Scalable Automated
Incrementalization for
Real-Time Static Analyses

Skalierbare automatische Inkrementalisierung fiir statische Analysen in
Echtzeit

Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Diplom-Informatiker Ralf Mitschke aus
GroB-Gerau, Deutschland

Mai 2014 — Darmstadt — D 17

TECHNISCHE
UNIVERSITAT
DARMSTADT

Fachbereich Informatik
Fachgebiet Softwaretechnik

1. Gutachten: Prof. Dr.-Ing. Mira Mezini
2. Gutachten: Prof. Dr.-Ing. Reiner Hahnle

Tag der Einreichung: 29. April 2013
Tag der Priifung: 26. Juni 2013

Scalable Automated Incrementalization for Real-Time Static Analyses
Skalierbare automatische Inkrementalisierung fir statische Analysen in Echtzeit

Genehmigte Dissertation von Diplom-Informatiker Ralf Mitschke aus GroB-Gerau,
Deutschland

1. Gutachten: Prof. Dr.-Ing. Mira Mezini
2. Gutachten: Prof. Dr.-Ing. Reiner Hahnle

Tag der Einreichung: 29. April 2013
Tag der Prifung: 26. Juni 2013

Darmstadt — D 17

Please cite this document as
URN: urn:nbn:de:tuda-tuprints-38155
URL: http://tuprints.ulb.tu-darmstadt.de/3815

This document is made available by tuprints,
the e-publishing service of TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

http://tuprints.ulb.tu-darmstadt.de/3815
http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de

To my Parents

Erklarung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu ha-
ben. Alle Stellen, die aus Quellen entnommen wurden, sind als solche
kenntlich gemacht. Diese Arbeit hat in gleicher oder dhnlicher Form
noch keiner Priifungsbehérde vorgelegen.

Darmstadt, den May 6, 2014

(Ralf Mitschke)

Wissenschaftlicher Werdegang

Mai 2007 - Okt. 2013

Okt. 1999 - Jan. 2007

Jun. 1998

Wissenschaftlicher Mitarbeiter
am Fachgebiet Softwaretechnik
Technische Universitdt Darmstadt

Studium der Informatik — Dipl.-Inform.
Technische Universitit Darmstadt

Allgemeine Hochschulreife
Lichtenbergschule Darmstadt

Abstract

This thesis proposes a framework for easy development of static analyses, whose
results are incrementalized to provide instantaneous feedback in an integrated
development environment (IDE).

Today, IDEs feature many tools that have static analyses as their foundation to
assess software quality and catch correctness problems. Yet, these tools often fail to
provide instantaneous feedback and are thus restricted to nightly build processes.
This precludes developers from fixing issues at their inception time, i.e., when the
problem and the developed solution are both still fresh in mind.

In order to provide instantaneous feedback, incrementalization is a well-known
technique that utilizes the fact that developers make only small changes to the
code and, hence, analysis results can be re-computed fast based on these changes.
Yet, incrementalization requires carefully crafted static analyses. Thus, a manual
approach to incrementalization is unattractive. Automated incrementalization can
alleviate these problems and allows analyses writers to formulate their analyses
as queries with the full data set in mind, without worrying over the semantics of
incremental changes.

Existing approaches to automated incrementalization utilize standard technolo-
gies, such as deductive databases, that provide declarative query languages, yet
also require to materialize the full dataset in main-memory, i.e., the memory is
permanently blocked by the data required for the analyses. Other standard tech-
nologies such as relational databases offer better scalability due to persistence, yet
require large transaction times for data. Both technologies are not a perfect match
for integrating static analyses into an IDE, since the underlying data, i.e., the code
base, is already persisted and managed by the IDE. Hence, transitioning the data
into a database is redundant work.

In this thesis a novel approach is proposed that provides a declarative query
language and automated incrementalization, yet retains in memory only a necessary
minimum of data, i.e., only the data that is required for the incrementalization.
The approach allows to declare static analyses as incrementally maintained views,
where the underlying formalism for incrementalization is the relational algebra with
extensions for object-orientation and recursion. The algebra allows to deduce which
data is the necessary minimum for incremental maintenance and indeed shows that
many views are self-maintainable, i.e., do not require to materialize memory at all.
In addition an optimization for the algebra is proposed that allows to widen the
range of self-maintainable views, based on domain knowledge of the underlying

vii

data. The optimization works similar to declaring primary keys for databases, i.e.,
the optimization is declared on the schema of the data, and defines which data is
incrementally maintained in the same scope. The scope makes all analyses (views)
that correlate only data within the boundaries of the scope self-maintainable.

The approach is implemented as an embedded domain specific language in a
general-purpose programming language. The implementation can be understood as
a database-like engine with an SQL-style query language and the execution semantics
of the relational algebra. As such the system is a general purpose database-like
query engine and can be used to incrementalize other domains than static analyses.
To evaluate the approach a large variety of static analyses were sampled from real-
world tools and formulated as incrementally maintained views in the implemented
engine.

viii Abstract

Zusammenfassung

Diese Arbeit schldgt ein neuartiges System zur einfachen Entwicklung statischer
Analysen vor, deren Ergebnismenge inkrementell neu berechnet wird, um eine unmit-
telbare Riickmeldung der Ergebnisse in einer integrierten Entwicklungsumgebung
(IDE) zu ermdglichen.

IDEs beinhalten eine Vielzahl an Werkzeugen die mit Hilfe statischer Analysen
Probleme in Hinsicht auf die Qualitdt und Korrektheit von Softwaresystemen auf-
decken. Allerdings sind diese Werkzeuge oftmals nicht imstande eine unmittelbare
Riickmeldung der Ergebnisse zu liefern. Daher ist der Einsatz dieser Werkzeuge oft
auf néichtliche Build-Prozesse beschrankt. Dies verhindert, dass Entwickler Probleme
sofort bei deren Auftreten beseitigen konnen, also zu einem Zeitpunkt, an dem
das Problem und die entwickelte Losung noch gedanklich griffbereit sind. Um eine
unmittelbare Riickmeldung zu ermoglichen, bietet sich die Technik der Inkremen-
talisierung an. Diese Technik nutzt die Tatsache, dass Entwickler meist nur kleine
Anderungen am Quelltext der Software vornehmen. Daher kénnen Analyseergebnis-
se schnell aufgrund dieser kleinen Anderungen neuberechnet werden.

Inkrementalisierung erfordert allerdings eine sorgsame Entwickelung der sta-
tischen Analysen. Daher ist die manuelle Entwicklung inkrementeller Analysen
unattraktiv. Automatisierte Inkrementalisierung hilft dieses Problem zu beseitigen
und ermoglicht es den Entwicklern solcher Analysen diese als Abfragen iiber die
Gesamtmenge der Daten zu formulieren, ohne sich Gedanken um die Semantik der
Inkrementalisierung zu machen.

Existierende Ansatze zur automatisierten Inkrementalisierung nutzen Standard-
technologien, wie deduktive Datenbanken. Diese bieten deklarative Abfragespra-
chen, benétigen aber auch grofe Mengen an Arbeitsspeicher, um die Gesamtmenge
der Daten vorzuhalten. Diese Menge an Arbeitsspeicher wird permanent durch die
Daten der Analyse belegt. Eine andere Standardtechnologie, die besser skaliert da sie
wenig Arbeitsspeicher benétigt, sind relationale Datenbanken. Diese persistieren die
Daten und nutzen nur wenig Arbeitsspeicher, um aktuelle Berechnungen durchzu-
fiihren. Allerdings benétigen relationale Datenbanken viel Zeit fiir Transaktion, die
Auftreten wenn Daten in die Datenbank {iberfiihrt werden. Die beiden Vorgestellten
Technologien sind per-se nicht sonderlich geeignet, um statische Analysen in eine
IDE zu integrieren, da die IDE bereits die Gesamtmenge der Daten vorzuhilt und
verwaltet. Eine Uberfiihrung der Daten in ein Fremdsystem ist daher ein unnétiger
Arbeitsschritt.

Der in dieser Arbeit vorgestellte Ansatz bietet eine deklarative Abfragesprache
und automatisierte Inkrementalisierung, benétigt allerdings nur das Minimum an
Arbeitsspeicher, welches fiir die Inkrementalisierung vonnéten ist. Der Ansatz ermog-
licht es statische Analysen als inkrementell gewartete Sichten zu deklarieren. Der
zugrundeliegende Formalismus zur Inkrementalisierung ist die relationale Algebra
mit Erweiterungen fiir Objektorientierung und Rekursion. Die Algebra erlaubt es
das nétige Minimum an Daten zu bestimmen und zeigt auch, dass viele Sichten
ohne das Vorhalten von Daten im Arbeitsspeicher wartbar sind. Diese Sichten wer-
den “self-maintainable” (selbstwartbar) genannt. Um Selbstwartbarkeit fiir eine
moglichst grof3e Vielzahl an Sichten zu ermdglichen, wird eine Optimierung inner-
halb der Algebra vorgeschlagen. Diese Optimierung nutzt Wissen aus der Doméne
der zugrundeliegenden Daten. Die Optimierung arbeitet in &hnlicher Weise wie
Primérschliissel in Datenbanken, d.h., die Optimierung wird mit dem Schema der
Daten spezifiziert und definiert welche Daten inkrementell in einem gemeinsamen
Bezugsrahmen gewartet werden kénnen. Dieser Bezugsrahmen ermoglicht Selbst-
wartbarkeit fiir alle Analysen (Sichten), die nur Daten innerhalb des gemeinsamen
Rahmens korrelieren.

Der Ansatz ist als doméanenspezifische Sprache in eine universelle Programmier-
sprache eingebettet. Die Implementierung kann als datenbank-dhnliches System
aufgefasst werden, welches eine SQL-dhnliche Abfragesprache mit der Ausfithrungs-
semantik der relationalen Algebra besitzt. Das System als solches ist universell
einsetzbar und nicht auf die Doméne der statischen Analysen beschrénkt. Um den
Ansatz zu evaluieren wurde eine Vielzahl unterschiedlicher statischer Analysen,
aus bestehenden Werkzeugen, mithilfe unseres Systems als inkrementell gewartete
Sichten nachimplementiert.

X Zusammenfassung

Contents

1.1

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5

1.1.6
1.2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2

3.1

3.1.1
3.1.2
3.1.3
3.1.4
3.2

3.3

3.3.1
3.3.2
3.3.3

Introduction 1
Contributions of this Thesis 6
Self-maintainable Views for Memory Efficient Static Analyses 7
An Event-Driven In-Memory Database for Incremental View Maintenance 8
Extension of Self-Maintainable Views 9
Case Studies of Incrementally Maintained Static Analyses 10
Modular Definition and Checking of Source Code Against Architecturally

Intended Dependenciesttt 14
Publications 14
Organization of This Thesis 15
Background 17
Static Analyses 17
Database Systems i e 19
Deductive Database Systems and Logic Languages 20
Main Memory Databases 21
Active and Real-Time Database Systems 22
Object-Oriented Database Systems 23
Incremental View Maintenance 29
Design Space of Incremental View Maintenance 32
Incremental View Maintenance Techniques 40

Language-Integrated Database with Incremental View Mainte-

nance 49
Data Definition 52
Object Properties . . . v v v v v v vt et e e e e e e 53
Database INStances oo v ittt e 54
Object Identity and Object Equality 56
Subtyping and Querying oL 57
Data Manipulation e 59
Definition of Relational Operators Using Functions as Parameters 60
Notation and Background 61
Basic OPerators . . . v v v v v v et e e e e e e e e e e 63
Set-Theoretic Operators v v v vttt 64

xi

3.3.4 Advanced OPerators ov v v v i ittt 67
3.3.5 Derived OPeratorso v v v i ittt 76
3.4 Incremental Maintenance of Relational Operators 77
3.4.1 Observer Pattern Style Change Propagation. 77
3.4.2 Examples for View Maintenance 80
3.4.3 Change-Propagation EXpressions 85
3.5 DISCUSSION vttt e 108
3.5.1 Memory Optimality of Incremental Maintenance 108
3.5.2 Runtime Optimality of Incremental Maintenance 109
3.5.3 Complexity of Integrating Incremental Maintenance 109
3.6 RelatedWork 110
4 Query Language and Query Optimization 115
4.1 QueryLanguage—IQL. 115
4.1.1 Defining Queries inIQL ittt 116
4.1.2 Comparison to SQL Syntax« v v v vttt e 124
4.1.3 Static Type Safety of IQL ot 126
4.2 Query Optimization 132
4.2.1 Traditional Database Optimizations 133
4.2.2 Optimization for Multiple Views 137
4.2.3 Comparison to OO Database Optimizations 139
4.2.4 Indexingttt e e e e e 141
4.2.5 Optimization Based on Increment Locality 142
4.3 DIiSCUSSION v vttt e e 147
4.3.1 General Query Optimization 147
4.3.2 Using an Embedded Language Instead of Plain SQL 148
4.3.3 Using the Host Language vs. Using the Query Language 148
4.3.4 Using the Host Language as a Query Front-End 151
4.3.5 Object-Oriented vs. Relational Data Structures. 153
4.4 RelatedWork 156
5 Incrementalized Static Analysis Engine 161
5.1 Java Bytecode Representation and Base Relations 161
5.1.1 Representation of Java Typeso v v, 162
5.1.2 Representation of Java Entities 164
5.1.3 Representationof JavaCode 167
5.1.4 Base Relations oo vttt 169
5.2 Example Analyses on Base Relations 170
5.3 Extended Representation and Derived Relations 171
5.4 Example Analyses on Derived Relations 177
Xii Contents

