate
on the role that different constraint types play with these respects in the following
section. Here, we exclusively focus on explaining the meaning of these different
constraints.

An incoming constraint restricts the set of source code elements that may use
the elements of a particular ensemble (target ensemble). Incoming constraints are
denoted by the symbol “−>” shown next to the target ensemble (cf. Figure 7.1,
Figure 7.2). For example, the constraint in Figure 7.1 restricts source code depen-
dencies, of which the target element belongs to HQL: the source of the dependency
must belong to SessionManagement; source code dependencies from and to the

3 For this chapter the visual models were compressed to save space. Hence the distinction may not
be as obvious as it is when you use the Vespucci tool.
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source code elements belonging to SessionManagement are — w.r.t. that slice —
unrestricted.

An outgoing constraint restricts the set of source code elements on which code el-
ements of a specific ensemble (source ensemble) may depend. Outgoing constraints
are visually denoted by the symbol “>−” shown next to the source ensemble. For

Figure 7.3: Constraints on the Connection Provider

example, the slice in Figure 7.3 features two outgoing constraints; from Connec-
tionProvider to PropertySettings, respectively to UtilitiesAndExceptions. Outgoing
constraints only affect code elements of their source ensemble. Hence, the slice in
Figure 7.3 governs the dependencies of code elements involved in providing connec-
tions (captured by the ConnectionProvider ensemble). They may only use generic
functionality (captured by the UtilitiesAndExceptions ensemble), or functionality for
getting and setting properties (captured by PropertySettings). The targets of the
constraint (PropertySettings and UtilititiesAndExceptions) can — w.r.t. the slice in
Figure 7.3 — depend on any other ensemble.

Global constraints quantify over all defined ensembles. Visually they are denoted
by a “◦” attached to a constraint. All constraints considered in the examples so far
were global. For example, the constraint shown in Figure 7.1 affects code elements
that belong to any ensemble defined in the repository of Hibernate, even if not
referred to by the slice, e.g., ConnectionProvider or PropertySettings in Figure 7.3.
Code elements of the latter ensembles are not allowed to depend on elements in
HQL.

Global constraints are hard constraints w.r.t. the addition of new ensembles into
the architecture. Whenever new ensembles are defined in the ensemble repository,
they are included when checking a global constraint. The purpose is to provide tight
control over the evolution of the architecture. If a new ensemble has dependencies
that violate a global constraint, then architects can asses whether the violation needs
to be removed from the code or, whether the currently defined architectural rules
are too narrow. The essential point is that an architect has assessed the situation
and no uncontrolled erosion of the software’s structure has occurred.

Local constraints quantify only over ensembles that are referenced in one particu-
lar slice. Visually, they are characterized by the lack of the “◦” symbol. Figure 7.4
depicts local constraints on the implementation of Hibernate’s support for different
SQL dialects (e.g., “Oracle SQL”,“DB2 SQL”). Each dialect is realized by implementing
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a common interface. Elements of this interface are captured by the AbstractDialect
ensemble. Support for specific dialects is captured by ConcreteDialects. The Type-
NameMap ensemble captures code elements involved in implementing a specialized
dictionary for mapping database type names to a common set of names. The de-
fined constraints specify that only code pertaining to ConcreteDialects is allowed
to depend on code pertaining to AbstractDialect and code in the latter is only
allowed to depend on TypeNameMap’s code. Furthermore, neither source code
elements of AbstractDialect nor TypeNameMap are allowed to depend on elements
of ConcreteDialects due to the incoming constraint between the empty ensemble
and ConcreteDialects. However, the constraints of the slice in Figure 7.4 do not
restrict in any way code elements belonging to ensembles that are not referenced by
this slice, e.g., code pertaining to HQL (slice in Figure 7.1) could use code pertaining
to ConcreteDialects.

Figure 7.4: Supporting multiple SQL Dialects

Local constraints provide tight control over the evolution of source code w.r.t. the
scope of the ensembles referenced in a slice. Their purpose is to capture localized
rules that reason only over a part of all the dependencies in the architecture, e.g., as
in Figure 7.4 where only dependencies pertaining to the implementation of multiple
SQL dialects are considered. The implementation details of involved ensembles
can change (and respectively their extensions), but the changes are guaranteed to
adhere to the specified allowed/expected dependencies. The rest of the architecture
can evolve independently, i.e., new ensembles and dependencies can be introduced
as long as they do not violate the localized rules.
Different kinds of dependencies can be constrained individually by annotating
constraints. The kinds of dependencies are those that can be found in Java code
(e.g., Field Read Access, Field Write Access, Inherits, Calls, Creates,...; a complete
reference is available online [Ves12]); by default, all kinds of dependencies are
constrained and no further annotation of a constraint is necessary. Dependency
kinds are important when documenting detailed design choices.

For example, Figure 7.5 restricts only dependencies of the create kind (i.e., object
creations) to the ConcreteConnectionProviders; only the ConnectionProviderFactory
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Figure 7.5: Restricting connection provider creation to a factory

is allowed to create new connection providers. All other dependencies are allowed
for all ensembles, hence clients may use the created provider, e.g., by calling its
methods. The range of possible applications is broad, e.g., one can also disallow
classes from throwing particular exceptions, while allowing their methods to catch
them.
Nesting of ensembles is also enabled in Vespucci to reflect part-whole relationships.
The information about child/parent relationships between ensembles is stored in
the global repository. For illustration consider that the slice shown in Figure 7.4
actually models the internal architecture of Hibernate’s support for SQL dialects.
One can express this relation by making the ensembles referred to in Figure 7.4
children of the SQLDialects ensemble, as shown in Figure 7.6.

Figure 7.6: (Sub-)Ensembles of SQL Dialects

The extension of an ensemble that has inner ensembles is the union of the
extension of its inner ensembles; i.e., an ensemble with inner ensembles does not
define its own query to match source elements, but instead reuses the queries of
its inner ensembles. Hence, the semantics of nesting is that constraints defined for
parent ensembles implicitly apply to source code elements of all their children, e.g.,
constraints defined for SQLDialects in the slice in Figure 7.2 apply to all its children
ensembles.

Constraints that cross an ensemble’s border are disabled in Vespucci for keeping
the semantics simple. Due to slices, this can be done without loss of expressivity. If
an architect needs to define a constraint between two ensembles that do not have
the same ancestor ensemble, it is always possible to specify the constraint in a new
slice that just refers to the directly relevant ensembles.
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With hierarchical modeling, architects can distinguish between ensembles that
are involved in the architectural-level modeling of dependencies (SQLDialects)
and those involved in modeling decisions at lower design levels (ensembles in
Figure 7.4). In the following sections, we discuss how the combination of slices and
hierarchies facilitates the incremental refinement of a software’s architecture and is
advantageous in case of software evolution.

7.3.3 Constraint Enforcement and Tooling

Conceptually, checking the implementation against the modeled dependencies is
done as described next.

First, for each ensemble its extension along with the set of source code dependen-
cies related to it (those that have the ensemble as source or target) is calculated;
self-dependencies, i.e., source code dependencies, where the source and target
elements belong to the same ensemble are filtered out. Furthermore, dependencies
from and to source code elements that do not belong to any ensemble are ignored.

Second, each slice is checked on its own. To do so, Vespucci iterates over
all ensembles of each slice and checks that none of the dependencies between
respective source code elements violates a defined constraint. For example, to
check the compliance of an application’s source code with the slice in Figure 7.3,
Vespucci effectively checks that the target of all code dependencies, starting at
a code element in ConnectionProvider, either belongs to PropertySettings or to
UtilitiesAndExceptions.

The implementation of Vespucci’s dependency checker is integrated into the
Eclipse IDE. Checking is done as part of the incremental build process and incremen-
tal checking ([EKS+07]) is efficient enough for (at least) mid-sized projects such as
Hibernate. Likewise the modeling side is incrementalized; hence, changes to queries
are immediately reflected in the IDE.

The rationale behind the decision to ignore dependencies to source code elements
that do not belong to any ensemble is that dependencies to an application’s essential
libraries and frameworks are most often not of architectural relevance and should
not clutter the overall specification. Nevertheless, it is always possible to create an
ensemble that covers some fragment of a fundamental library to restrict its usage.
E.g., while it generally does not make sense to restrict the usage of the JDK, it
may still be useful to restrict the usage of the java.util.logging API, because the
project as a whole uses a different API for logging and it has to be made sure that
no one accidentally uses the default logging API. One possibility to model such a
decision is to create a global incoming constraint from an empty ensemble to the
ensemble representing the java.util.logging API. However, Vespucci provides a
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specialized view that lists source code elements that do not belong to any ensemble
to make it easily possible to find unintended holes in the specification.

7.3.4 On Modeling Methodology

Figure 7.7 schematically shows four principal ways to model the architecture of
a hypothetical system consisting of four ensembles (boxes labeled 1 to 4) with
Vespucci. In (A), all constraints are modeled in a single model. In (B), the model
makes use of hierarchical structuring – specifically, ensembles 1 and 2 are nested
into an ensemble 1&2. In (C), the model makes use of slicing; specifically, per
ensemble one slice is defined, modeling only decisions related to that ensemble,
but slicing at other granularity levels is conceivable (see below). In (D), the model
makes use of both slices and hierarchies, which is the expected typical usage of
Vespucci.

(A) Flat Single Model (B) Hierarchical Model

1 2

3 4

1 2

3 4

1 & 2

(C) Sliced Model (D) Sliced Hierarchical Model

1 2

4

1 2

4

1 2

4

1 & 2

3 4

1 2

3 4 3 4

1 2

3 4

1 & 2

Figure 7.7: Alternative architectural models of dependencies

In general, the structural dependency model of a system in Vespucci consists
of an arbitrary number of slices. It is a matter of modeling decisions – taken
by the architect – in how many slices she breaks down the overall architectural
specification. As part of this process, a trade-off is to be made between (i) creating
(large(r)) slices that capture several architectural rules related to multiple ensembles
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that conceptually belong together and (ii) creating one slice per ensemble that
just captures the architectural rules related to that ensemble. In the former case
cohesiveness is fostered while in the latter case (local) comprehensibility of the
architecture and evolvability of the specification is fostered.

In the Hibernate case study, as a rule of thumb, each high-level slice focused on
design decisions concerning one ensemble. For instance, the slices in Figure 7.1
and Figure 7.3 focus on specific design decisions related exclusively to allowed
incoming dependencies to HQL, respectively allowed outgoing dependencies of Con-
nectionProvider. Internal dependencies for ensembles with nested sub-ensembles
were in general related to a small set of ensembles and hence captured in a single
slice, as e.g., in Figure 7.4, where the internals of SQLDialects were captured.

The one-slice-per-high-level-ensemble strategy for breaking down specifications is
just a first approximation. For reasons of better managing complexity and evolvabil-
ity as well as understandability, it may make sense to choose more fine-grained or
coarse-grained strategies. One such strategy is to split the specification of incoming
and outgoing dependencies of an ensemble, if those are too complex or evolve in
different ways. On the other hand, slices of related ensembles may be merged,
when their separated specifications are too simple to justify separate slices or hard
to understand in isolation.

One may criticize that a specification becomes complex with an increasing number
of slices. However, a single specification that controls the dependencies to the same
degree is no less complex and includes all information that is captured in the slices.
For example, if internal dependencies are controlled, they need to be specified and
maintained in a single specification as well. The focus here is to make a case for
enabling the architects to break down specifications of structural dependencies in
several modules that are more manageable w.r.t. scalability and evolvability and can
be reasoned over in isolation. Hence, slices also facilitate distribution of work, such
that large architectures can be maintained by a team rather than a single architect.

Per ensemble slicing of the dependency model may also impair understandability
of dependencies pertaining to several modules. A view of the dependencies for
multiple ensembles (in contrast to their individual constraints) can be advantageous
for the exploration of the architecture, e.g., if one wants to follow transitive depen-
dencies such as the path of communication from ensemble A to B. Note that if such a
path is relevant to the architect, it can also be encoded as a slice. A second scenario
for global comprehension is to find all slices in which an ensemble participates. This
can be supported by a simple analysis over the defined slices.

All the above said, systematically deriving guidelines for structuring architec-
tural decisions into slices and distributing the work is a matter of performing
comprehensive studies and is out of the scope of this thesis.
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7.3.5 Scalability and Evolvability

Vespucci enables architects to reason about architectural decisions concerning struc-
tural dependencies of a set of ensembles in isolation, while treating the rest of
the system as a black-box, and to do so in a top-down manner. This is due to (1)
Vespucci’s support for breaking down the specification into slices, (2) mechanisms
for expressing structural rules via a constraint system, (3) a scoping mechanism
that enables to quantify locally or globally over the set of affected ensembles, and
(4) Vespucci’s support for enabling the hierarchical organization of specifications.
The latter is a traditional mechanism to govern complexity [Sim62] and will for this
reason not be further considered in the following discussion.

Support for modular reasoning
Slices enable the architect to focus on constraints that concern individual ensem-

bles or a set of strongly related ensembles. This makes it possible to isolate a small
set of related architectural decisions from the rest for the purpose of modularly
reasoning about them, while treating the rest as a black-box.

This fosters scalability by reducing the number of ensembles and constraints that
need to be considered at once: Each slice in Figure 7.7 (C) contains less ensembles
and constraints than the model in Figure 7.7 (A). One may argue that slicing actually
increases the overall number of elements (ensembles/constraints) — since some
of them are mentioned in multiple slices. However, as they represent the same
abstractions in all slices, the overall number of elements that need to be understood
remains the same as in the model A.

Consider for illustration the slice depicted in Figure 7.2. It expresses that only
SessionManagement and PersistenceManagement may use SQLDialects with the
minimum amount of explicitly mentioned ensembles and constraints. No rules
governing dependencies between SessionManagement and PersistenceManagement,
respectively between those and other ensembles, are specified. The slice in Figure 7.2
models architectural constraints from the perspective of SQLDialects. Dependencies
between SessionManagement and PersistenceManagement or between those and
other ensembles are irrelevant from this perspective and are, thus, left unspecified.
Further, we do not explicitly enumerate all ensembles that are not allowed to depend
on SQLDialects.

Vespucci’s constraint system for modeling dependencies and the way checking for
architecture compliance operates (see previous section) is key to the conciseness of
specifications. Slices are checked in isolation. The constraint system interprets the
lack of a constraint in a slice as “don’t care” in the sense that the presence or absence
of code dependencies is ignored. E.g., potential dependencies between SessionMan-
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agement and PersistenceManagement are ignored when checking compliance with
rules in slice in Figure 7.2. They may well be the subject of specification in other
slices to be reasoned on separately.

The role played in this respect by our distinction of incoming and outgoing con-
straints needs to be highlighted here. It is the use of the incoming constraints in
Figure 7.2 that enables us to talk about constraints from the perspective of SQL-
Dialects – excluding from consideration any further dependencies in which, e.g.,
SessionManagement may engage. Incoming/outgoing constraints are “unilateral” –
they belong to one ensemble. Without this distinction, we would be left with “bilat-
eral” constraints; mentioning one such constraint that affects SessionManagement
would require to mention all other constraints affecting SessionManagement; hence,
making it impossible to slice specifications.

The ability to abstract over any dependencies that are not explicitly constrained
comes in also very handy when handling ensembles that are expected to be ubiq-
uitously used, e.g., Hibernate‘s Utilities ensemble. Such ensembles would typically
contribute a significant amount of complexity to architectural specifications, if the
specification approach requires to explicitly mention allowed dependencies. By
using a constraint system this complexity can be avoided. The specification would
make no mention of dependencies to Utilities, in order to leave it unconstrained.

The ability to state a constraint that affects arbitrary many ensembles without
having to enumerate those explicitly is due to the ability to make global statements.
Ensembles that are not explicitly mentioned in a slice are reasoned over by global
constraints, e.g., the slice shown in Figure 7.2 implicitly states that all other ensem-
bles mentioned in Figure 7.1, 7.2, 7.3, and many more, are not allowed to use SQL
Dialects. This specification is much smaller compared to enumerating this fact for all
other ensembles constituting the rest of Hibernate. The latter would be necessary, if
Vespucci only had allowed and not-allowed constraints and no distinction between
local and global scopes.

Support for evolution
Due to slicing, architectural models also become easier to extend. First, slices

remain stable in case of extensions that do not affect their ensembles/constraints.
Second, affected slices are easier to identify. Finally, existing global constraints
automatically apply to new ensembles.