5.5

6.1

6.1.1
6.1.2
6.1.3
6.2

6.2.1
6.2.2
6.3

6.3.1
6.3.2
6.3.3
6.4

6.4.1
6.4.2
6.4.3
6.5

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.6

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6

7

7.1
7.2
7.3
7.3.1
7.3.2
7.3.3

IDE Integration ittt e 180

Incrementalized Static Analyses for Software Quality Assessment 185

Evaluation Procedure 186
Non-incremental Runtime 187
Incremental Runtime e 189
Memory Materialization 190
Overview of Measured Datasets 191
Non-Incremental Runtime and Memory Materialization 192
Incremental Runtimettt 192
Lightweight Findbugs Analyses 196
Non-incremental Runtime 197
Incremental Runtime 202
Memory Materializationttt 203
MELIiCS . . . o v e e 207
Non-Incremental Runtime 208
Incremental Runtime o 209
Memory Materialization 210
Intra-Procedural Findbugs Analyses 211
Control Flow Graph 211
Dataflow Analysisttt 213
Findbugs Analyses 217
Non-incremental Runtime 217
Incremental Runtime 218
Memory Materialization 219
DiSCUSSION . . . v v v it e e e e e e 222
Comparing to the Incremental Runtime in a Deductive Database 222
Inter-Procedural DataFlow. 223
Non-Incremental Runtime 223
Incremental Runtime 224
Materialized Memory 224
Class Scope vs. Method Scopeot iiiniiie 225
Incrementalized and Modular Architecture Conformance Checking 227
Modularized Architecture Conformance Checking 228
Architecture of Hibernate 230
The Vespucci Approach 232
High-level abstractions over sourcecode 232
Modeling Structural Dependencies 234
Constraint Enforcement and Tooling 239

Contents Xiii

7.3.4 On Modeling Methodology 240
7.3.5 Scalability and Evolvability 242
7.4 Evaluation of the Modularity Mechanisms 244
7.4.1 Scalability 245
7.4.2 Evolvability 248
7.4.3 Threatsto Validity 249
7.5 Evaluation of Incremental Performance 250
7.5.1 Overview of measured Datasets, 251
7.5.2 Memory Materialization, 254
7.5.3 Incremental Runtime for Code Changes 255
7.5.4 Incremental Runtime for Specification Changes 256
7.6 RelatedWork 259
7.7 DISCUSSION v v ittt e e e e e 261
8 Conclusions and Future Directions 263
8.1 Conclusionst e 263
8.2 FutureDirections e 265
Bibliography 267
Appendix 287
A Original Findbugs Analyses Identifiers 287
Xiv Contents

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Base relations in a university administration database 30
Materialized view of TenuredLecturers 31
Example of an incrementally maintained materialized view 51
Data definition for a student registration database 52
Example of an incremental update to object properties 53
Example of a database instance for the student registration database .. 55
Definition of a student registration database 56
Extension of the database definition via inheritance 58
Providing object instances of subtypesasaview 58
Excerpt of the Scala trait for base extents 60
Additional student stored inrelationB 65
Example of an extent (Eg,q4.s) With unnested student grades 67
Example for a fixpointrecursion 69
Substitution of Recursive Operators oo vt .. 73
Observer trait used during change propagation 78
Excerpt of the trait Observable 78
Excerpt of the Scala class for projections 79
Excerpt of the Scala class for Cartesian product. 80
Result of view; fordatainFig.3.4a 81
Operator tree for view; v v v v vt e e 81
Data flow for propagating an addition from the base relation to view; . . 82
Operator tree forview, o e 83
Data flow for propagating additions from the base relations to view, .. 84
Deriving transitive closure paths after adding anedge 99
Deletinganedgeinan SCC, 102
IQL query for selection of last names of a filtered set of students 116
Expanded IQL query from Figure 4.1 with “dot” syntax 117
Shortened IQL query using function symbols 118

IQL query of an SQL-style SELECT clause for multiple selected properties 118
IQL query for joining students with same name and different grade average118
IQL query for selection of a filtered set of students registered for a course120
IQL query for unnesting the list of grades from students 120
IQL query for selecting the lowest grade of students by semester 121

XV

4.9 IQL query for the transitive closure over all prerequisite courses 122
4.10 IQL query for a recursive traversal over prerequisite courses 123
4.11 Example query that explicitly names a columnin SQL 124
4.12 IQL query for a projection that constructs a new object 125
4.13 Example query that explicitly names tablesin SQL. 125
4.14 IQL query using predicates on multiple relations 126
4.15 Excerpt of the type safe select and from clauses for a single relation . . . 128
4.16 Excerpt of the type safe declaration of predicates for multiple relations . 129
4.17 Excerpt of the type safe declaration of conditions 131
4.18 Excerpt of the type safe declaration of nested sub queries 132
4.19 Pushing selectionsoverjoins 135
4.20 Comparison of base operator tree to a tree with a shared subquery ... 138
4.21 Algebraic equivalent of an OO path expression 140
4.22 Data definition for course descriptions 144
4.23 IQL query for lecturers together with all books they wrote and use in
theirown course 144
4.24 Using a function of the host language 149
4.25 Declarative formulation of Figure 4.24 150
4.26 A non-incremental computation of the grade average 152
4.27 Modifications that require non-modular computation (in the transitive
closure) e 155
5.1 Representation of the Java typesystem 163
5.2 Flyweight pattern for creation of ObjectTypes 163
5.3 Representation of Java class declarations 165
5.4 Representation of Java method declarations. 165
5.5 Interface for Java bytecode Instructions 167
5.6 Concrete Representation for Java bytecode Instructions 167
5.7 Representation of a method’s instruction array 168
5.8 Representation of a method’scodeblock 169
5.9 Base relations for staticanalyses, 170
5.10 SAE query for protected field declarations in final classes 171
5.11 SAE query for publicly declared finalizer method 172
5.12 Representation of the inheritance relation 173
5.13 Relational views of subclassing and interface inheritance 173
5.14 View of the transitive closure over the inheritance hierarchy. 174
5.15 Relational representation of an instruction 175
5.16 Relational view on instructions 176
5.17 Selected relational views for specific instructions 177
5.18 SAE query for clone defined in non-cloneable class 178
XVi List of Figures

5.19
5.20
5.21
5.22

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

7.10
7.11

7.12

SAE query for primitives that are boxed and unboxed for coercion 180

High-Level overview of the SAE IDE integration 181
Deconstruction of the query for clone defined in non-cloneable class . . 182
API for providing data of analyzed code 184
BAT query for protected field declarations in final classes. 188
Incremental runtime of lightweight analyses 202
Incremental runtime of metrics. o o oo 210
Example of a control flow graph 212
Excerpt of the control flow graph computation 213
Excerpt of computing instruction effects on the state 214
Fixpoint recursion of the Dataflow. 216
Incremental runtime of intra-procedural dataflow analyses 220
Dependency rule for Hibernate Query Language 234
Usersof SQLDialects v v ittt e e 235
Constraints on the Connection Provider 236
Supporting multiple SQL Dialects 237
Restricting connection provider creation to a factory 238
(Sub-)Ensembles of SQL Dialects 238
Alternative architectural models of dependencies 240
Comparison of ensemble reduction w.r.t. hierarchies and architectural

slices (Hibernate 1.0) o it i it it e e e e e e 246
Comparison of constraint reduction w.r.t. hierarchies and architectural

slices (Hibernate 1.0) o i i i ittt e e e e 247
Incremental runtime for maintaining violations during code changes . . 256
Incremental runtime for maintaining violations during ensemble query

changes e 257
Incremental runtime for maintaining violations during ensemble con-

straintchanges. 258

List of Figures Xvii

List of Tables

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

7.1
7.2
7.3
7.4
7.5
7.6

Al
A2
A3

Conditions for substituting an operator by a local version 146
Overview of the benchmarked dataset 192
Initial data of the incrementally analyzed project 193
Overview of the changeset 194
Overview of the change set (cont.) 195

Description and characterization of manually selected Findbugs analyses 198
Description and characterization of randomly selected Findbugs analyses 199
Non-incremental runtime comparison of manually selected Findbugs

analyses e e 200
Non-incremental runtime of comparison of randomly selected Findbugs

ANALYSES . . v i e 201
Self-maintainable and optimizable queries (manually selected) 204
Self-maintainable and optimizable queries (randomly selected) 204
Mat. memory of lightweight analyses with and w/o0 @LocalIncrement . 206
@LocalIncrement optimizationbyquery. 206
Description and classification of selected metrics 208
Non-incremental runtime comparison of metrics 209
Mat. memory of metrics with and w/o0 @LocalIncrement 211
Description and classification of dataflow Findbugs analyses 218
Non-incremental runtime comparison of intra-procedural dataflow analyses219
Mat. memory of data flow analyses with and w/o @LocalIncrement .. 221
Overview of Hibernate 1.0 231
Analysis of the evolution of Hibernate’s architecture 249
Overview of the benchmarked dataset 251
Overview of the change set from Hibernate 3.6.6 t0 3.6.10 253
Memory materialization for maintaining architectural violations 255
Comparison with the state of theart 260

Original identifiers of manually selected Findbugs lightweight analyses . 287
Original identifiers of randomly selected Findbugs lightweight analyses . 288
Original identifiers of selected Findbugs dataflow analyses. 288

Xix

1 Introduction

Static analyses are the foundation of many tools that enhance integrated develop-
ment environments (IDEs) to catch software quality and correctness problems. Yet,
they often fail to provide instantaneous feedback, making them unattractive for
daily use by developers. Thus, many tools are restricted to nightly build processes
and developers can not fix issues at their inception time, i.e., when the developed
solution is still fresh in mind. Instantaneous feedback requires carefully crafted
static analyses and is impeded by large amounts of analyzed data as well as the
complexity of the analyses. This thesis proposes a framework for easy development
of static analyses that are fit for daily use in an IDE.

The term static analysis refers to the processes of verifying (semantic) properties
of a program based only on the knowledge of the source code (or compiled pro-
gram), i.e., without executing the program. Traditionally, static analyses are found
in compilers [AU77] and are concerned with optimizations for the compiled code,
but also with error-checking using static type systems. Today the field of software
engineering features a large variety of approaches that incorporate static analyses
for defect assessment, including, but not limited to, detecting faults in languages
with pointers and dynamic storage [DRS98], finding common bugs [HP04], check-
ing style rules or coding conventions [Joh78], checking API usage rules [BR02],
detecting architectural erosion [MNS95], or deriving (object-oriented) metrics for
complexity [CK94].

Static analyses have been found to be good indicators for fault-proneness of
software systems [NBO5], i.e., for the probability of the occurrence of faults in
the software [ZWN'06]. Key findings are that static analysis defect density can
be used as early indicators of pre-release defect density (i.e., estimates of system
reliability) at statistically significant levels and can be used to discriminate between
components of high and low quality.

Instantaneous feedback is a factor for increasing productivity in the software
engineering process. Studies in industrial software practice find that faults are
more costly to remove the later they are identified in the development process
[BBO1, BLSO2]. In addition they find that (depending on the process maturity) up
to 40 to 50 percent of effort in software projects can be spent on avoidable work, such
as developers re-examining the relevant code and/or re-running expensive test cycles
[SBB*02]. Many software faults can be fixed at a lower cost or avoided altogether if
detected earlier. Hence, instantaneous feedback can significantly improve software
development productivity.

In an effort to move error detection into the earliest stages of the development
process, many commercial and open-source static analyses tools provide feedback to
developers inside the IDE, e.g., Checkstyle [Che13], FindBugs [Fin13], Hammurapi
[Ham13], PMD [PMD13], and SemmleCode [Sem13]. Similar, many academic
approaches feature an IDE integration [FLLT02, HP04, YTBO5, GYF06] or discuss
integration as ongoing effort (e.g., [NBO5, AHM'08]). To achieve the best developer
productivity, these tools should provide instantaneous feedback in real-time in the
sense of “perceived without delay”. Current IDE compilers typically provide feedback
in real-time. Yet static analyses tools, in general, are not en-par with the real-time
feedback an IDE compiler provides.

To achieve real-time feedback in the presence of large code bases, tools must
use an incremental (re-)computation strategy of analysis results. An incremental
computation utilizes the principle of inertia [GM99a], i.e., small changes in the
input have only small impacts on the output. Thus, an incrementalized compu-
tation can deduce changes in the results very fast (for small input changes), in
comparison to a re-computation over the full code base. Static analyses in an IDE
favor incrementalization, since developers usually follow a manual edit-compile(-
run/test) cycle that changes only small portions of the analyzed code base. Previous
works on incremental program analysis have reported considerable performance
improvements. A large amount of work has been done in the field of data flow
analyses; a comparison is provided in [BR90]. To a smaller extent work has been
performed in providing incrementalized pointer aliasing analyses [YRL99, VRO1].
However, all the above works are manually written incrementalizations with special-
ized algorithms and data structures for incremental maintenance of the targeted
problem. Manual incrementalization can be an acceptable approach for standard
analyses. However, tools such as FindBugs or PMD feature many static analyses, e.g.,
Findbugs detects over 400 “bug patterns”, and incrementalizing them all manually
is a very time consuming and error prone process. Hence, an approach that provides
automated incrementalization has considerable benefits when writing analyses,
especially analyses that are specific to particular domains or frameworks.

The main benefit of automated incrementalization — not only for domain specific
analyses — is a reduction in the complexity of developing the analyses. The developer
only has to provide data structures and algorithms written with the full data set
in mind. Hence, there is no need to manually design data structures that contain
intermediate results of the previous computation. Intermediate results become a
problem quite quickly. For example, an analysis that reasons over subtyping in an
object-oriented program must maintain a data structure for the inheritance hierarchy
or an analysis for inter-procedural data flow must maintain a data structure for
the call graph, i.e., the calls between procedures where an edge represents a call

2 1 Introduction

and a node represents a procedure. Such data structures must be kept up-to-date
which adds additional complexity and is error prone, since there incrementalization
can require a specific order of updates for correctness, i.e., some intermediate
results may depend on others. This problem becomes larger still, when using
multiple incrementalized analyses that also depend on one another. For example
if many static analyses require the inheritance hierarchy, the latter should only be
computed once and then all dependent analyses should re-use the results. In a
manual incrementalization approach such dependencies must be captured by some
form of scheduling that runs each analysis at the right point in time, i.e., when
all prerequisite analyses or intermediate results have concluded. An automated
solution can alleviate the burden of scheduling from the analysis developers.

There are two distinct approaches to automated incrementalization, which have
different qualities. The first utilizes a declarative specification (or query) of the
static analysis, which can then automatically be executed with an incremental
semantics instead of a full computation of the query (e.g., [EKST07]). The second
is a rewriting technique that takes as input an imperative non-incremental program
and tries to find an equivalent incremental program, which is also known under
the term dynamic programming ([LT94]). In the following the term automated
incrementalization is used to denote the first approach. The main benefit of the
declarative specifications is that the primitives in a query have a distinct non-
incremental semantics, which can automatically be translated to an equivalent
incremental semantics. In contrast, the dynamic programming approach must find
incremental semantics for arbitrary imperative programs. An additional benefit of
the declarative specification is the easy applicability of query optimizations.

A first step towards automated incrementalization of static analyses was done
in [SRO5a] and [EKS'07] on the basis of using incremental tabled logic programs
[SRO3]. The programs operate on a logic representation of the source code and
analyses are defined as predicates over this representation. The authors of [SR05a]
describe an implementation of incrementalized pointer aliasing analyses, while the
authors of [EKST07] consider a broader range of incrementalized analyses. Note
that logic programs are considered a valuable technique for declarative specification
of static analyses in their own rights, i.e., apart from incrementalization [DRW96].

Logic language implementations (e.g., XSB!) have been noted for lacking scala-
bility to larger code bases by Hajiyev et al. [HVdMO06], since they require the logic
representation of the source code to be completely in main memory. Large in this
context means “> 10000” classes to be analyzed, which for example applies to the
standard Java class library (JDK) or the code base of the Eclipse IDEZ2, but also

http://xsb.sourceforge.net/

2 http://www.eclipse.org

to smaller projects that are analyzed together with required libraries. For such
code bases a large amount of main memory is required simply for the base logic
representation, e.g., over 1 gigabyte for the JDK. Even more memory is required
to run the analysis, e.g., a machine with 4GB main memory was required for an
analyses on the Eclipse code base in [HVdMO06] and they considered only a subset
of the whole program (concretely the parts that deal with dependencies). Hajiyev et
al. propose to use standard relational database management systems (RDBMS), to
overcome the scalability issue. An RDBMS can handle large representations, since
relations are persisted and only a subset of the data — relevant for evaluating the
current analysis — resides in main memory. Yet, this introduces a new bottleneck,
since an RDBMS requires considerable transaction time for storing data in the
database. Bottlenecks in transaction processing of RDBMSs have, for example, been
discussed in [SMA'07] (especially for the traditional off-the-shelf RDBMS systems,
such as Oracle, DB2, etc.). The impact for static analysis can be exemplified based
on numbers reported in [HVAMO6]. In these experiments transition of the data to
an off-the-shelf RDBMS can take several seconds for a single class. Note that in
[HVAMO6] the fastest performing RDBMS requires approx. 45 minutes (and the
slowest 1.5 hours) to store approx. 10000 classes. Thus the average transaction
time per class is already 270 milliseconds and the work in [HVdMO06] does not store
the entire code base.

In summary, standard database technologies, such as RDBMS’ or deductive
databases (i.e., logic languages), are an ill match for incrementalized static analyses
in an IDE; the RDBMS’ for their high transaction time and the deductive databases
for the high amount of memory required. In essence, there are only two properties
of these systems that we wish to keep: (i) the declarative query language, for its ease
of defining the analyses and allowing automated incrementalization and (ii) the
in-memory computation model, for its speed in computing analyses results. In par-
ticular there is no need to retain an in-memory representation of the whole program,
or move the representation of the whole program into a relational database. The
IDE manages source code files or compiled bytecode files that already contain all the
necessary information. Moving all the data into main memory — or to a relational
database — (i) duplicates the information and (ii) maintains more information than
is strictly necessary, since many changes are easily re-computed by re-analyzing the
underlying source code files.

Thesis

The goal of this thesis is to provide a comprehensive approach for automatically
incrementalized static analyses that can produce answers in real-time and overcomes
the scalability issue for main memory. The main contributions of this thesis are

4 1 Introduction

the definition and implementation of a database-like system and the definition of
static analyses as a set of composable views in the system. The views are defined
via declarative database queries and their results are incrementally maintained
in-memory. However, the system retains in-memory only the nominally necessary
information to incrementally maintain the views results.

The proposed approach defines views via relational algebra, which allows us to
derive minimal measures for the information required to maintain the views by
studying previous works. For example, the concepts of incrementally maintained
views in relational and deductive databases [GMS93] and self-maintainable rela-
tional views [BCL89, GISM96] provide a solid background. These works show that
certain views can be maintained without storing any information at all.

Addressing the problem of incremental computation via relational algebra has a
number of other advantages: (i) it bases the definition of incrementally updated
analyses on a formal basis that is suitable for optimizations; (ii) it provides a
compositional language for formulating and reusing incrementally maintained
analyses; (iii) it allows to reason about performance issues — time as well as memory
— on a “per operator” basis; and, (iv) it provides an extensible framework via the
addition of new operators.

We implemented the proposed system as an embedded domain specific language
(EDSL) inside a general purpose programming language (Scala®). The analyzed code
base is represented as relations (defined in the EDSL), which contain objects that
represent the entities in the code base, e.g., classes, methods or instructions. The
representation is directly defined via classes in the host language, hence, no external
specifications must be provided. Concretely, we implemented a representation
of Java bytecode, over which we define static analyses. However, the results
easily apply to static analyses of other programming languages and source code
representations.

Using an EDSL has many advantages: (i) source code (and Java bytecode) parsers
are written in general purpose languages and usually produce a suitable object
representation of the entities in the code base. This representation can be reused
with minimal integration, i.e., arranging them as relations in the EDSL, without
transactional overhead for transferring entities to a different system; (ii) computa-
tions on objects can be performed by functions declared in the host programming
language, hence, the EDSL retains the full expressivity and execution speed of an
object-oriented programming language; (iii) the embedding can be made type-safe
by reusing the type checking facilities provided by the host language.

3 http://www.scala-lang.org/

1.1 Contributions of this Thesis

Previous works have considered incrementally maintained static analyses for the
sake of increased runtime performance. This thesis is the first work to consider
an automated incremental maintenance approach not only for runtime aspects,
i.e., producing results in the shortest possible time, but also for the suitability
in a real developer environment, i.e., the analyses may not excessively consume
main memory in a developer’s IDE. The following list gives an overview of the
contributions of this thesis, which are then each discussed in detail in the following
sections:

* The concept of incremental maintained database views is applied to the
domain of static analyses, with the focus on self-maintainable views to allow
scalable in-memory computations.

* The approach is implemented as an event-driven in-memory database for
incremental view maintenance, which in itself is applicable beyond the scope
of static analyses.

* The traditional database concepts for incremental maintenance are extended
to enlarge the range of self-maintainable operations.

» The approach is evaluated in three different static analyses scenarios:

— Lightweight analyses, i.e., bug and code smell detection based on
heuristics; in addition object-oriented metrics are considered.

— Bug and code smell detection using control and data flow analysis.

— Architecture compliance checking between dependencies in source
code and intended dependencies defined in high level architectural
descriptions.

* The incrementalization of the architecture compliance checking approach
allows us to define a novel modular specification language for the intended
architecture. The modularity is furthered by the ability to incrementally
check affected architectural modules. Without the incrementalization a
modular approach was infeasible, since the changes required extensive re-
computations for many modules. The latter is due to the fact that architecture
compliances checking in itself is a whole program analysis, even when we
modularize the specification into digestible parts that treat the rest of the
program as a black-box.

6 1 Introduction

1.1.1 Self-maintainable Views for Memory Efficient Static Analyses

Self-maintainable views stem from traditional relational databases and build on
the observation that — for certain views — the result of a maintenance operation,
i.e., insertion/deletion of a resulting tuple, can be determined solely based on the
data contained in the input tuple. An example for a self-maintainable (domain
specific) static analyses is the detection of explicit method calls to Java’s garbage
collection facility. Such calls are, for example, marked as a performance issue in
FindBugs, since memory management can be time consuming (depending on the
implementation garbage collector). The view ranges over all instructions in the
source code, but is self-maintainable due to the fact that all relevant information
resides in an instruction tuple, i.e., whether the instruction is a call and which
method is called. Note, that w.r.t. the called method the analysis is self-maintainable,
since it simply compares the call to a fixed set of methods, e.g., System.gc().

The maintenance of the above exemplified view can be illustrated as follows.
Editing of a method triggers a deletion of outdated instruction tuples and the
insertion of new instruction tuples. Since the above view is self-maintainable, a
deleted tuple can simply be re-checked for satisfying the above declared conditions
of the view. In case of a positive match the tuple is removed from the results, where
it is guaranteed to reside, since deletion always entails that a tuple was added at
some prior point in time. Likewise, an added instruction tuple is checked and added
to the results in the case of a positive match.

The major benefit of self-maintainable views is that they do not require to retain
data of the underlying relation in memory, i.e., the data is not required to be
permanently held in memory for subsequent computations. For example, the above
view is defined over a relation containing — conceptually — all instructions in the
analyzed source code. However, the view never requires to look up data in this
relation, but merely processes added and deleted tuples. Thus, there is no need to
retain the relation over all instructions in memory.

Note, that traditionally view maintenance is used to materialize (store) the
results, which can be regarded as a form of caching for fast subsequent access.
Materialization is traditionally linked to persisting the data in the database. However,
in the course of this thesis we will use the term materialize to convey that the data
is permanently required in memory.

To fully exploit the possibilities of self-maintainable views, the concept is extended
to an event-driven approach that omits materialization of results completely and
merely passes the added or removed results to interested clients. For example, in
the case of an IDE integration the client would be a respective facility for visually
displaying source code errors (or warnings), which in most modern IDEs will feature

1.1 Contributions of this Thesis 7

its own storage of the displayed data. Hence, there is no need for the view itself
to provide storage — in terms of memory — and, thus, a self-maintainable view is
completely free of materializations.

Another benefit of using self-maintainable views is that many views, while not
being completely self-maintainable, filter out a large number of elements before
they require any data in memory. Filtering is the general principle in the above
exemplified view and is also in general self-maintainable. Hence, such views
consume only a nominally required amount of memory, i.e., of all the tuples in
the underlying relation only those relevant to the computation are materialized in
memory.

1.1.2 An Event-Driven In-Memory Database for Incremental View
Maintenance

As a technical contribution, we implemented our approach as an event-driven
database-like system. The implementation provides incrementally maintained ver-
sions of all standard relational operators, as well as extensions to deal with complex
objects that contain structured data in collections and extensions for recursion. In
addition an SQL-inspired surface syntax is provided to define views. Such as it is,
the system can be understood from two perspectives: the database perspective or
the programming language perspective.

Form the database perspective we used the term database-like, since our system
does not provide the standard services of traditional databases, e.g., transactionality
for concurrent access. Nevertheless, we will use the term database throughout
this thesis, after clarifying the distinguishing properties of the system here. To
provide maximal memory efficiency, the database is event-driven, i.e., tuples are
inserted or deleted via events and self-maintainable views only process events,
rather than looking up data in stored tables. Data is materialized, i.e., permanently
kept in memory, only when absolutely necessary for the incremental computation
of a view’s results. Due to the event-driven approach, the database is not per-se
developed for ad-hoc queries, i.e., user supplied (SQL) queries that answer specific
“one-time” questions over the relations stored in the database. Such questions
require that any data that is of potential interest to users is available at all times
in the database. Since potential interest allows no careful planning an RDBMS
system stores all data. Instead, the incrementally maintained views can be thought
of as data processors that maintain a fixed set of queries, which allows the database
to plan and optimize the materialization of data in memory. Ad-hoc queries are
still possible and even advantageous for some static analyses scenarios that need
to define queries dynamically, as will be shown in the case study on architecture

8 1 Introduction

compliance checking. Such queries must, however, be planned during the design
of the database relations, by declaring respective relations as materialized in the
database. Naturally, the planning should also include a careful assessment of the
amount of data necessary to be retained in memory. Furthermore, it is important to
note that we do not require to backup data as traditional in-memory database do.
The data that enters the database, e.g., the source (byte-) code files are already the
backup, which is persisted by the IDE.