Consider for illustration the following scenario that occurred during the evolution
of Hibernate from version 1.0 to version 1.2.3. In this step, a new ensemble — called
Metadata — to represent Hibernate’s new support for metadata was introduced.
This change was accommodated mostly incrementally. First, the specification as
a whole was extended incrementally by introducing a new slice, referring to the
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ensembles that Metadata is allowed to use and be used from. Second, the set of
existing slices that eventually required revision was restricted to those modeling
the dependencies of ensembles referred to in the new Metadata slice. For example,
the slice that defined constraints for DataTypes was refined to enable the usage
by Metadata. Slices that modeled unrelated architectural decisions, e.g., those
governing dependencies of ConnectionProvider (cf. Figure 7.3), did not require any
reviewing. Yet, previously stated global constraints carry over to the new ensemble,
ensuring e.g., that it does not unintentionally use SQLDialects (slice in Figure 7.2);
the usage of non-constrained ensembles, e.g., Utilities, is also granted automatically.

The way the mapping between ensembles and source code is modeled has an
effect on the stability of the model in face of evolution of the system. Here we hit
a variant of the well-known “fragile pointcut problem”. One way to mitigate this
problem is by using stable abstractions in the source code in the queries. However,
this is not always feasible; in the case study queries had to be adapted as the system
evolved. Here the tool support provided by Vespucci offered some help to identify
changes in the source code by: a) showing elements that do not belong to an
ensemble, b) showing (sub-)queries with empty results; c) specifying that a list of
ensembles should be non-overlapping (i.e., to prevent accidental matches). Even
so we are aware that better source code query technology and tool support for it is
needed; in this thesis, we focus on the modularity mechanisms on top of the query
language.

7.4 Evaluation of the Modularity Mechanisms

In this section, we evaluate quantitatively the effectiveness of Vespucci’s mechanisms
to modularize the specification of a software’s intended structure. This evaluation
is performed from two complementary perspectives: (a) reduction of complexity,
which is measured as the number of ensembles and constraints, and (b) facilitating
architecture maintainability during system evolution. As a basis we use the re-
engineered architecture of Hibernate (c.f. Sec. 7.2), which allows us to study an
architecture of a size that is representative for mid- to large-scale projects. We also
give a critical discussion of the broader applicability of our results and of threats to
the validity of our study at the end of the section.

The goal of our evaluation is to assess the modularization mechanisms of Vespucci
and not the accuracy of architectural violation control. Therefore, even though
Vespucci is targeted at continuous architecture conformance checking, the identifica-
tion of violations to the architecture is not the purpose of our quantitative evaluation.
Nevertheless, it is important to highlight that in terms of enforcing conformance
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Vespucci is able to control violations in the source code similar to related approaches
[MNS95, KS03, SJSJ05, EKKM08, TV09, AAA09, dSB12].

7.4.1 Scalability

We first analyze the reduction in complexity when reasoning about an architecture
specification. This analysis was performed by comparing the architecture of Hiber-
nate 1.0 modeled in the four principal ways schematically depicted in Figure 7.7
and outlined in the previous section. The model with both slices and hierarchies
(Figure 7.7, D) was the primary model produced during our study of Hibernate.
The other three models were produced to measure the complexity reduction for the
different mechanisms (hierarchies, slices, combination of both).

Scalability with regard to the number of ensembles
We first compare different mechanisms w.r.t. the number of ensembles referenced

by isolated dependency rules. The baseline is a single monolithic specification with a
total of 79 ensembles, modeled by following Figure 7.7 (A). The other three models
Figure 7.7 (B-D) are quantified in the diagrams in Figure 7.8. The y-axis of all three
diagrams denominates the number of ensembles referenced per architectural model.

The diagram on the upper left shows reduction in complexity for hierarchical
structuring only. The model is a single specification, but high-level ensembles may
be collapsed to reduce the overall number of ensembles to consider at once. The
x-axis denominates the number of collapsed ensembles ordered by the number
of their sub-ensembles. The values on the y-axis show how many ensembles are
referenced after collapsing an enclosing ensemble, i.e., the enclosing ensemble is
referenced instead of all its children. The values are accumulated, since multiple
ensembles can be collapsed together. For example, in a model with the top five most
complex high-level ensembles collapsed, the architect has to consider 41 ensembles
at once. When collapsing all ensembles in the hierarchy, we are left with 22 top
level ensembles, hence hierarchical structuring reduces the number of ensembles to
approx. 27% of the total (22 of 79).

The diagram in the upper right of Figure 7.8 shows the number of ensembles per
slice when using only slices (no hierarchies). The x-axis denominates the modeled
slices in the decreasing complexity order (decreasing number of referenced ensem-
bles). Almost all slices refer to less than 27% of the ensembles (12% on average).
The exemption are the three first slices that capture rules for the following building
blocks (of central importance) (i) persisting classes, (ii) persisting collections, and
(iii) the interface to Hibernate’s internal data types. The combination of both mech-
anisms (diagram on the lower left side of Figure 7.8), yields a much smaller number
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Figure 7.8: Comparison of ensemble reduction w.r.t. hierarchies and architectural
slices (Hibernate 1.0)

of slices (x-axis), since it focuses on the top-level building blocks. In addition, the
combined approach features slightly smaller slices; on average each slice references
only 9% of the total number of ensembles.

Scalability with regard to the number of constraints
In the following, we compare how much each mechanism reduces the number

of constraints used in isolated dependency rules. The comparison is similar to the
comparison regarding the number of ensembles and the numbers are shown in
Figure 7.9. The x-axis is organized in the same manner as in Figure 7.8. The y-axis
denominates the number of constraints that are referenced in each architectural
model.

The y-axis for hierarchical structuring (upper left diagram in Figure 7.9) shows
the total number of constraints after collapsing an enclosing ensemble. The number
includes (i) constraints that are abstracted away, since they are internal to the
enclosing ensemble (cf. Figure 7.7 B; 1&2) and (ii) constraints that are abstracted
away, since several constraints at the low level are subsumed by a single constraint
at the high level (cf. Figure 7.7 B; 1&2 to 4). Both internal and external constraints
contribute approx. half of the reduction in constraints (external slightly outweighs
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Figure 7.9: Comparison of constraint reduction w.r.t. hierarchies and architectural
slices (Hibernate 1.0)

internal). As in the evaluation for ensembles, the y-values for the hierarchical
composition (B) are accumulated, since we can use several hierarchical groupings
together. For the architectural models using slices (C,D) the number of constraints
is simply the number of constraints modeled in one slice.

The baseline (A) consists of 705 constraints in a single specification. If we
consider the hierarchical model and collapse all enclosing ensembles, approx. 2/3
of the constraints are removed (down to 214, last value in the upper left diagram in
Figure 7.9)). In comparison, slices (diagram in the upper right of Figure 7.9) show
less than 5% of the total number of constraints and 1,3% on average (9 of 705) per
slice. The combination of slices and hierarchical structuring (lower left diagram in
Figure 7.9) features slightly smaller slices; on average 0.9% (6.5 constraints) of the
total of 705 constraints modeled.

Scalability with regard to the number of slices
To control the architecture of Hibernate we have modeled top-level slices compa-

rable to Figure 7.7 (D) and slices for the internal constraints of the 16 ensembles
that are further structured; totaling to 35 slices. Thus, the overall number of slices is
smaller than the overall number of ensembles (79) and remains manageable. Note
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that in these models we do not use the total of the 705 constraints. First, three
ensembles at the top level (SessionManagement, PersistenceManagement, and User-
API) have no slice (and no constraints), for the reason of being used by and using
almost all other ensembles. This is an inherent problem of the modularization of
the software system and should be treated by refactoring the code base. Second, the
modeled top-level constraints subsume several constraints on the internal ensembles.
We found the control provided by the top-level constraints mostly sufficient during
the evolution of Hibernate. Hence, we modeled detailed constraints only in few
cases to further our understanding of the dependencies between selected ensembles.