From the language perspective the system can be understood as a rich framework
for defining computations over correlated collections, where we use relations as
collections that do not really store the data but only propagate events. Note that from
the end-user perspective the events are not visible, i.e., the SQL-like queries define
how relations (collections) are correlated, but the automated incrementalization
takes care of propagating the right events to obtain the correct results.

Regardless of the perspective, the system can be reused in other contexts than in
static analyses. However, it is tailored towards a specific scenario, i.e., one where
we have a large persisted set of data in a — possibly — domain specific format such as
Java bytecode and want to define incrementalized computations over this data. That
said; the embedded database can be helpful to incrementalize any approach that
receives a large set of structured input data and performs a deductive transformation,
i.e., a query, to structured output data. This can include traditional compilers that
transform abstract syntax trees to compiled programs.

1.1.3 Extension of Self-Maintainable Views

Based on the observation that self-maintainability is enabled when all data required
to compute a result is locally available inside the event for inserting or deleting a
tuple, the approach can be broadened to allow a greater range of self-maintainable
views. The key idea is to utilize domain specific knowledge that guarantees for all
tuples that are relevant to a given view, to be inserted or deleted together. In this
case the extension allows self-maintainability for views that correlate information
across several tuples.

To illustrate the extension consider the Eclipse IDE that features an incremental
compilation process with a granularity of entire classes. One (optional) analysis
performed by the Eclipse compiler is to check that Java classes that implement a
custom equals() method also provide a matching hashcode () method?. For the
granularity of entire classes the results can be computed without any intermediate
data structures, since the new version of the class is passed entirely to the analysis

4 The Java specification states that equal objects must have equal hash codes, which is for example

required for the correctness of using the objects in Java hash maps.

1.1 Contributions of this Thesis 9

during an incremental update. Hence, all methods of the class are inserted together
and the analysis can check whether tuples for both custom method implementations
are present.

In the context of manually incrementalized static analyses it is very natural to
perform analyses as the one exemplified above, without storing any intermediate
data. Since the manual incrementalization has knowledge about the extent of
a working unit, e.g., a class and all therein contained information, it can simply
traverse the in-memory representation of the working unit to produce results. The
argument also applies to smaller units, e.g., an intra-procedural data flow analysis
can simply traverse all instructions in a method, since they are all contained in the
same working unit.

The proposed extension can be thought of as enabling input granularity con-
siderations — found in manually incrementalized approaches — for an automated
incrementalization. In a traditional database approach such information is lost,
since all entities of a certain kind, e.g., all methods or all instructions, are flattened
into a single table to allow a unified reasoning over all said entities. For example
reasoning over all methods, regardless of the class they are contained in.

The extension is provided in a generalized manner and, hence, not only applicable
to static analyses. In short, the granularity can be convened via annotations on
classes that define objects in the database. This treatment is similar to declaring
primary keys on schema entities in a relational database. Any view that correlates
tuples based on at least one annotated property is guaranteed to receive all insertion
events or all deletions events of relevant tuples together.

The extension does not come without a cost. In essence there is a space-time
trade-off. On the one hand, not storing intermediate results saves memory, especially
for static analyses that correlate single instructions. On the other hand, updates to
the database can now only be as fine-grained as the granularity guaranteed to the
self-maintainable views. Coarser granularity means that many, possibly computation
extensive, update operations must be (re-)performed. For example, if the granularity
is at the level of classes, this means that if a single method in a class changed, all
other methods are updated as well. Theoretically, the expense can be quite high, for
example, if data flows for these methods need to be recomputed. However, there is
no empirical data on how this affects performance in a real system, which is, hence,
provided as part of this thesis.

1.1.4 Case Studies of Incrementally Maintained Static Analyses

To evaluate the approach three scenarios are considered that fall under different
categories w.r.t. the characteristics of the analyses, i.e., computational complexity

10 1 Introduction

of the queries and materialized memory requirements. For all case studies the
following points are evaluated:

Memory Materialization The overall memory consumed by permanently material-
ized data is evaluated for the queries in each case study. Furthermore, to
evaluate the proposed extension for self-maintainable views, the memory
consumption is compared with and without the extension.

Non-incremental runtime The incentive is that incrementalization does not amor-
tize when the initial computation of results is exceedingly more expensive
than a non-incremental computation. To evaluate the approach the incre-
mentalized computation is compared to an implementation of the queries in
the same language (i.e., Scala), yet using a classical traversal over the object
structure of the source code.

Incremental runtime The runtime is measured across a large set of incremental
changes that were recorded in a developer’s IDE over 12 hours of work time.
The measurement provides insight into how the approach behaves in a real-
world setting. In addition the incremental runtime is measured with our
proposed extension for self-maintainable views at the class granularity versus
a method granularity. The incentive being that memory consumption can be
decreased for the coarser granularity, yet the finer granularity — intuitively
— yields better runtime performance. However there is currently no perfor-
mance data that quantifies the degree, i.e., orders of magnitude, of the better
performance and measures whether the coarser granularity is still fit to be
considered real-time, i.e., executable within a bound of (a few) hundred
milliseconds.

Lightweight Analyses

In this category bug finders and code smell detectors utilize simple heuristics that
use structural queries or evaluate simple instruction sequences, without considering
control and data flow. Computationally these analyses are not very complex, since
they largely consists of finding a specific set of elements and computing only a few
correlations to other elements, e.g., finding classes with a custom equals method
determining that a custom hashcode method exists. Another kind of analyses in
this category are metrics, which typically perform structural queries, but have the
additional characteristic of using aggregations, e.g., counting the number of entities
with specific properties, such as incoming dependencies. Concerning memory
requirements the analyses in this category are hard to generalize, since the analyses

1.1 Contributions of this Thesis 1

elicit quite diverse behaviors. Yet, as will be shown in the course of this thesis, in
general their materialized memory requirements are quite low.

The lightweight analyses considered in the evaluation perform analyses taken
from real-world tools. A large set of analyses stem from the tool Findbugs, which is a
popular open-source bug-finding tool that analyzes Java bytecode. The metrics are
sampled from the open-source tool Metrics®, which is inspired by the object-oriented
metrics found in [HS96] and [Mar03].

Data Flow Analyses

A class of more concise bug finders utilizes data flow analyses to detect malicious
code. Data flow analyses can answer a wide variety of questions such as uninitialized
variables, reaching definitions or “live” variables (c.f. [NNH99] for a good overview
of the topic). As part of the evaluation a basic form of intra-procedural data flow
analysis is implemented, that determines the effect of instructions on an abstraction
of the variables (and the stack) in the analyzed program.

The analysis is quite complex since it requires to iterate over all instructions
inside a method to determine the static effect of instructions on an abstract repre-
sentation for the state of variables and — in the case of Java — the stack. Hence, the
inherent computational complexity stems from the fact that the instructions make
up by far the largest portion of data in Java programs. Typically, the analysis also
considers control flow, which describes all possible execution paths through a given
program. Control flow is an additional source of complexity, due to the fact that it
requires a treatment of cycles (e.g., loops) in the program. Cycles require a fixpoint
computation to evaluate all possible abstract states that can arise through repeated
application of the instructions in the cycle.

The results of the data flow analysis are used to encode several real-world bug
detectors found in the tool Findbugs, which uses a similar form of data flow analysis.
The resulting abstraction of the data flow can be quite cumbersome to use in the final
Findbugs analyses. Simpler intermediate representations have been proposed for
easier reasoning over data flows, for example, a 3-address based representation in
[VRCG'10]. However, transformation to such a representation requires an analysis
similar to the one presented in this work. Hence, the presented analysis can be
seen as a first step to evaluate the wide range of possible data flow analyses. Most
importantly, the analysis is automatically incrementalized and due to the proposed
extension also self-maintainable.

5 http://metrics.sourceforge.net/

12 1 Introduction

Architecture Conformance Checking

In this analysis architecture specifications provide high level abstractions — termed
ensembles — that group source code entities which conceptually belong together, as
well as a set of architecturally intended dependencies between such ensembles. The
structural dependencies found in the code base are then checked for compliance with
the intended dependencies, based on the membership of code entities in ensembles.

Architecture compliance checking requires a global correlation of all source code
dependencies. Such a correlation has a computational complexity comparable to the
lightweight analyses, since only a few correlations are done in terms of operators.
Yet the amount of data considered in this analysis is higher, due to the global nature
of the correlation, which has an impact on the required computation times and more
importantly also on the memory required for incremental maintenance.

Another peculiarity of this scenario is that the architecture specification itself is
treated as an interactive system, i.e., architecture specification can be modified and
are, hence, incrementalized. Thus, the database not only receives events triggered
by editing source code, but also by editing the architecture specification. This
scenario is unique, not only because two different sets of data are incrementalized,
but because the architecture specification dynamically creates and modifies views
over the source code, i.e., as ensembles.

Summary of Results

The case studies show that the materialized memory for all sampled analyses stays
below the memory required to materialize the data of the entire program. Compared
to a materialization of the entire analyzed program in a deductive database the
memory stays within boundaries of 5% - 10% with the exception of the architecture
analysis. In the latter case a heavily indexed materialization took still only 20% - 25%
of the memory required for an un-indexed materialization in the deductive database.
The non-incremental runtime is comparable to our reference implementation in the
majority cases. The computationally more complex analyses are approx. three times
slower for computing the initial results of the incrementalization, which, however,
quickly pays of (i.e., after three runs). The incremental runtime is in general fast and
the majority of changes can be computed in less than 10 milliseconds and requires
only 20-30 milliseconds for larger changes. Larger changes in our case means that
we removed and added 20-30 methods with a total of approx. 2000 - 3 000 removed
(and the same amount of added) instructions. Finally, the class granularity can
definitely be considered a good option for further memory improvement, albeit
the method granularity offered much optimization potential for a larger number of

1.1 Contributions of this Thesis 13

queries. The runtime increase is visible, yet the majority of incremental changes for
individual classes stayed within the time frame of 10 milliseconds.

1.1.5 Modular Definition and Checking of Source Code Against
Architecturally Intended Dependencies

Existing approaches in architecture conformance checking require the whole archi-
tecture and its intended dependencies to be specified in one single specification.
Based on the experience gained during a case study — performed as part of this
thesis — w.r.t. modeling the architecture of real systems (e.g., Hibernate [BK04]),
such approaches do not scale for large architectures. Scalability is an issue when
treating large systems, i.e., with many architectural elements and dependencies,
where architects want to focus on relevant parts of the system. Providing focused
views is quite challenging, even when compact notations are used, e.g., dependency
structure matrices [SJSJO5].

As part of this thesis a new approach to architecture conformance checking is
proposed, that enables architects to define intended architectural dependencies
in modular units termed slices. The incrementalization of the architecture con-
formance checking is an enabling factor for this approach and automation of the
incrementalization has the advantage of easy development. Incrementalization is
enabling such an approach, since slices are designed as independent units in terms
of described dependencies and are required to be independently checked. Modu-
larizing a non-incremental conformance check is not efficient, since architecture
analyses are whole program analyses that consider a large amount of data and,
hence, are expensive to run multiple times for each slice. Thus, an incremental
approach is far better suited to and has to compute only small updates to slices. The
automation eases the development of the analyses considerably, since it alleviates
the need for a complex implementation of the update logic.

1.1.6 Publications

The following publications were created in the context of the research performed
for this thesis:

1. R. Mitschke, A. Sewe and M. Mezini. Magic for the Masses: Safer High-level
Low-level Programming through Customizable Static Analyses. In Proceedings
of the 1st workshop on Modularity in systems software, MISS ’11, ACM, 2011

14 1 Introduction

2. R. Mitschke, M. Eichberg, M. Mezini, A. Garcia and I. Macia. Modular
Specification and Checking of Structural Dependencies. In Proceedings of the
12th International Conference on Aspect-oriented Software Development, AOSD
’13, ACM, 2013

3. P Giarrusso, K. Ostermann, M. Eichberg, R. Mitschke, T. Rendel, C. Kéistner.
Reify Your Collection Queries for Modularity and Speed! In Proceedings of the
12th International Conference on Aspect-oriented Software Development, AOSD
’13, ACM, 2013

1.2 Organization of This Thesis

The remainder of this thesis is structured into the following chapters:

Chapter 2 - Background

discusses the history and the applications of static analyses. Afterwards a general
overview of different lines of database research is given and each is discussed w.r.t.
the relationship to this thesis. Finally, the concept of incremental view maintenance
is discussed in detail. The concept of incremental view maintenance is introduced
via an illustrative example. In addition an overview of the design space for the
problem of incremental view maintenance is provided and a survey of existing
techniques and algorithms is given.

Chapter 3 - Language-Integrated Database with Incremental View Maintenance
introduces the event-driven in-memory database in detail. The chapter gives an
introduction on how data is defined and manipulated. Then the supported re-
lational operators are discussed; first w.r.t. their semantics and then w.r.t. their
incrementalization.

Chapter 4 - Query Language and Query Optimization

discusses the SQL-style query language for the database. Furthermore the chapter
introduces the optimizations to the database. First, traditional query optimizations
are shortly discussed w.r.t. their added benefit in providing memory efficient incre-
mental view maintenance. Then a novel optimization is introduced, that helps to
further reduce the amount of memory required in memory, by introducing scopes
for incremental computations. Finally, the chapter discusses issues in integrating
the query language into a general-purpose programming language.

1.2 Organization of This Thesis 15

Chapter 5 - Incrementalized Static Analysis Engine

shows how the database is utilized to obtain a Static Analysis Engine (SAE). The
respective data structures are introduced and example analyses are given that show
how concrete static analyses are formulated using the SAE. Finally, the integration
of the SAE into an IDE is discussed.

Chapters 6-7 — Case Studies

are presented to evaluate the performance of the approach w.r.t required memory
storage and runtime. Chapter 6 discusses the lightweight analyses and the data flow
analyses. Chapter 7 discusses architecture conformance checking.

Chapter 8 - Conclusions and Future Directions
concludes this thesis and discusses directions for future work to enhance the pre-
sented approach.

16 1 Introduction

2 Background

This chapter first provides an overview of existing research in terms of static analyses
and database systems. Both have been studied extensively since the 1970’s and
produced quite a large variety of related work. The presented overview is not
intended to be comprehensive, but should rather serve as an outline of the main
directions taken in these areas. Especially in the case of database systems, the
chapter provides an overview w.r.t. different research directions that are closely
related to the event-driven in.memory database presented in this thesis. Finally, the
topic of incremental view maintenance in database systems has been researched at
least since the 1980’s. Hence, an overview and classification of the design space and
a survey of incremental maintenance techniques is provided.

2.1 Static Analyses

The classical application of static analyses is found in compilers [AU77] that provide
for example error-checking using static type systems, e.g., to detect mismatches
between a procedure’s formally specified parameter and the actual parameter. In
addition compilers use data flow analyses during optimization, e.g., the live-variables
analysis [Hec77] determines a variable to be live if it holds a value that is required
in a subsequent computation; the optimizer knows that only variables alive at the
exit of a block must be written to heap memory. The majority of compiler analyses
are confined to a single procedure (intra-procedural analysis).

The traditional static analyses of compilers are conservative in order to retain
soundness, where soundness in static analysis means that it does not miss any error in
the program that can arise at runtime (cf. [Rus01]). Conservative in this sense means
that the guaranteed properties are weak (yet easy to establish) compared to more
useful properties. For example, there may be many paths through a procedure that
do not correspond to any execution. Yet a static analysis can safely (conservatively)
assume that all paths are executable [ASU86], which simplifies the problem and
allows more efficient execution of the analysis.

With the wide adoption of languages such C and C++, the context of static
analyses was broadened to diagnose faults in languages with pointers and dynamic
storage. The focus in these analyses is to detect invalid pointer references, faulty
storage allocations or usage of uninitialized memory [DRS98]. Such analyses
typically consider the whole program (inter-procedural analysis). Analyses reasoning
over pointers have to solve an aliasing problem, i.e., if any given two variables in

17

the program can point to the same location in memory. These analyses operate
on a model of the run-time state of the program and determine how the program
manipulates this state. The model in any aliasing analysis must represent all
memory locations via a finite number of objects. Since programs have many possible
executions and many possibly used memory locations, a reasonable abstraction
of all run-time states is used. In general such analyses have a trade-off between
the abstracted-away state and the precision of the analysis (more conservative
abstraction = less precise results). Due to the high number of states in a given
program, such analyses are widely accepted to be very hard [LR91]. In fact many
inter-procedural static analyses were shown to be NP hard (cf. [Mye81]).

Object-oriented languages are slightly more complex for inter-procedural analyses,
since they rely on frequent method invocations with polymorphic subtyping. In
general, a method is invoked on a variable (the receiver) and — due to subtyping
and polymorphism - the runtime type of the receiver can yield different call targets.
Since receivers are often objects passed as method parameters, the concrete runtime
type of the receiver is also dependent on the context from which the enclosing
method was called. Inter-procedural analyses can determine an approximation,
i.e., a small set of possible classes that are concrete subtypes used throughout the
execution. Such analyses have been proposed for optimizations in object-oriented
compilers [DGC95], where statically known receiver types can be used to produce a
compiled program that used fewer dynamic method dispatches. A broader class of
analyses that use type information are typestate checkers, which have been applied
to C [SY86] and also to Java [ASSS09]. Typestates can be seen as an extension
to traditional types that include a notion of the state of a variable and the effect
produced by invoking certain methods, which allows some temporal reasoning
over the correctness of a program. In short, types define which operations can be
performed on a variable and typestates when they can be performed. Typestate
analyses can find a broad range of errors, such as uninitialized variables in languages
with pointers, but also general adherence to contracts of APIs, e.g., reading from
a file stream that has not been opened yet. Hence, static analyses can be used
beyond the purpose of detecting programming errors. Adherence to contracts can
have broad applications, such as finding security vulnerabilities (cf. [CM04] for an
overview).

A different approach to error detection is pursued by [Joh78] (for C) and [ABO1,
HPO04] (for Java). These approaches employ static analyses to find suspicious code
patterns that have a high possibility to cause defects. The analyses are lightweight
in the sense that they mostly rely on simple heuristics, and in some cases on intra-
procedural data flow, but do not use inter-procedural analyses. In many cases these
analyses are unsound, i.e., do not find all occurrences of a given class of errors, but

18 2 Background

try to identify the most common mistakes. For example Findbugs [HP04] features
an “Open Stream” detector that finds Java in-/output streams, which are created in
a method but not closed on all paths before the methods exits. Streams passed as
argument to other methods are ignored. However, the lightweight analyses were
shown to be useful and cover a good range of errors in real systems [RAF04].

Another set of — mostly — lightweight static analyses are software metrics, which
provide a quantitative measurement of the complexity of the software’s design
and implementation. Metrics in procedural and object-oriented languages have
been proposed and studied as predictors for the fault-proneness of modules/classes
[DMPO2]. Metrics can be measured using very simple models, such as the number of
lines of code, or using elaborate models, such as the cyclomatic complexity [McC76].
The latter is essentially a measurement of the complexity exhibited by the control
flow graph of a method. In general, metrics are a very controversial topic, not only
for the precision with which certain attributes of a software system can be measured,
but more importantly how the measurements relate to the quality attributes, e.g.,
program defects, that they are supposed to model [KMB04]. While there are quite
positive results (e.g., [DMP02]), some metrics, e.g. cyclomatic complexity, do not
have statistically relevant correlation to defects [Hat12].

2.2 Database Systems

Relational database management systems (DBMS) are a technology that has been
developed over several decades, starting with the seminal work by Codd [Cod70]
on an algebra for managing data as a set of relations. Among the standard services
provided by DMBSs are (i) persistent storage of very large amounts of data — not
fit to retain in memory — and keeping it consistent over a long period of time; (ii)
users can query the data and modify the data, using appropriate database languages,
often termed query language and data-manipulation language; (iii) DBMSs provide
concurrent access to the data, for queries as well as for modifications and (iv)
transactionality of modifications, i.e., modifications are guaranteed to be performed
in isolation, meaning independently of each other, and to be atomic, meaning each
modification must either succeed completely or no changes are made at all. A good
overview on the general concepts found in database systems is given in [UGMWO1].

The concept of transactionality is now shortly discussed in detail, since it is the
principle cause of long runtime for storing data in the database (with negative
effects as discussed in the introduction and seen in [HVdMO06]). Transactionality
guarantees consistency in case of events such as system failure, violations of con-
sistency constraints, network time-outs, and more. To support transactionality the
database has a component for monitoring transactions and taking steps to recover

2.2 Database Systems 19

from failed transactions. In a commercial DBMS this is typically done via logging
[Gra92]. Logging records modifications to the data that would be made to the data.
The modifications are only committed (i.e., stored) to the database in the case of
successful transactions. Logs are typically persistent, so that in the case of a system
failure, e.g., power outage (not including hard-disk failure), data is guaranteed to
be retained. Hence, logging imposes considerable overhead for a transaction.

In the following, general lines of database research are discussed. The focus here
is on (i) deductive database systems and logic languages, since these provide a broad
range of expressible queries — thus making them attractive for formulating static
analyses — (ii) main memory databases, since memory is a constraining quality for
static analyses; (iii) active and real-time databases, since they are architecturally
closest to the event-driven nature of the approach followed in this thesis; and finally
(iv) object-oriented databases, since the embedding proposed in this thesis is done in
the context of an object-oriented language and, hence, has several commonalities to
OO databases, e.g., the expressiveness of the query language.

2.2.1 Deductive Database Systems and Logic Languages

Deductive database systems have evolved out of early logic programming languages
[Llo87]. Logic programs can be seen as deriving logical consequences from a set
of known facts via a set of first order logic predicates (or rules). Facts are usually
represented as predicates with constant arguments (termed ground atoms). For
example, the knowledge that Greg is a parent of Sally can be represented as the fact
parent(greg, sally), where parent is the predicate with constant arguments greg and
sally. Using facts, knowledge is represented extensionally, i.e., by enumerating all
arguments for which a given predicate is true. Rules contain a head term that can
be derived when the predicates in the body are satisfied, i.e., the head is implied by
the body (typically written as head:-body in PROLOG-style notation). For example a
rule of the form

P:-41,92,---59n

can be read as “q; and g, and ... and g,, implies p”. Rules represent knowledge
intensionally, i.e., by declaring how it can be derived from already ascertained
knowledge via logical consequences.

Deductive databases can be understood as relational systems with a richer query
language. In this interpretation, the facts in logic languages are tuples in a database
relation, for example the fact parent(greg, sally) is a tuple (greg, sally) stored in a
relation parent. The rules provide a form of querying the relations that is much
richer than query languages such as SQL. In particular logic languages can express

20 2 Background

recursive queries, which traditionally were not part of SQL and even today are
only provided with limitations [ISO11]. For illustration, consider the rules below
that compute the ancestors relation. Ancestors are immediate parents (2.2.1.1), or
recursively all parents of ancestors (2.2.1.2).

ancestor(X,Y) :- parent(X,Y). (2.2.1.1)
ancestor(X, Z) :- parent(X,Y), ancestor(Y, Z). (2.2.1.2)

From the query perspective, it is important to note that both deductive and
relational systems share the characteristic of being declarative, i.e., of allowing
the user to formulate a query that expresses which data is required, instead of
a set of operations that compute the data. However, due to their inheritance
from logic languages, deductive databases have many characteristics that set them
apart from relational database systems; [RU95] provides a very good overview.
Important relational database characteristics such as persistence, updates to the
relations, or even transactional guarantees were not part of the first deductive
databases. In particular persistence turns out to be quite difficult, since the logic
languages follow a “tuple-at-a-time” processing strategy, whereas persistence in
relational databases utilizes the set-orientation of relational operations for efficient
disk storage. In addition, the “tuple-at-a-time” processing is a very different query
evaluation technique and has (to some degree) lower run-time performance. Hence,
a lot of effort was spent to achieve better query evaluation techniques (cf. [SSW94]).

2.2.2 Main Memory Databases

During the 1980’s a large amount of works considered the upcoming availability
of large quantities of main memory. The focus in these works was mainly on the
following topics (a more detailed discussion can be found in [GMS92]): Transaction
processing has been reconsidered, since transaction can be completed faster when
performed in memory. Large quantities of fast running transactions can be efficiently
executed in a serial manner, which removes the cost of concurrency control. Data ac-
cess methods for disk memory have been reconsidered, since main memory databases
can directly retrieve the data via pointers in memory. Alongside the data access, the
indexing methods have been simplified, e.g., variants of linear hashing have been
efficiently used to index unordered data. In addition, memory efficient indexing for
ordered data has been proposed in the form of T-trees; balanced binary trees where
every tree node can hold multiple entries. Data representation was reconsidered
w.r.t. the advantages of using pointers to reference values and store recurring (large)

2.2 Database Systems 21

values only once on the heap. Query processing was also reconsidered, since the
traditional relational databases focus on minimizing disk access, whereas in-memory
access requires a shift towards efficient computations. Main memory databases still
provide failure recovery, which remains a database service that requires storage on
hard-disks. In essence backups (also termed checkpoints) are performed, that can —
to some degree — be decoupled from transactions and perform disk I/O operations
in larger chunks. Although a lot of research was performed in the area of main
memory databases, there are few commercial system, e.g., Starburst, MonetDB,
TimesTen. Applications using these systems are deemed to be limited to certain areas
such as telecommunications and few other industries that require high performance
[HYX11]. Nevertheless, interest in big main-memory data stores has been renewed
in recent years. Yet, this trend utilizes multiple machines to broaden the pool of
available memory. For example, SAP’s Hana' main-memory database can utilize a
cluster of servers as a single main-memory pool.