Summary
In this study the hierarchical structuring included 22 ensembles and 215 con-

straints (both approx. 1/3 of the total). Slices are much smaller; we have to collapse
the first seven enclosing ensembles of the hierarchy to reduce the number of en-
sembles to 35, the number referenced in the most complex slice (persisting classes).
Collapsing all ensembles still references 5 times more constraints than the number
referenced in the slice for persisting classes. Hence, the modeling approach based on
slices scales much better by reducing each slice to 9.5 ensembles and 9 constraints
on average. The combination of both mechanisms produces the best results by
reducing each slice to 7.1 ensembles and 6.5 constraints on average, which means
that a typical slice in the Hibernate model had about 7 ensembles and 6 to 7 con-
straints. Thus especially the number of constraints that need to be reasoned over at
once remains manageable and includes on average only 3% of the constraints of the
model using hierarchical structuring, with a maximum of 16 constraints, or 7% of
the constraints in the single hierarchical model.

7.4.2 Evolvability

To evaluate the effectiveness of Vespucci in supporting architecture evolution we
have compared a single model with hierarchies (Figure 7.7 B) to slices with hier-
archies (Figure 7.7 D). The results are summarized in Table 7.2. The first three
Columns show the analyzed version, its release year, and the number of LoC as an
estimate for the size. Columns four and five characterize the architectural evolution
in terms of ensembles and their queries. Overall, the number of ensembles has
doubled. Column six shows the total number of slices in each version. We followed
the methodology of one slice per ensemble – hence, the number of slices roughly
follows the number of ensembles, with the exception of those ensembles that were
not constrained (c.f. Sec. 7.4.1). Column seven shows that on average 33% of
all slices (1/3 of the architecture specification) remained stable w.r.t. the previous
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version. The least stable revisions were the first and the last one. In the first revision,
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1.0 2002 14703 22 n/a 19 n/a n/a n/a n/a
1.2.3 2003 27020 26 +5 / -1 23 4 (21%) 2.4 6 61
2.0 2003 22876 28 +5 / -3 25 12 (52%) 1.9 6 40
2.1.6 2004 44404 30 +2 / -0 27 9 (36%) 2.6 6 38
3.0 2005 79248 36 +9 / -3 33 8 (30%) 4.5 8 118
3.6.6 2011 106133 39 +3 / -0 36 9 (27%) 5.0 11 87

Table 7.2: Analysis of the evolution of Hibernate’s architecture

Hibernate was close to its inception phase, hence requiring more adaptations to its
features. The last revision was the most extensive in terms of the timespan covered.
The last three columns compare the complexity involved in performing the required
updates of the architecture specifications. Columns eight and nine show the average,
resp. maximal number of ensembles per slice, whose dependencies were updated,
in the approach using slicing. The last column shows how many dependencies were
updated in the single hierarchical model. On average only 4% to 6% of the number
of dependencies updated in the single model were reviewed per slice (the maximum
ranging between 7% and 15%). This reduction in complexity of the updates per
slice is comparable with the reduction of the number of constraints between (B) and
(D) in Figure 7.9.

The numbers indicate that the maintenance of individual slices is much easier
than the evolution of the single architecture model and confirm what is qualitatively
discussed in the previous section.

7.4.3 Threats to Validity

We identify two threats to the construct validity of our study. First, the reverse
engineering of Hibernate’s architecture was not performed by the original Hibernate
developers. Hence, the resulting architecture design may not accurately reflect
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Hibernate’s real/intended architecture, which may lead to inconsistencies in the
results. To mitigate this threat, the architectural model was created by three people
— one student, one PhD candidate and one post-doctoral researcher — that together
have many years of experience on object-relational mapping frameworks. Further,
we extensively studied the available documentation to make sure that the model is
true to Hibernate’s architecture. Yet, it is likely that a different group would reverse
engineer a different architectural model. But, it is unlikely that the architecture
would be such different that our evaluation would become invalid. A second
threat to construct validity is that other architects may modularize the architecture
specification differently, resulting in a different number and scope of slices. However,
the approach that we followed — roughly creating one slice per top-level ensemble
— has proven to be useful and can at least be considered as one reasonable approach.

Threats to conclusion validity in our study could be related to the number of
ensembles and architectural constraints involved in our analysis. We tried to mitigate
this threat by considering an architectural model of a significant complexity. Our
analysis concerned an architectural model that involved 79 ensembles, more than
700 architectural constraints and 35 architectural slices for Hibernate 1.0.

The main issue that threatens the external validity of our study is that it involved a
single software system. To mitigate this threat we have used a well-known medium-
size framework, which has been designed by taking into consideration guidelines
and good practices. These characteristics allow us to analyze the benefits of Vespucci
when modeling architecture designs of well-modularized software systems. In
addition, we have discussed the properties of Hibernate’s architecture that influence
the results and compared them to other studies. However, we are aware that more
studies involving other systems should be performed in the future. All our findings
should be further tested in repetitions or more controlled replications of our study.

7.5 Evaluation of Incremental Performance

To evaluate the incremental maintenance of Vespucci slices, we have measured
(i) the materialized memory required to maintain the architectural violations for
slices, (ii) the runtime for maintaining the violations when performing incremental
modifications to the Hibernate code base and (iii) the runtime for maintaining the
violations when performing modifications to the architectural specification, i.e.,
ensemble definitions and constraints.

The evaluation follows a similar pattern as found in the last chapter. That is we
measure incremental runtime and memory materialization. We do not compare to
a non-incremental implementation for Vespucci. The reason is that, if we follow
a strictly non-incremental approach, each slice must be checked in isolation from
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ground up, which means computing ensemble extents, computing dependencies in
the code and correlating them to the ensembles and finally check them against the
constraints. Even when pre-computing the ensemble extents and the correlations
between code and ensemble dependencies, each slice still requires to filter the
pre-computed data to see what is relevant for the constraints formulated in the slice.
Hence, such an approach is – without further evaluation – unlikely to perform much
better than the incremental approach.

In the following we first provide an overview of the datasets used during the
evaluation. Then the performance of incremental maintenance is discussed in the
order of (i) materialization of memory, (ii) maintenance of code modifications and
(iii) maintenance of architectural specification changes.

7.5.1 Overview of measured Datasets

In the following we use excerpts of the Hibernate case study for the evaluation.
The main focus lies on the later versions of Hibernate, i.e., 3.0 and 3.6, since these
provide larger volumes of code and the Vespucci slices of these versions have reached
a complexity that allows us make a evaluation of the performance of architecture
checking for a real mid- to large-sized project.

Memory Materialization

To measure the memory materialization we use the code bases of Hibernate 3.0 and
3.6.6. Table 7.3 characterizes both versions in terms of the number of elements found
in the code base (2nd − 5th columns), as well as the time required for parsing (6th

column). As in the last chapter we measure how in-memory databases deal with
materialized base relations by materializing all base relations in the SAE (7th column)
and in the deductive logic engine SWI (8th column).

Dataset
# elements parse time

(ms)
mat. mem. (MB)

classes fields methods instr. SAE SWI

3.0 940 3 280 10 220 169 024 93.5 17,3 62,9
3.6.0 1 972 5 563 17 997 323 220 249.0 33,1 117,2

Table 7.3: Overview of the benchmarked dataset

As can be seen the amount of elements in the code base has nearly doubled
between Hibernate 3.0 and Hibernate 3.6. As a consequence the amount of memory
for the materialization has also doubled.
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Incremental Runtime for Code Changes

As a change set we replayed changes in the minor versions of Hibernate 3.6, that is
the version 3.6.6 was replayed to version 3.6.10. Hibernate 3.6 was chosen, since
it provides the highest workload for the incrementalization for both code size as
well as size of the slices that define the architecture of this version and must be
maintained w.r.t. the code changes. The replay is very coarse grained, since we
just unpacked the release jar of version 3.6.10, computed changes in compiled files
and grouped them by compilation time. The latter provides a small amount of
granularity, yet is not comparable to the granularity at which developers changed
the code. Nevertheless, this treatment allows us to measure the incremental runtime
w.r.t. different workloads.

The incremental changes are characterized in detail in Table 7.4. The table
follows the general layout discussed in the last chapter (cf. Sec. 6.2.2), hence we
will not repeat all details. The table numbers each event in the sequence of changes
by a value x that is later used as the x-axis for the measured runtime values. Details
of size of the changes at the class and method scope are provided in the 3rd − 6th

and 7th − 10th respectively. The table omits a detailed ratio for the size of the class
scope vs. the size of the method scope, since these are 100% in all cases except
x = 3 - x = 6. In these four cases the ratio is around 20%.