2.2.3 Active and Real-Time Database Systems

Active databases enable reactive behavior inside a DBMS via the definition of events
(rules) that execute user specified functionality when they are triggered [PD99].
Traditional databases required to write external application code that effectively
polls the database in the case of events or to ascertain whether some conditions
are met by the data and institute appropriate actions. Active databases move the
specification of the behavior into the database system, which allows both centralized
and timely processing of events. Among the frequently mentioned examples that
benefit from active databases are computer-integrated manufacturing, air-traffic
control or stock-market trading [BH95]. The majority of active database systems
defines reactive behavior via event-condition-action (ECA) rules. The semantics is
the following: when an event occurs and the condition is satisfied, then the action
is executed. Note that conditions are optional or implicit in some systems [PD99].
ECA-rule processing comprises several complex functionalities and, typically, the
complexity is addressed by one or several distinct database component(s) for ECA
processing. The design-space of components is quite diverse and features several
dimensions (cf. [PD99]). Active databases can support a variety of event types, e.g.,
based on data manipulation, time triggers, external agents, or even composition of
other (primitive) events [BH95]. The generality with which events are treated must
be met by a general component for monitoring events and triggering corresponding
rules. The processing of rules in relation to transactions can be performed differently,

L http://www.sap.com/hana

22 2 Background

e.g., immediately when the conditions are met inside a transaction, deferred to the
end of the transaction or detached from the triggering transaction, i.e., in a separate
transaction. Multiple rules can be triggered at the same time; hence, a form of —
possibly parallel — scheduling for executing actions is required. Another important
issue is the timeliness of completing scheduled rules. This last issue is also the main
point of contact between active databases and real-time databases [BH95, Eri99].

Real-time databases are traditionally concerned with the completion of transaction
under given time constraints. The underlying idea is that data values, e.g., stock
market prices, have a time semantics and are valid only for a short time interval.
There are several implications of data validity that real-time databases address (cf.
[Gra92]). First, temporal consistency means that transactions must be scheduled
such that time constraints are honored, i.e., a transaction with a deadline for the
data has a higher priority than transaction without a deadline. Second, the deadline
of a transaction can sometimes be met using only an approximation of the results.
Hence, the timeliness of a transaction can be achieved by relaxing the consistency
guarantees of a database.

The introduction of validity intervals for data and scheduling techniques for
temporal consistency are the central theme of real-time databases. Indeed, it has
been noted that several misunderstandings on the concept of real-time databases
exist, the most infamous being: [...] that real-time [database] systems are synonymous
with speed. [SSH02].

2.2.4 Object-Oriented Database Systems

With object-orientation (OO) being on the rise in the 1980’s the relationship between
objects-oriented programming languages and databases was explored. From the
perspective of OO languages, databases offered the ability to persist large amounts
of objects (cf. [AH87]). Hence, one of the defining qualities of early approaches
was the ability to persist objects on hard disks and load them into main memory on-
demand via an object identifier (OID) — in essence a pointer — and then manipulate
and navigate the in-memory representation. From the perspective of database
research, object-orientation offered a basis to lift the restrictions implied by the first
normal form [Ken83]. The first normal form essentially states that a tuple consists
only of atomic values, which disallows data such as lists which can have variable
lengths for different tuples. New models were already proposed to incorporate
hierarchically structured data (cf. [AB93]). In this respect, object-orientation
provided a new and general model that allows objects to contain other objects or
even aggregations, i.e., groups of objects contained in collections such as arrays.

2.2 Database Systems 23

There are many issues in providing object-oriented database systems, which are
discussed shortly in the following paragraphs. The focus here is on the underlying
data model and querying capabilities. These are the properties of database systems
that relate to the integration of relational querying with an OO language in the
proposed embedded database of this thesis. In general, other database issues
such as transaction management and failure recovery have also received special
attention in object-oriented database systems. A more comprehensive and detailed
overview is provided in [BM91] or [ZCC95]. These works also provide an overview
of implemented systems and their design choices. Note, that the concept of an object-
oriented database has been standardized by the ODMG (Object Data Management
Group) [Cat00] and object-oriented-like extensions have been incorporated into the
SQL standard (cf. [EM99] for an overview).

Object identity

The technique of loading objects via an identifier from disk into main memory
requires a notion of object identity. An object must be identified via a unique and
immutable value throughout its entire lifetime, while the object’s attributes may
change. Object identity in databases shares some similarity to the concept of object
identity in OO languages. In particular both have two notions of object equivalence:
(i) based on pointer equality, i.e., two objects point to the same memory location, or
(ii) based on value equality, i.e., the attributes of two objects represent the same
values.

Object identity is a quite far ranging concept for classical relational systems, since
previously data consisted of tuples that only had value equality. Tuples were to
some degree identifiable via their primary key. However, object identifiers are more
than primary keys. The latter describe the values (columns) in a tuple that contain
the data for which each tuple is unique. However, the data may change during the
“lifetime” of a tuple, as long as the primary key does not collide with other tuples in
the database. In this case the row is now uniquely identified by different data and
can not be referenced using the previous values. Object identity allows to uniquely
reference the same object at any time, even if attributes changed. In addition two
objects can have the same attribute values, yet have different identifiers.

Object identifiers are typically managed by the database system and not by
applications. This simplifies data definition, since users do not have to emulate a
unique immutable value for identity, and simplifies client code, since the insurance
of uniqueness for object identifiers and the maintenance of referential integrity is
quite challenging.

24 2 Background

Object-oriented data definition

OO databases allow the definition of classes with methods and inheritance which
are novel in the database context, yet are inspired by OO languages and very
similar to these concepts in the programming language sense. Classes specify
the structure of objects in terms of attributes (i.e., instance variables) and an
instantiation mechanisms, that allows to create concrete objects adhering to the
structure.

Methods provide data encapsulation by specifying a set operations on the data
contained inside the objects. Most systems also provide a notion of types — in the
programming language sense — that allows to specify interfaces of the operations
separately from implementations. The latter is typically provided in classes. Note,
that many OO databases are strongly typed, i.e., every operation is defined with
typed operands.

In a concrete database, the encapsulation of data is often a tricky design choice
that stands in contrast to one traditional goal of databases, which is that all possibly
relevant data can be freely queried and correlated in new ways. When employing
encapsulation only methods are visible, whereas the data and the implementation
remain hidden, thus only data accessible via the methods may be freely queried.
Since the attributes (i.e., the data) contained in objects are often the primary
working units for applications most systems provide work-arounds, such as system
defined get/set methods for each attribute.

Inheritance is provided by database systems in the classical OO sense that allows
classes to specialize functionality from their super classes. Classes can specialize
other classes with additional functionalities or by substituting functionalities. Single
and multiple inheritance can be provided with the same implications as in OO
languages, e.g., conflicting definitions. Inheritance is typically taken as a nominal
subtyping relationship. Types are checked for compatibility w.r.t. the inheritance
based type hierarchy, i.e., an object of the subtype can be assigned to a variable of
the supertype. OO database systems — like OO languages — support dynamic method
dispatch (i.e., late binding), that chooses the most specialized version of a method
for a given object at runtime based on the object’s class.

Object-oriented query languages

One of the most interesting points in the combination of OO features and
databases is the impact of OO on the query language of the database system.
The traditional relational query languages select sets of tuples from relations. In
OO databases a query selects a set of objects, which is quite similar to selecting
tuples in a relational database. Yet, OO databases provide a new querying capability
compared to relational databases. Given an object (via OID), the database can

2.2 Database Systems 25

directly access referenced objects (via OID references). Note, that — from a query
perspective — the latter is comparable to an extension of the relational system for
hierarchically nested values. For illustration consider the following query:

Find all employees that work in a department with
a budget greater than 500 000 (€)

In a relational database where employees and departments are stored in separate
tables, this query requires a join; which can be expressed as follows:

{v | Employee(v) A Ju. Department(u) A
v.Departmentld = u.Id A u.Budget > 500 000}

The query introduces an additional variable u and a join predicate (v.Departmentld =
u.Id), to find corresponding departments and restrict them w.r.t. the budget declared
for the query. Object-oriented queries can simplify the query, by formulating the
restriction on the departments directly on a nested value. A path expression is used
to denote the corresponding department object and the join can be thought of as
being performed implicitly. The resulting query is a simplified version — in the sense
of being more concise — of the above query, since less explicit variables and joins are
required; it can be expressed as follows:

{v | Employee(v) A v.Department.Budget > 500 000}

Path expressions can be used to increase the conciseness of the queries, in the
sense of introducing less syntactic elements into the query. However, they do not
add expressive power to the language, i.e., it is possible to express a semantically
equivalent query using additional variables and explicit join predicates. Most object-
oriented query languages provide a syntactic notation similar to path expressions
[BM91].

Classes and querying

Classes (and types) in a database provide a novel mechanism for querying data
via extents, i.e., the set of all instances of a given type (including all subtypes).
Extents are in essence a reification of the type information in the set-theoretic sense.
That means objects are classified as members of a set for their given type and the
sets adhere to the subtyping relation. For example, if the class A is a subtype of
the class B (written as A <: B), then the extent for A is a subset of the extent for B
(Extent, C Extentg). Note, the use of Extent, is an abbreviated syntax for the extent
of class C, as there is no common syntax.

26 2 Background

Extents can be explicitly maintained by the database, which incurs some overhead,
i.e., new object instances must be inserted (or deleted instances removed) from the
corresponding extents. Whether or not all class extents are automatically managed
by the database depends on the database system. Some systems also defer the
choice to schema designers, and let them declare classes that require a managed
extent.

Classes with extents provide a new form of querying, where tuples of different
data “layout” can be returned. For illustration consider a database that stores
employees with subtypes consultants and engineers. The subtypes can each store
specific data, e.g., bonus payments for consultants, yet both have a common set of
data, e.g., a monthly base salary. There are two issues here w.r.t. querying the data.
First, extents allow users to retrieve all objects regardless of their concrete type
and lets users declare queries based on the common data, e.g., the salary. Second,
the specialization gives rise to a form of coercion (i.e., typecasts), as found in OO
languages when dealing with heterogeneous collections. Ohori et al. [OBBT89]
provide a good discussion on the topic and the implications for static type inference.
For illustration consider the following query:

Find all employees of any kind (i.e., including sub-
types) that have a monthly salary higher than
5000 (€) and if they are consultants their bonus
payments are greater than 2 000 (€)

In an OO database the extent of employees can be explicitly denoted, e.g, as
Extentgppioye. and the query can be formulated as follows:

{v | Extentpppioyee(v) A v.Salary > 5000 A
(v.classOf(Consultant) — v.asClass(Consultant).bonus > 2 000) }

The query requires no special treatment for the field Salary, since all objects share
this attribute. However, to deal with specialization, e.g., finding out if an employee
is a consultant and querying their bonus, additional functions are needed for testing
objects for particular types and for “down casting” objects. In the example, we use
the functions classOf and asClass to perform these tasks. In essence the function
classOf checks whether a tuple is of the given class and the function asClass performs
a type cast to Consultant. The logical implication (—) is necessary for correctness
and performs the cast only if the classOf check is successful, since the cast will
yield runtime errors if performed on instances of other classes (save subtypes of
Consultant). In essence the use of logical implication means that the query language
has to provide some form of if-then control structure.

2.2 Database Systems 27

Classes in query composition and view definition

Using classes in queries interferes with the free composition of queries allowed
in the relational model. The classical composition allows query results as input to
other queries, which is simple if only atomic values are supported. When classes
and objects are used, the question arises if the returned values are objects and of
which class. The same argument applies to the definition of views, which are in
general complex queries and, hence, it is not always clear what type (or class) the
elements in a view have.

The answer is simple for filtering queries as the one exemplified above, i.e., the
objects of the underlying relation(s) are returned and retain their class information.
However, the situation becomes more complex when queries are allowed to select a
subset of the attributes in an object. When trying to treat this set of attributes as an
object instance, it is unclear to which class the instance should belong. Potentially,
there is a defined superclass that has exactly the same attributes; then the selection
could be mapped to this class. Yet, the selection might as well yield a set of attributes
for which no class is defined in the database.

A common approach to solve this problem is to introduce restrictions that avoid
this situation. The database can restrict queries such that they retrieve either only a
single attribute or all attributes (i.e., the whole object), which is often referred to as
object preserving in literature. Other databases treat arbitrary attribute selections
as tuples containing complex values; however, these tuples then do not have any
methods defined on their data.

A different approach, followed by Heiler et al. [HZ90], is to define views via a
query together with a class (or type) for the resulting objects. This approach makes
the (reasonable) assumption that views are typically planned for by a database user,
who can then as well provide a class definition (including methods) for the resulting
objects. The implication of this approach is that the previously existing relational
operators, e.g., a join, require extension to be able to create new objects (with object
identifiers) instead of tuples containing values.

The most sophisticated solution is provided by MultiView [KR98], which automat-
ically creates and manages virtual classes for a predefined set of relational operators.
Virtual classes denote classes that arise due to the semantics of a query, instead of
being specified by the user, i.e., there is no class definition in the system. Note that
the term is ambiguous and not to be compared with virtual classes in strongly typed
OO languages. In these languages the term virtual classes denotes a technique for
defining general parameterized classes, such as lists or sets, and can be understood
as an alternative to generics [MMP89]. The maintenance of virtual classes in an
0O database is quite complex. Two techniques termed object slicing and dynamic
restructuring of the stored objects are used during the maintenance. The slicing tech-

28 2 Background

nique ensures that there is no fixed data layout. In essence all attributes are stored
as pointers to a data structure that holds the value together with a reference to the
class currently associated with the value. Consider for example that employees have
a name attribute. The slicing technique stores a pointer to a structure containing the
value of the name and a reference to the employee class. A query can then select
only the name and other attributes from an employee. In this case the dynamic
restructuring re-classifies all attribute instances to point to a new, i.e., virtual, class
that contains only queried attributes.

2.3 Incremental View Maintenance

Incremental maintenance is based on the idea that a view of the data in a database
can be efficiently maintained by only re-computing relevant parts of the view when
changes are made to data.

A view is a relation defined as a query — in terms of the relational algebra — over
base relations. The base relations are subject to direct modification (addition/dele-
tion/update of tuples). A view is not subject to direct modification. Instead the
result of the view is derived from the base relations. Thus a view can be seen as
a function from base relations to a derived relation. The function is traditionally
recomputed whenever the data of the view must be accessed [Sto75].

A materialized view [GM99a] can be obtained by storing the result of a view in
the database. In essence a materialized view can be understood as a cached copy of
the result. Consequently the access to the result of the view is much faster compared
to re-computing the view’s function every time the view is accessed. Furthermore,
other views defined on top of the materialized view can be evaluated more efficiently,
since the results of a materialized view can be indexed. Materialized views have a
large range of applications, the most prominent and widely researched being data
warehousing [JG12], where views are defined over relations that may be stored
in different (distributed) database sources. Other applications include replication
servers, data recording systems [JMS95], data visualization, and mobile systems
[GM99a].

The efficient updating of materialized views is called incremental view mainte-
nance, or view maintenance in short. The basic idea behind view maintenance is that
updates to a database are small compared to the overall size of the database and
only parts of the views change in response to updates in the base relations. The
idea was termed “principle of inertia” [GM99b]. This principle is only a heuristic
and does not apply in all cases, e.g., if all entries in a base relation are deleted it
may be cheaper to re-compute a view that depends on this base relation. Yet the

2.3 Incremental View Maintenance 29

principle of inertia applies in most cases, making incremental view maintenance a
worthwhile effort.

Example view

To illustrate the problem of view maintenance, consider for example a database
for administering a university. In the following two base relations are defined that
contain data on the lecturers of the university (2.3.0.1) and the staff that is tenured
and when the tenuring was granted (2.3.0.2). The Lecturers relation contains a
unique identifier Staffld, a Name and the Age for each lecturer. The Staffid, which
is also used to identify lecturers in the Tenure relation, which stores the according
date when the lecturer was given tenure.

Lecturers(Staffld, Name, Age) (2.3.0.1)
Tenure(Staffld, TenureDate) (2.3.0.2)

Figure 2.1 depicts an example instance of a database with tables for the two relations
— Lecturers (2.1a) and Tenure (2.1b) — filled with exemplary data. Not all lecturers
have tenure, for example the second entry in 2.1a has no corresponding entry in the
tenure table.

Stafid_Name Age Staffld TenureDate
; I\R/[izlrnllr;eslgm B §Z 1 09/01/2012
3 Glaser, T. 41 3 04/26/2002

b) T
(a) Lecturers () enure

Figure 2.1: Base relations in a university administration database

Given the above relations a view can be defined via the following SQL query:

CREATE VIEW TenuredLecturers(Name, TenureDate) AS
SELECT Name, TenureDate
FROM Lecturers, Tenure
WHERE Lecturers.StaffId = Tenure.StaffId

The query defines a new relation (line 1) that contains the lecturers Name and
TenureDate (selected in line 2) from the respective base relations (line 3). To ensure
that only tenured lecturers are contained in the view, the tables are correlated via a
join (line 4) of the respective StaffIds.

30 2 Background

A materialized view fully evaluates the join once and stores the result. Hence,
applying the materialized view method on the data shown in Figure 2.1 would
create the table shown below in Figure 2.2 as a result.

Name TenureDate

Marinescu, E. 09/01/2012
Glaser, T. 04/26/2002

Figure 2.2: Materialized view of TenuredLecturers

Subsequent queries of the view are very quick, since they merely consist of reading
the results stored in the materialized view. However, modifications of the base rela-
tions Lecturers or Tenure require examining the materialized view and determining
if and how the view must be updated.

General view maintenance algorithm

The general algorithm that is responsible for incremental view maintenance can
be summarized as follows. Consider Q as a query over the base relation R, then
V is the (multi-)set consistent with the evaluation of Q on R, i.e.,, V = Q(R). A
set of modifications to the base relation R consist off additions (A;) and deletions
(Az). Updates to specific values of existing tuples, e.g., changing the name of a
lecturer, can be modeled as a deletion (of the tuple with the old name) followed by
an addition (of the tuple with the new name). The modifications change the base
relation R to

R =R-A)UAS

Naive re-evaluation of the query computes V' = Q(R’). Incremental view main-
tenance approaches are able to determine the net effect on the materialized view
that stems from a change to a base relation. The effect is captured as additions and
deletions to the view, i.e., A; and A;,. Hence, the view can be efficiently maintained
by the following equation:

— - +
V' =(V-AUAT

View maintenance example
For illustration consider following addition and deletion of tuples to the Lecturers
relation:

2.3 Incremental View Maintenance 31

+
ALecturers
A-

Lecturers

= {(4, Foxon, R.,33)}
= {(3, Glaser; T,41)}

The effect on the materialized view TenuredLecturers can be expressed as additions
and deletions of tuples to that view. For the above example no new tuples must be
added to the view, since the new tuple in Afwurers has no corresponding entry in
Tenure The removal in A/, ... results in a removal to the view, since the lecturer
with Staffld = 3 is not present in both base relations. Thus, given the above additions
and deletions, the materialized view TenuredLecturers can be transitioned to a new

database state TenuredLecturers’ by the following formula:

TenuredLecturers’ = (TenuredLecturers — {(Glaser, T.,04/26,/2002)}) U

2.3.1 Design Space of Incremental View Maintenance

The design space for providing incremental maintenance of relational views can
be classified along several dimensions that impact the efficiency of the approach.
The following sections provide a classification of different design choices, exemplify
their impact where appropriate, and provide an overview of the related work in the
respective areas.

Maintenance Processing Strategy

There are three basic strategies for maintaining views (also non-incrementally).
Once an update to the base relations occurs the following strategies are possible:

Immediate Updates are propagated instantly to all affected views. The drawback
of the strategy is that a single update involves an unknown quantity of
computation, i.e., depending on the number and complexity of affected
views, the processing of the update can be costly. However, this strategy
yields a minimal response time for accessing the results of the update in the
maintained views.

Deferred Updates are not propagated but rather cached and the update is applied
lazily once the view is retrieved the next time. This strategy moves the com-
putational overhead for view maintenance away from the update and instead
incurs the overhead during query answering. In addition data structures for
caching the updates are needed, hence more space is consumed.

32 2 Background

Periodic Updates are propagated at pre-defined intervals or during periods of low
system activity. In contrast to the above two strategies, periodic updates
loosen the consistency guarantees, i.e., at a given point in time the view may
not be consistent with the actual values that were stored in the database,
hence such views are also referred to as snapshots.

The majority of the literature on view maintenance considers the immediate
strategy (cf., [GM99a]). Deferred view maintenance was for example studied by
[CGL196] in a relational setting and by [AE99] for object oriented databases. A
performance analysis of immediate vs. deferred update strategies in a persistent
relational database is given by Hanson et al. [Han87]. They find that the choice for
the best update strategy is highly application dependent. In particular the choice
depends on the following parameters: (i) the ratio between data update and data
retrieval operations, (ii) the selectivity of the predicates defining the view, (iii) the
number of tuples written by each update (iv) the fraction of the data read (from
hard-disk) during retrieval and (v) the cost of maintaining the sets of inserted and
deleted tuples. They also show that for some views the performance of immediate
and deferred maintenance are the same, i.e., the advantages and disadvantages of
each strategy cancel each other.

The main advantage of deferred view maintenance is that fewer disk accesses to
the stored copy of a view must be performed than during immediate view mainte-
nance (pertaining to parameters (iv) and (v)). Hence, for main-memory database
we can safely assume that immediate maintenance performs better (overall), since
the main advantage of deferred view maintenance is not applicable

Periodic updates were proposed by [AL80] and provide an optimization for the
performance of large distributed databases. In this scenario the advantage is that
the large updates can be applied during periods of low system activity.

Expressiveness of View Definition

The efficiency of the view maintenance approaches is largely determined by the
database operators that need to be maintained. Hence, a database language that
provides more sophisticated constructs, e.g., aggregation, allows the definition of
views which are not as efficiently maintainable as other — more basic — constructs,
e.g., selections. Intuitively, a richer view definition language requires specialized
treatment of the richer semantics. The basis of relational algebra consists of select-
project-join views (SPJ%) over set-valued relations. These views were studied by

2 select-project-join queries are often referred to as conjunctive queries in literature

2.3 Incremental View Maintenance 33

the earliest works on view maintenance [Pai82, SI84, BLT86, QW91] and SPJ views
are supported by all successive techniques. The following extensions — loosely
ordered from least to most expressive — have received special attention w.r.t. the
incrementalization of their results.

Duplicates Most practical database systems are based on bag- (multiset-) valued

relations. Hence, a treatment of duplicate values was introduced in [GMS93]
for deductive databases and in [GL95] for relational algebra. In general,
subsequent approaches are based on duplicate semantics. The results are
also necessary for correct treatment of advanced operators, e.g., aggregations.
For example, if the database for lecturers computes the average age — an
aggregation — then the result in a set-valued relation would be wrong when
at least two lecturers have the same age.

Set Difference/Negation Set difference operators are the algebraic prerequisite to

formulating negations; as found in deductive databases. For example, con-
sider a query that retrieves all lecturers that do not have tenure (from the
example relations shown in the previous section). Informally, the query re-
trieves all lecturers and subtracts the (multi-)set of lecturers that do have
tenure (cf. Sec. 3.3.5 for a formal treatment). The incremental mainte-
nance of stratified negation for deductive databases was treated in [GMR95].
Stratified negation in essence states that negations may not be used inside
recursions. A more formal definition of stratified negation can be found in
[CGT89]. The algebraic treatment for relational algebra with duplicates was
provided in [GL95].

Aggregation is typically used in data warehousing to build summary views, i.e.,

key performance indicators over the underlying data, such as average number
of sales per marketed product. One example for an aggregation — over a
single attribute — is the average age of lecturers in a university administration
database. Aggregations in general can perform a grouping of the data, e.g.,
average age of lecturers grouped by the starting initial of the last name.
In addition data warehouses typically consider aggregations across many
dimensions (attributes) [AAD"96]. The application of a single aggregate
operator (without grouping) was treated in [GL95]. The work was extended
by [QGMW96], who formulated a general incremental maintenance involving
aggregation. The work in [PSCP02] treats the incremental computation
of non-distributive aggregation operators, i.e., operators that can not be
efficiently maintained due to their non-locality, e.g., MIN, MAX require access
to the underlying dataset if the old minimum/maximum is deleted from the
view.

34

2 Background

Transitive Closure/Linear Recursion Traditionally, the relational algebra does not
include any means for recursive queries. The transitive closure operator
provides a limited form of recursion termed linear recursion (cf. [JAN87], for
a good explanation of the relationship between transitive closure and linear
recursion).

A linear recursive program is best exemplified in deductive databases. A
program is called linear recursive if the logical implication for a literal is
expressed recursively with only one occurrence of the implied literal in the
antecedent. For example the following query denotes a path in a directed
graph. A path exists if there is a direct edge between the vertices (rule
2.3.1.1) or if there exists an edge that connects to a known path (rule 2.3.1.2).
The query is linear recursive, since the path literal is used only once in the
antecedent of rule 2.3.1.2.

path(X,Y) :- edge(X,Y). (2.3.1.1)
path(X,Z) :- edge(X,Y), path(Y, Z). (2.3.1.2)

Although the transitive closure is a simple and well-understood operation,
the efficient maintenance is impeded by the large number of tuples and high
interconnectivity that cause unacceptable runtime and storage requirements.
Hence, efficient treatments of the view maintenance problem have focused
on providing optimal solutions for two important sub-problems of the general
transitive closure that consider (i) only acyclic graphs and (ii) restricted
queries, e.g., the above path query.