Compared to the recorded developer changes of the last chapter, the events
consider on average a larger amount of classes and methods. In addition, we find
several events that only add new classes (e.g., x = 7 - x = 13). Furthermore,
the cases of x = 4 - x = 6 are events that change a large amount of classes and
must rather be seen as major rebuilds than as incremental changes by developers.
Nevertheless, the events are fine-grained enough to obtain a a good measure of
the work performed for incremental maintenance, although in the light of the data
presented in the last chapter they can not be seen as representative of working with
Vespucci in an IDE.

Incremental Runtime for Specification Changes

To measure the effectiveness of the incremental maintenance w.r.t. changes in
the architectural specification, we have replayed the adaptations made to the
architecture description between Hibernate 3.0 and Hibernate 3.6.6.

The changes replayed for this evaluation reflect two different cases of adaptations:
(i) changes in ensemble queries and (ii) changes of constraints in the slices. The
replay is performed separately for both. First, for the changes in ensemble queries
we simply updated the ensembles in Hibernate 3.0 with the final queries we use
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x ∆
class scope (◦) method scope (Î)

∆add
m ∆del

m ∆add
i ∆del

i ∆add
m ∆del

m ∆add
i ∆del

i

1 54 332 100 3550 2276 332 100 3550 2276
2 7 56 3 338 45 56 3 338 45
3 97 830 791 9631 8908 71 32 2742 1478
4 371 2763 2698 37665 37248 203 138 7448 5932
5 445 4221 4192 112441 113123 102 73 19435 18318
6 1084 7981 7662 166747 161657 578 259 51473 41341
7 37 191 0 5021 0 191 0 5021 0
8 6 47 0 1084 0 47 0 1084 0
9 45 329 0 7879 0 329 0 7879 0

10 2 27 0 270 0 27 0 270 0
11 2 24 0 239 0 24 0 239 0
12 1 9 0 845 0 9 0 845 0
13 1 7 0 742 0 7 0 742 0
14 59 316 5 13539 518 316 5 13539 518
15 50 381 0 3692 0 381 0 3692 0
16 56 516 144 10987 2522 516 144 10987 2522
17 142 752 3 11233 36 752 3 11233 36
18 59 293 0 5731 0 293 0 5731 0
19 172 952 15 19318 59 952 15 19318 59
20 37 295 0 6030 0 295 0 6030 0

Table 7.4: Overview of the change set from Hibernate 3.6.6 to 3.6.10

in Hibernate 3.6.6. This treatment does not completely reflect the way Vespucci
was used, since we adapted queries in a more fine-grained incremental manner,
yet it provides a valid measurement of the work performed when updating queries.
Second, for the constraints in the slices, we replayed every constraint change in
each slice as a single event. This treatment very much reflects how Vespucci was
used, since we typically added or removed single constraints in a single slice.

There is no need to further characterize the changes in the datasets. As we will
see in the evaluation all change events elicit a very similar runtime. This is quite
natural, since query changes (and changes in constraints) consider all current code
elements (or their dependencies). For example, if a query is slightly changed to
include a single additional class, the complete set of code elements is searched for
the class. The same is true if the query is changed to include an additional package
with many classes, yet the result set of the query is larger. Hence, some changes
propagate small updates to the results and some propagate bigger updates, yet the
propagation only amounts to a small portion of the performed work.
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7.5.2 Memory Materialization

The memory materialization in Vespucci has two distinct properties. First Vespucci
requires to materialize and maintain a large amount of data due to the fact that
it must cope with changes in the specification. In essence all code elements and
all dependencies must be materialized, even if some do not currently contribute to
ensembles and their constraints. The reason is that Vespucci allows to formulate
queries similar to ad-hoc queries in a database. For example, the user changes
the definition of an ensemble query and the system should immediately compute
the new result of the query. To make this efficient the potential elements that
can be queried are kept in memory. The same is true for dependencies, i.e., the
current specification of constraints between ensembles can cover only parts of the
dependencies, but the specification is subject to change.

The second property of Vespucci is that for efficient maintenance all dependencies
are doubly indexed, once for their source and once for their target. In short, each
dependency has a source and target code element and Vespucci needs to determine
what the source and target ensembles are and essentially raise the dependency
to the architectural level, to see whether constraints are violated. To do this the
dependencies must be joined to the ensemble elements, once on the source and
once on the target. Hence, the amount of memory used for indexing is rather large.

The memory materialized when using the SAE as an engine for Vespucci is shown
in Table 7.5. The first column lists which version of Hibernate was considered, the
2nd column lists the memory materialized by the SAE for maintaining architectural
violations in the Vespucci approach. Note, that the numbers indicate the total
amount of memory when maintaining architectural violations for all slices. However,
the largest amount of memory is consumed by the indexing discussed above and
the materialized memory is very much independent of the number of slices that are
maintained. The 3rd and 4th columns compare the materialized memory of Vespucci
against materializations of base relations in the SAE and in XSB (cf. Table 7.3).

Compared to the materialization of the base relations Vespucci requires approx.
80% of the memory and only approx. 20% of the memory materialized in the SWI
system. Here again we must stress that both compared values reflect unindexed
data and, hence, Vespucci must be considered as far superior, since it materializes
less memory with a a heavy indexing. As we can see the ratios between Vespucci
and the base relations do not differ much across the different Hibernate versions.
This is quite natural, since the code elements and the dependencies can be expected
to contribute similar fractions to the entire code base. For example, if 25% of the
instructions were dependencies in Hibernate 3.0, we can expect that the ratio in
Hibernate 3.6.6 is also around 25%.
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Hibernate Ver.
Memory (MB)

SAE SAE
Base

SAE
SWI

3.0 13.75 x0.8 x0.22

3.6.6 25.25 x0.76 x0.22

Table 7.5: Memory materialization for maintaining architectural violations

Overall the amount of materialized memory is such that we can consider the
in-memory approach of the SAE scalable for continuous architectural checking of
mid to large sized projects. In cases of larger projects, such as the JDK and the Scala
compiler – used as data in the last chapter – more memory is required. However, if
these projects do not have an overly different ratio of dependencies vs. total code
elements, the values for materialized base relations (466,8 and 92,5 MB) are valid
upper bounds for the required memory. Hence, in the case of the Scala compiler
this is well acceptable to continuously check for architectural violations. In the
case of the JDK it is still feasible, albeit ranges of 500+ MB can be considered too
much on some developer systems, since the memory is permanently blocked for the
architecture checking.

7.5.3 Incremental Runtime for Code Changes

The incremental runtime for the maintaining the violations when the code changes
is depicted in Figure 7.10. The measured times for each event (cf. Sec.7.5.1) are
plotted on a logarithmic scale y-axis that shows the time taken to compute the
incremental update in milliseconds. The x-axis shows the change events in the order
in which they appeared in our change set. For simplicity the events are numbered
from 1 to 20 and the value at x = 0 denotes the initial computation performed on
the entire code base (right after starting the IDE). For the majority of the changes
the incremental runtime is one or two orders of magnitude faster than the initial
computation. The notable exceptions are of course the events at x = 4 - x = 6 we
have already classified as major rebuilds rather then incremental changes. From
the data we can see that small changes can be computed in the course of 10-30
milliseconds. Larger changes requires times in the range of 200-500 milliseconds.
Note again that the incremental changes are very coarse grained. The change set
used in the last chapter contained many events that are comparable to x = 2 or
x = 10 to x = 13 . Thus, when using Vespucci for continuous architecture checking,
violations are highly likely to be recomputed in the course of 10-30 milliseconds for
the majority of changes developers make in their IDE.
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Figure 7.10: Incremental runtime for maintaining violations during code changes

7.5.4 Incremental Runtime for Specification Changes

In the following the incremental runtime for changes to the architectural specifica-
tion is measured by (i) replaying changes to the ensemble queries made between
Hibernate 3.0 and Hibernate 3.6.6. and (ii) replaying the changes made to the
constraints between these two Hibernate versions. In both cases we use the code
base of Hibernate 3.6.6 as the input over which the architecture is maintained. Thus,
the replay reflects the work we performed when we evolved the specification from
one version to the next, i.e., running the old specification on the new code base
and then successively adapting queries and constraints to meet new expectations
and architectural decisions not eminent in the old code base or categorizing new
dependencies as violations.

Changes to Ensemble Queries

In total we had 36 ensembles in Hibernate 3.6.6 (cf. Table 7.2), 33 old and 3 new.
Figure 7.11 depicts the time to update the query of each ensemble. Note that we
simply list all ensembles whether their query has changed or not, since all have
comparable workloads. The reason is that Vespucci is currently not smart when it
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comes to query recompilation. It basically removes the old extent of an ensemble
and then adds the new extent, without analyzing which elements are the same.
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Figure 7.11: Incremental runtime for maintaining violations during ensemble query
changes

Overall the changes can be computed in little time (40-100 milliseconds). None of
the ensembles take exceedingly more or less time. The reason being that ensembles
elements are recomputed quite fast, since the code elements (classes, methods,
fields) are materialized. Hence, the computation in general can be performed fast.
Furthermore, the number of code elements is comparatively small, i.e., Hibernate
3.6.6 has less than 25 000 elements, which means that traversing the elements to
compute the new ensemble extent is quite fast when performed in-memory.

Note that Vespucci’s current treatment of recomputing ensemble extents means
the runtime depends on the size of the project. Future versions of Vespucci should
alleviate this problem, so that large projects do not have an incremental runtime
with an order of magnitude higher than we have seen here. However, this also
means that the runtime shown in Figure 7.11 is essentially a kind of worst case
scenario and that – given a better treatment of query recompilation – Vespucci can
perform better.

Changes to Ensemble Constraints

For this evaluation we focus on the constraints changed at the highest level of the ar-
chitecture, i.e., between top-level ensembles. At this level we changed 42 constraint
in Hibernate 3.6.6; 30 were added and 12 were removed. Figure 7.12 depicts the
time required to maintain to the architectural violations for each constraint change.
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Figure 7.12: Incremental runtime for maintaining violations during ensemble con-
straint changes

Overall the changes can be computed in little time (20-100 milliseconds). The
runtime for changing individual constraints also does not differ much, which de-
serves some discussion. The overall uniformity of the runtime seen in Figure 7.12 is
essentially due to the fact that the number of dependencies between code elements
in two ensembles does not differ much across ensembles. The dependencies are
the determining factor for the computation, since – for a given constraint – all code
level dependencies between the source and target ensembles are now either allowed
or disallowed. Hence, if a constraint is changed all these dependencies between
the source and target ensemble must be re-analyzed. Thus, only source and target
ensembles with a high number of dependencies between them require more time
for the incremental maintenance.

Note that we used global constraints between top-level ensembles in the ar-
chitecture, which deserves some attention, since the above argument is between
two ensembles. While global constraints – in essence – express one-to-many (or
many-to-one) relations between ensembles, we used them together in the context of
more global constraints on the same ensemble. Thus, adding (removing) a single
global constraint to an ensemble boils down to re-analyzing dependencies between
only two ensembles. Consider for example the global constraint between Session-
Management and HQL in Figure 7.1. Due to this constraint all other ensembles
(except SessionManagement) are already disallowed to use HQL. Adding a second
global incoming constraint (e.g., from SQLDialects) means that this fact has changed
only for SQLDialects, all other ensembles are still disallowed to use HQL. Hence, the
incremental maintenance only requires re-analysis of the dependencies between
two ensembles. This was the case for all constraint changes in Figure 7.12.
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7.6 Related Work

Closely related to Vespucci are approaches that support checking the conformance
between code and architectural constraints on static dependencies [MNS95, KS03,
SJSJ05, EKKM08, TV09, AAA09, dSB12]. The key difference is that none of the
above approaches (nor other related work) offers the ability to modularize the
architecture description into arbitrary many slices. They rather require a self-
contained monolithic specification of the architecture, which does not support the
kind of black-box reasoning enabled by slices (cf. Sec. 7.3.5). In the following, we
discuss the above approaches separately; a summary of their support for the features
elaborated in Sec. 7.3 is presented in Table 7.6.

Reflexion Models (RM) [MNS95] pioneered the idea of encoding the architecture
via a declarative mapping to the source code. RM is an analytical approach that uses
the modeled system architecture to generate deviations between source code and
planned architecture, which is reviewed by the architect. The RM approach is not a
constraint system, but rather requires the specification of the complete set of valid
dependencies. Omission of dependencies is interpreted as “no dependency is al-
lowed”. Other approaches extend RM by (i) incorporating hierarchical organization
[KS03], (ii) visual integration into the Eclipse IDE [KMNL06] and (iii) extending
the process to continuously enforce compliance of structural dependencies between
a planned architecture and the source code [RLGBAB08].

Sangal et al. [SJSJ05] discuss the scalability issue of architecture descriptions
and propose a hierarchical visualization method called design structure matrices
(DSMs), which originates from the analysis of manufacturing processes. The key
advantage is the notation (matrices) that facilitates identification of architectural
layers via a predominance of dependencies in the lower triangular half of the matrix.
DSM features a very verbose constraint system. For example, exemptions on lower
level ensembles are encoded by the order in which rules are declared, e.g., by
first allowing PersistenceManagement to use SQLDialects and then disallowing the
use of ConcreteDialects. While effective, this approach requires a carefully crafted
sequences of constraints.

In previous work [EKKM08] we proposed an approach to continuous structural
dependency checking; integrated into an incremental build process. As in Vespucci,
we referred to conceptual building blocks as ensembles. However, the specification
of architectural constraints has been completely revised for Vespucci. Previously
we have defined LogEn; a first order logic DSL, that integrated query language and
constraint specification. However, the meaning of a violation, i.e., a constraint, is
defined by the end-user, which is complex in first order logic. Hence, we provided
a visual notation (VisEn), which is less complex, but focuses on documenting the
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Table 7.6: Comparison with the state of the art

architecture and hence is not a constraint system, but requires explicit modeling of
all dependencies. The focus of this work was on the efficient incrementalization
of the checking process, hence slicing architecture specifications into manageable
modular units was not supported.

Terra et al. [TV09] propose a dependency constraint language (DCL) that fa-
cilitates constructive checking of constraints on dependencies; discrimination of
dependencies by kind is also supported. DCL offers a textual DSL for specifying
constraints. DCL’s constraint system is closest to Vespucci’s, and can express the
not-allowed, expected and incoming constraints. Yet, it lacks outgoing constraints
and a scoping mechanism such as global/local constraints, which goes hand in hand
with the lack of support for slicing specifications into modular units. The language
supports no inherent hierarchical structure in the architecture.

A number of commercial tools have been documented (c.f. [dSB12]) for check-
ing dependency among modules and classes using implementation artefacts, e.g.,
Hello2Morrow Sotograph [Sot12]. However, the scope of these tools is limited;
they are only able to expose violations of “certain” architectural constraints such as
inter-module communication rules in a layered architecture. That is, they do not
provide means for expressing system constraints.

In [AAA09] the authors propose a technique for documenting a system’s archi-
tecture in source code (based on annotations) and checking conformance of code
with the intended architecture. The representation of the actual architecture in the
source code is hierarchical, however, they do not support slicing of specifications in
modular units and the modular architectural reasoning related to it.

260 7 Incrementalized and Modular Architecture Conformance Checking



Languages specialized on software constraints like SCL [HH06], LePUS3 [GNE08],
Intensional Views [MKPW06], PDL [MDVW07] and Semmle .QL [dMSV+08] can
be used to check detailed design rules e.g., related to design patterns [GHJV95].
However, they are not expressive enough for formulating architectural constraints
in a way that allows to abstract over irrelevant constraints, when reasoning about a
part of the architecture in isolation.

In [SR99] authors introduce a technique to identify modules in a program called
concept analysis. A concept refers to a set of objects that deal with the same informa-
tion. The authors observed that, in certain cases, there is an overlap among concept
partitions. The notion of slice in Vespucci could be considered as conceptually
close to the notion of concept overlapping since Vespucci supports the grouping of
ensembles that are ruled by the same design decisions. Other than that slices and
concepts are different in the way they are defined and used. Concepts emerge while
slices are explicitly modeled. Moreover, use case slices [JN04] are also related to
our notion of slices, but focus on the modularization of the scattered and tangled
implementation of use cases.

In [GBSC09] the authors discuss foundations and tool support for software ar-
chitecture evolution by means of evolution styles. Basically, an evolution style is a
common pattern how software architectures evolve. This case study complements
our work by helping to identify evolution styles w.r.t. a software’s structural archi-
tecture. The evolvability of a software that is developed in a commercial context
is also discussed by Breivold et al. [BCE08]. They propose a model that — based
on a software’s architecture — evaluates the evolvability of the software. Based on
our experience, the model also applies to open-source software, such as Hibernate.
Aoyama [Aoy02] presents several metrics to analyze software architecture evolution.
He made the general observation that discontinuous evolution emerges between
certain periods of successive continuous evolution. Our case-study confirms this
observation. We observed that some parts of Hibernate evolved continuously, while
in other parts the evolution was disruptive. Using our modular architecture confor-
mance checking approach architects can focus on continuous and disruptive slices
individually.

7.7 Discussion

In this chapter, we proposed and evaluated Vespucci, an approach to modular
architectural modeling and conformance checking. The key distinguishing feature of
Vespucci is that it enables to break down specification and checking into an arbitrary
number of models, called architectural slices, each focusing on rules that govern the
structural dependencies of subsets of architectural building blocks, while treating
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the rest of the architecture as a black box. Vespucci features an expressive constraint
system to express architectural rules and also supports hierarchical structuring of
architectural building blocks.

To evaluate our approach, we conducted an extensive study of the Hibernate
framework, which we used as a foundation for a qualitative evaluation, highlighting
the impact of Vespucci’s mechanisms on managing architectural scalability and
evolvability. We also quantified the degree to which Vespucci can (a) reduce the
number of ensembles and constraints that need to be considered at once, and (b)
facilitates architecture maintainability during system evolution. For this purpose,
we played back the evolution of Hibernate’s structure. The results confirm that
Vespucci’s is indeed effective in managing complexity and evolution of large-scale
architecture specifications. However, given that we have only done one extensive
case study so far, we need to carry out further case studies before final conclusions
on the scalability of the approach can be made. Furthermore, we quantified the
materialized memory and the incremental maintenance time required by the SAE
that was used as the engine for Vespucci. The results confirm that architecture
conformance checking can be integrated into an IDE with low memory overhead at
least for mid- to large-sized projects. The runtime for incremental maintenance is
low enough to be considered real-time in most cases.

In future work, we will explore how IDE support can help to “virtually merge”
slices into a virtual global architectural model and to automatically create “on-
demand” slices to help architects to plan a software’s evolution. Obviously, further
empirical studies are needed to better understand the benefits and limitations of
Vespucci. New studies need to be designed to asses the impact of the approach on
architect’s productivity and on software quality. In this respect it would be interesting
to study the effect of modularization w.r.t. enlarged control, i.e., the modularization
allows to efficiently maintain an architecture containing more ensembles, which
provides tighter control over the source code.
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8 Conclusions and Future Directions

This chapter presents the conclusions drawn from our work (Sec. 8.1) and discusses
possible future directions for the work (Sec.8.2).

8.1 Conclusions

This thesis has proposed and evaluated an approach for automatic incremental-
ization of declaratively specified static analyses. The distinguishing feature of our
approach is that only a minimum of main-memory is materialized, i.e., permanently
blocked by the intermediate results of the incremental computation, which is an
important property for a real-world integration into an IDE. Furthermore, the in-
cremental computation is designed to be fast enough to be considered real-time,
i.e., changes in results can be computed in a manner of a few tens of milliseconds.
The static analyses are formulated in an SQL-style EDSL that is translated to the
general formalism of relation algebra with extensions for nested collections and
recursion. The EDSL allows to phrase the analysis with a full dataset in mind and
incrementalization as well as optimizations to reduce the blocked memory are per-
formed automatically. A key technique that enables declarative specifications to be
memory efficient are incremental scopes, which enable the analyses to use transient
memory for computations over data that is always changed together, hence, only
small amounts of memory are permanently blocked. The static analyses and the
accompanying incrementalizations and optimizations are formulated on top of a
general purpose database-like system that can be reused in other context than in
static analyses.

To evaluate our approach we conducted several case studies with static analyses
that fall under different categories w.r.t. the characteristics of the analyses, i.e.,
computational complexity of the queries and materialized memory requirements.
Bug finders, code smell detectors and metrics utilize simple heuristics and use
structural queries or evaluate simple instruction sequences, without considering
control and data flow. More concise bug finders utilize data flow analyses to
detect malicious code. Architecture compliance checking requires a mapping from
code to architectural units (ensembles) and a global correlation of all source code
dependencies.

We have shown that there exists a wide range of static analyses where materialized
memory in our approach stays well below the memory required to materialize the
data of the entire program. More importantly the materialized memory in our
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approach included indexing data and, yet, materialization was still well below the
materialization of the entire program. We have compared the approach to memory
required in a deductive database and shown that in our approach memory stays
within boundaries of 5% - 10% of the memory used by the deductive database (which
was again unindexed). The exception were the architecture analysis, which still
required only 20% - 25% of the memory required for an un-indexed materialization
in the deductive database.

We have compared the non-incremental runtime (i.e., the initial computation prior
to incrementalization) to a reference implementation. The majority of the analyses
required comparable runtimes. The computationally more complex analyses are
up to three times slower for computing the initial results of the incrementalization,
which, however, quickly pays of (i.e., after three runs). The incremental runtime
was in general fast enough to be considered real-time, i.e., developers are informed
of changes in the results with out a perceived delay. The majority of changes was
computed in less than 10 milliseconds and required only 20-30 milliseconds for
larger changes. Larger changes in our case means changes that we removed and
added 20-30 methods with a total of approx. 2 000 - 3 000 removed (and the same
amount of added) instructions.

Finally, the incremental scoping mechanism provided significant improvements
for the materialized memory. For the bug finders, code smell detectors we have
shown that the reduction can be over 50% of the materialized memory. In our
evaluation we have compared two scopes. The class scope offered the largest op-
portunities for saving memory at the cost of runtime, whereas the method scope
could not optimized some queries, yet, has a better runtime. For these two scopes
we have shown that the increase in runtime for the class scope still allows majority
of incremental changes to be computed within a time frame of 10 milliseconds.
Interestingly the method scope is a strict requirement for a purely declarative for-
mulation of an efficient incremental in-memory computation of data flows. Without
the method scope large real-world programs are not fit to to be indexed for an
in-memory computation and, hence, either require larger runtime, or must be
formulated non-declaratively.

Overall our results confirm that the in-memory approach for an incremental
computation is feasible and produces results in real-time for a large variety of
static analyses queries. We have included the JDK as a large code base and shown
that the absolute values for materialized memory are within a bound of less than
100 megabyte for the sampled analyses. In terms of memory this yields a much
better scalability compared to the overall requirements of deductive databases.
Nevertheless, the feasibility is naturally tied to the program size and the performed
analyses. With respect to the latter, the architecture analyses can be considered as
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one worst-case scenario for memory, since the analysis performs a global correlation
of all dependencies. Dependencies are a large factor for non-localized data that can
not be correlated within a class or method scope. In this respect we would require
absolute values of up to 500 megabyte for large projects, which is still feasible given
todays computers, yet comes into serious memory ranges that should not be blocked
permanently. We discuss possible future extensions to overcome this problem and
enable even more memory extensive analyses in the next section.

8.2 Future Directions

An immediate next step for the proposed language-integrated database is to provide
tighter integration into the host programming language. As discussed in Sec. 4.3,
tighter integration provides further automation for the query optimizer, which is
currently not fully automated. While our current implementation was feasible
enough to formulate the sampled static analyses, the integration is also the next step
for automatically optimize multiple queries with common sub-expressions, of which
we found a relevant portion in our sampled analyses to make such an optimization
worthwhile.

In connection to a tighter integration into the host programming language it
would be feasible to analyze imperative computations formulated in the host lan-
guage and deduce incremental equivalents. As discussed in Section 4.3.5 such
an analysis can be employed to integrate object-oriented data representations and
rewrite them to a more relational style. This relational representation has the benefit
that objects, which do not contribute to a query’s results, yet are referenced by
other materialized objects, are not permanently kept in-memory. Furthermore, the
deduction of incremental equivalent computations can also be used to provide a
front-end for query writing that does not use the declarative SQL-style. Yet, in our
experience the declarative style has many benefits, e.g., conciseness of the queries.
Nevertheless, derivations from imperative code can be used to incrementalize legacy
code that was not formulated in our framework.

We will further explore the application of our approach to a larger set of static
analyses. This includes more precise intra-procedural analyses as well as inter-
procedural analyses. With respect to the latter we briefly considered the call
graph construction in Chapter 6, which is an initial step for inter-procedural data
flows. Yet, we will sample real inter-procedural data flow analyses, e.g., from the
security domain, to measure the effectiveness for these analyses. We can expect a
larger amount of consumed memory for these analyses, since inter-procedural data
flow is typically based on the notion of analyzing methods w.r.t. different calling
contexts. That is for each caller of a method the called method can use more detailed
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knowledge about concrete types of parameters etc. The number of contexts can
become quite large, and such analyses – in general – require much memory for these
contexts.

An interesting observation of the currently sampled analyses is that the vast
majority of memory is required for indexing, even though we used filtered indices.
Thus, an interesting extension of our approach is the persistence of the filtered
indices. Persistence can easily be achieved by key-value stores such as Berkley DB1.
Key-value stores can offer persistence without transactionality, hence, providing
only a low overhead. The persistence will benefit from the fact that only a minimal
necessary minimum of data is persisted, just as we currently materialize in-memory
only a minimal amount of data. The extension enables analyses over even larger
code bases and makes more complex analyses such as inter-procedural analyses
feasible for real-world integration in an IDE. However, this extension requires careful
analysis w.r.t. impeding the incremental runtime.

Finally, it will be of great interest to explore further applications of the database
in contexts other than static analyses. Today many tools are integrated into IDEs that
can benefit from incrementalizations, for example model-driven tools or language
workbenches for external DSLs have similar qualities as static analyses over code.
In fact, our application of the database to the Vespucci tool was already one such
application. In this scenario we did not only use the database for incrementaliza-
tion of code changes, but also for incrementalization of the specification, i.e., the
architectural model. Yet, there are certainly other tools and approaches that can
benefit from an automated incrementalization and will be easier to write using a
declarative query language.

1 http://www.oracle.com/technetwork/products/berkeleydb
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Appendix

A Original Findbugs Analyses Identifiers

The following tables list the original identifiers of the static analyses that were sam-
pled from the Findbugs tool and presented in Chapter 6. Table A.1 lists the manually
selected lightweight analyses, Table A.2 lists the randomly sampled lightweight
analyses. And finally Table A.3 lists the dataflow analyses.

Id Findbugs Id

CI CI_CONFUSED_INHERITANCE

CN1 CN_IDIOM

CN2 CN_IDIOM_NO_SUPER_CALL

CN3 CN_IMPLEMENTS_CLONE_BUT_NOT_CLONEABLE

CO1 CO_ABSTRACT_SELF

CO2 CO_SELF_NO_OBJECT

DM1 DM_GC

DM2 DM_RUN_FINALIZERS_ON_EXIT

EQ EQ_ABSTRACT_SELF

FI1 FI_PUBLIC_SHOULD_BE_PROTECTED

IMSE IMSE_DONT_CATCH_IMSE

SE1 SE_NO_SUITABLE_CONSTRUCTOR

UUF UUF_UNUSED_FIELD

Table A.1: Original identifiers of manually selected Findbugs lightweight analyses
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Id Findbugs Id

BX BX_BOXING_IMMEDIATELY_UNBOXED_TO_PERFORM_COERCION

DMI1 DMI_LONG_BITS_TO_DOUBLE_INVOKED_ON_INT

DP DP_DO_INSIDE_DO_PRIVILEGED

FI2 FI_USELESS

ITA ITA_INEFFICIENT_TO_ARRAY

MS1 MS_PKGPROTECT

MS2 MS_SHOULD_BE_FINAL

SE2 SE_BAD_FIELD_INNER_CLASS

SIC SIC_INNER_SHOULD_BE_STATIC_ANON

SW SW_SWING_METHODS_INVOKED_IN_SWING_THREAD

UG UG_SYNC_SET_UNSYNC_GET

UR UR_UNINIT_READ_CALLED_FROM_SUPER_CONSTRUCTOR

Table A.2: Original identifiers of randomly selected Findbugs lightweight analyses

Id Findbugs Id

DL DL_SYNCHRONIZATION

DMI2 DMI_INVOKING_TOSTRING_ON_ARRAY

RC RC_REF_COMPARISON

RV RV_RETURN_VALUE_IGNORED

SA1 SA_FIELD_SELF_COMPARISON

SA2 SA_LOCAL_SELF_ASSIGNMENT

SQL SQL_BAD_PREPARED_STATEMENT_ACCESS

Table A.3: Original identifiers of selected Findbugs dataflow analyses

288 Appendix


	Introduction
	Contributions of this Thesis
	Self-maintainable Views for Memory Efficient Static Analyses
	An Event-Driven In-Memory Database for Incremental View Maintenance
	Extension of Self-Maintainable Views
	Case Studies of Incrementally Maintained Static Analyses
	Modular Definition and Checking of Source Code Against Architecturally Intended Dependencies
	Publications

	Organization of This Thesis

	Background
	Static Analyses
	Database Systems
	Deductive Database Systems and Logic Languages
	Main Memory Databases
	Active and Real-Time Database Systems
	Object-Oriented Database Systems

	Incremental View Maintenance
	Design Space of Incremental View Maintenance
	Incremental View Maintenance Techniques


	Language-Integrated Database with Incremental View Maintenance
	Data Definition
	Object Properties
	Database Instances
	Object Identity and Object Equality
	Subtyping and Querying

	Data Manipulation
	Definition of Relational Operators Using Functions as Parameters
	Notation and Background
	Basic Operators
	Set-Theoretic Operators
	Advanced Operators
	Derived Operators

	Incremental Maintenance of Relational Operators
	Observer Pattern Style Change Propagation
	Examples for View Maintenance
	Change-Propagation Expressions

	Discussion
	Memory Optimality of Incremental Maintenance
	Runtime Optimality of Incremental Maintenance
	Complexity of Integrating Incremental Maintenance

	Related Work

	Query Language and Query Optimization
	Query Language – IQL
	Defining Queries in IQL
	Comparison to SQL Syntax
	Static Type Safety of IQL

	Query Optimization
	Traditional Database Optimizations
	Optimization for Multiple Views
	Comparison to OO Database Optimizations
	Indexing
	Optimization Based on Increment Locality

	Discussion
	General Query Optimization
	Using an Embedded Language Instead of Plain SQL
	Using the Host Language vs. Using the Query Language
	Using the Host Language as a Query Front-End
	Object-Oriented vs. Relational Data Structures

	Related Work

	Incrementalized Static Analysis Engine
	Java Bytecode Representation and Base Relations
	Representation of Java Types
	Representation of Java Entities
	Representation of Java Code
	Base Relations

	Example Analyses on Base Relations
	Extended Representation and Derived Relations
	Example Analyses on Derived Relations
	IDE Integration

	Incrementalized Static Analyses for Software Quality Assessment
	Evaluation Procedure
	Non-incremental Runtime
	Incremental Runtime
	Memory Materialization

	Overview of Measured Datasets
	Non-Incremental Runtime and Memory Materialization
	Incremental Runtime

	Lightweight Findbugs Analyses
	Non-incremental Runtime
	Incremental Runtime
	Memory Materialization

	Metrics
	Non-Incremental Runtime
	Incremental Runtime
	Memory Materialization

	Intra-Procedural Findbugs Analyses
	Control Flow Graph
	Dataflow Analysis
	Findbugs Analyses
	Non-incremental Runtime
	Incremental Runtime
	Memory Materialization

	Discussion
	Comparing to the Incremental Runtime in a Deductive Database
	Inter-Procedural Data Flow
	Non-Incremental Runtime
	Incremental Runtime
	Materialized Memory
	Class Scope vs. Method Scope


	Incrementalized and Modular Architecture Conformance Checking
	Modularized Architecture Conformance Checking
	Architecture of Hibernate
	The Vespucci Approach
	High-level abstractions over source code
	Modeling Structural Dependencies
	Constraint Enforcement and Tooling
	On Modeling Methodology
	Scalability and Evolvability

	Evaluation of the Modularity Mechanisms
	Scalability
	Evolvability
	Threats to Validity

	Evaluation of Incremental Performance
	Overview of measured Datasets
	Memory Materialization
	Incremental Runtime for Code Changes
	Incremental Runtime for Specification Changes

	Related Work
	Discussion

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Bibliography
	Appendix
	Original Findbugs Analyses Identifiers