In [DT92] an algorithm is presented that derives non-recursive datalog pro-
grams to update right-linear-chain views over acyclic graphs. A right-linear-
chain imposes a special restriction that requires the recursive call to be on
the rightmost side of the rule and the variables to be ordered in a chain such
that the rule has the form:

q(X7Z) - Ch(X, Yl);qZ(Yl’ Y2)7 e :qk(kal’Z)

The algorithm in [DT92] handles insertions of edges, while an extension
to deletions was given in [DS95], yet both only apply to right-linear-chain
views. Other views require additional materialized data for incrementaliza-
tion [DS00]. An example of a linear recursive view that is not a right-linear-
chain is the same generation query, i.e., are two siblings in a tree — or directed

2.3 Incremental View Maintenance 35

graph — at the same depth. The same generation query is exemplified by
the rules below (2.3.1.3, 2.3.1.4) as the predicate sg. Two nodes are in the
same generation if they have the same parent (rule 2.3.1.3), or if they have
two different parents who are in the same generation (rule 2.3.1.4). While
the rules can be brought into a chain order by providing parent and child
predicates, the rule 2.3.1.4 is not right linear and can not be transformed
such that both chain ordering and right linearity are enforced.

sg(X,Z) :- parent(X,Y), child(Y, Z). (2.3.1.3)
sg(X,Z) :- parent(X,Y),sg(Y,V),child(V, Z). (2.3.1.4)

A general result on the maintainability of transitive closures is presented
in [DLW96], who find that it is not possible to derive a non-recursive pro-
gram for the maintenance of the transitive closure over an arbitrary graph
in response to deletions, i.e., deletions in arbitrary graphs always require an
intermediate storage for the incremental maintenance. Many algorithmic
maintenance strategies for the transitive closure have been proposed; [KZ08]
provides a good overview and comparison. The emphasis in these algorithms
was on almost linear update time. No considerations were made w.r.t. the
memory consumption — all algorithms require Q(|Vertices|*) space. In [Jag90]
the authors proposed a compression strategy for maintaining the material-
ized view over the transitive closure that addressed the memory efficiency,
however, the compression strategy does not apply to the various structures
used to maintain the transitive closure in the various algorithmic strategies.

General Recursion is stronger than the transitive closure, since an arbitrary num-

ber of recursive predicate occurrences — and also mutual recursions — are
possible. For example, using general recursion a simple and very declarative
specification of transitivity is possible, as shown in the rule below.

p(X:Z) - p(X;Y)’p(Y,Z)

General recursive queries are applied in ontologies — such as OWL — that have
symmetric and transitive properties. For example, Volz et. al [VSMO05] extend
previously developed algorithms for maintenance of general recursive views
and apply this to ontology languages that are operationalized via deductive
databases.

36

2 Background

The efficient maintenance of general recursive views was studied first in
[Kiic91, U092, GMS93]. All three approaches are based on the principle of
deriving a set of delta rules, i.e., a transformed version of the original rules
used to efficiently compute only results that pertain to changes in the base
relations. An algorithmic approach that (re-)derives sets of changed tuples
on a relation-by-relation basis was presented in [HD92].

In general the above approaches assume that the results prior to a modifica-
tion are stored and available for the view maintenance. Upon modification
of the base relations the delta is used first to compute an overestimation of
tuples that need to be removed from the derived results. Then alternative
derivations for the new results are computed. A reverse approach is given
in [SJ96], where the view results are not required to be available during
the view maintenance process. Instead the approach exclusively uses the
underlying relations.

Information used During Maintenance

There are four basic structures that contain information which can be used during the
maintenance of relational views. Which information is required depends largely on
the expressivity of the language used to formulate the view, but also on algorithms
and properties of the underlying relations. Furthermore there are cases where
additional information can speed-up the maintenance process. Hence, a trade-off
between time and space consumption is to be made.

Deltas are the tuples that are inserted, deleted or modified in the base relations.
Maintenance of views that requires only information about deltas is very
efficient, since no storage is required.

Base relations refer to the underlying base relations prior to the update of the
database. Maintenance of views that require information about the base
relations is more costly than using only deltas. First the base relations contain
a large number of tuples, hence requiring much storage space. Second, some
maintenance algorithms require finding tuples with specific properties in the
base relations. Due to the fact that base relations are as a general rule larger
than deltas, finding such tuples is a time-consuming operation.

Materialized views refer to the multiset of tuples the view contained prior to the
update of the database. Using the materialized view incurs storage costs and
lookup cost incurred for finding tuples with specific properties, similar to the

2.3 Incremental View Maintenance 37

base relations. However, the materialized views are as a rule much smaller,
since not all elements in the base relations contribute to the result in the
materialized view.

Auxiliary views refer to intermediate results that are stored in addition to (or instead
of) the base relations and materialized views. For example, the base relations
of a join can be indexed and the index stored as an auxiliary view instead of
the base relations, which greatly speeds up the maintenance time.

The study of views that are maintainable using only the delta information has been
conducted under the terms autonomously computable [BCL89] or self-maintainable
views [GMR95, GM99a]. In addition [Huy96] presents a self-maintainability test for
rules in deductive databases. Key findings in relational algebra are that selections
and projections are always self-maintainable. Consider for example the selection of
lecturers — from the definition in Figure 2.1a — that are below the age of 40 years.
The respective view is defined below and filters the data in Lecturers based on the
condition in line 4.

CREATE VIEW YounglLecturers(Name, Age) AS
SELECT Name, Age
FROM Lecturers
WHERE Lecturers.Age < 40

The self maintainability of the view YoungLecturers stems from the fact that selections
are based on a local property of each tuple in the database. The selection condition
can be checked for each inserted or deleted tuple in the Lecturers relation and if a
tuple satisfies the condition it is added or removed from the view. Neither the base
relations nor the previously computed materialized view are required to deduce the
effect of the change.

Many of the more expressive language constructs are not self-maintainable and
either require the underlying base relation, the previously computed view results,
auxiliary data or a combination thereof. For example, a join between relations A
and B - in the most general form — always requires access to the underlying base
relations, since adding a or deleting a tuple (e.g., from A) always requires checking
whether a corresponding tuple for the join condition exists in the joined relation
(e.g. B). Consider for example the join presented in Figure 2.2, between Lecturers
and Tenure. Here the addition/deletion of tuples to Lecturers requires to consult the
Tenure relation and finding corresponding tuples for the join. A language construct
that can be efficiently maintained using a combination of the base relation and the
materialized view is the transitive closure (over acyclic graphs). With the combined
data the view can efficiently be maintained in near linear time. It is interesting to

38 2 Background

note that the respective maintenance algorithm is non-recursive, even though the
operator provides a form of recursion (a respective algorithm using SQL statements
can be found in [PDRO5]).

The use of auxiliary views is in some cases a necessity for an effective runtime
performance of the view maintenance. For example [PSCP02] use axillary automatic
summary tables® to efficiently maintain non-distributive aggregate views. Other
views can also benefit from auxiliary views as shown in [QGMW96] and [VMK97]
were auxiliary views can effectively be used to minimize the number of tuples in
joins.

Provided Modification Operations

The modifications to the database can be performed using different operations that
manipulate the base relations. There are two different basic operations that can be
offered for view maintenance:

Insertions/Deletions are the basic operations for performing updates to the
database. The change to a view is maintained for a set of inserted or
deleted tuples. All approaches offer these basic operations. Differences
in performance can be eminent between insertions and deletions for some
language constructs, e.g., the transitive closure can be maintained more
efficiently for insertions than for deletions.

Updates can be supported as a first class concept or by modeling an update as a
deletion followed by an insertion. The main advantage of modeling updates
as an independent operation is the ability to reason over the attributes that
are modified. This enables the view maintenance to identify tuples that do
not contribute a change in the result of the current view. For illustration
consider the join of TenuredLecturers shown in Figure 2.2. If the Age attribute
of any lecturer is updated the results in TenuredLecturers do not change, since
the respective attribute is not part of the view.

Update operations can not always be propagated across all language con-
structs, i.e., some constructs treat an update and respond with a set of
deletions and insertions. The join operator is an example for such a language
construct; joins can not propagate updates that affect the joined attributes.
Consider again the TenuredLecturers view and an update to the Lecturers
relation that changes the staffId of the lecturer Marinescu, E. from 1 to 4. The

3 The term automatic summary table denotes an incrementally maintained (and materialized)

view in the IBM DB2 database

2.3 Incremental View Maintenance 39

corresponding change is a deletion of the entry (Marinescu, E., 09/01/2012)
from TenuredLecturers.

Updates are treated in related work for specific language constructs. In [GJSM96],
updates for SPJ views are discussed and the notion of attributes that contribute
to a view are formalized under the term exposed variables. The authors in [U092]
consider update modifications to values in deductive databases. The authors in
[CW91] discuss the finding that updates do not propagate across join operators;
hence, they favor a general treatment of view maintenance as deletions followed by
insertions. The majority of related work falls into the category, that treats updates
in this fashion, e.g., [AE99, HBC02]*.

In [KR98] updates are discussed in the presence of managing “virtual classes”
(cf. Sec. 2.2.4) as materialized views for an OO database system. The treatment of
updates w.r.t. language constructs corresponds to the treatment in [GJSM96], i.e.,
updates to non-exposed variables are irrelevant to a view. In addition a complex
registration process is proposed that analyzes all views and registers them in the
database system if they need to be maintained due to an update of an objects
attribute.

Note, that the term update can lead to confusion, since the term is sometimes used
as synonym for a change operation, i.e., an insertion or deletion. For example the
work in [GGMS97] discusses updates in the latter sense. The authors treat a general
form of view updates as a merge operation in monoid homomorphisms®, yet their
updates correspond to the classical insertions and deletions. Consequently, through-
out this thesis the term modification is preferred to convey a change operation,
which can be an insertion, deletion or an update.

2.3.2 Incremental View Maintenance Techniques

Several approaches and techniques have been developed for the incremental main-
tenance of materialized views. The following sections provide an overview of the
proposed solutions. Counting algorithms, are among the first works to consider
incremental view maintenance. Algebraic query rewriting and logic query rewriting
can be considered as a generalization of the incremental maintenance problem

4 The authors in [AE99] provide a treatment for deferred view maintenance that tracks a list of

updated object, but the actual processing of updates in their algorithm treats updates as inserts
and deletes.

The findings in [GGMS97] coincide with the classical works in the fact that there exists a set of
language constructs that can not be maintained in the monoid homomorphisms without further
auxiliary views.

40 2 Background

for relational algebra and deductive databases. Active rules and memoing/tabling
incorporate (or extend) existing database technologies for incremental maintenance.
Finally, different optimizations techniques proposed in related works are discussed.

Counting Algorithms

The basic idea of this technique is to keep a multiplicity count, i.e., the number
of derivations for a tuple, as extra information. Upon insertion or deletion of a
tuple the counter is incremented or decremented accordingly and tuples are deleted
when their counter reaches zero. Similar variants were introduced by Shmueli et al.
[S184], Blakeley et al. [BLT86] and Gupta et al. [GMS93].

Counting algorithms are frequently cited under this name in literature. Given
the above definition, the term seems to be a bit of a misnomer. Algorithmically
the incrementation or decrementation of a multiplicity counter is not the mainte-
nance technique. The actual maintenance is achieved by processing the underlying
computational model — relational operators or logic rules — in correct ways w.r.t.
modifications and by keeping a multiplicity counter. The latter is required for correct
treatments of specific operators (rules).

The technique was introduced to maintain SPJ views in a set algebra [SI84,
BLT86]. In this important subset of SQL, the multiplicity counters are necessary
for a correct treatment of multiple derivations for the projection operator. In
[SI84] specialized data structures are used to store multiple derivations. In [BLT86]
general relations are used to store tuples, which are enriched with the counter
information. In this approach an algorithm derives new SPJ expressions whose
evaluation determines tuples that must be inserted to (deleted from) the view.

In [GMS93] the technique is applied to a deductive database with duplicate
semantics. The multiplicity counter is derived from the multiplicity of the duplicate
semantics for the deductive database and stored similarly to [BLT86]. The algorithm
derives a set of delta predicates that use the old values of the base relations and
views to determine a set of tuples that must be inserted to (deleted from) the view.
The approach covers set union, stratified negation and aggregation.

Algebraic Query Rewriting

The idea is to define different change propagation expressions for insertions and
deletions from the base relations to the materialized view based on the original
view expression. Change propagation expressions are defined using the operators of
the relational algebra and can be simplified for insertions and deletions in different

2.3 Incremental View Maintenance 41

ways. The derived relational expressions compute the change to the view without
doing redundant computation.

The idea was first introduced in [Pai82] under the term finite differencing and was
used subsequently in [QW91] for view maintenance of SPJ views with set semantics.
Griffin et. al [GLT97] provide a correction to the minimality result of [QW91] and
extend the algebraic rewriting approach to a multiset algebra with aggregations and
multiset difference in [GL95]. In this latter work the authors also provide interesting
results pertaining to efficiency and show that for a very restricted class of views
(no projections, no Cartesian products), the incremental computation is always
more efficient. The algebraic approach was extended by [QGMW96] for views with
aggregations.

Logic Query Rewriting

This technique is used in deductive databases and is similar to algebraic query
rewriting in the sense that a new logic program, i.e., an extended set of logic rules,
is derived from the original logic program (rules). The main idea is the following.
Given a view definition as a (set of) rule(s) in a deductive database as defined
below (2.3.2.1), where a view p is defined based on relations (predicates) q; to
g For brevity we omit a concrete variable binding, since the general idea can be
transcribed to predicates of any arity.

p:_ q1)q2)"')qk (2321)

A set of maintenance rules for the new database state (p™*") can be derived for
the insertions and deletions using three sets of delta rules, one for an overestimate
of deleted tuples (p9¢!), one for a reinsertion of tuples with alternative derivations
(pred) and one for general insertions (pi"s). The rule derivation follows a specific
schema that can in general be summarized as follows.

First the deletions are derived for each predicate g; by rewriting the query into a
rule (as in 2.3.2.2) where the old state of all q, is unified with the deletions of g;
(for all predicates x # i). The deletions pdel stem from the union (i.e., disjunction)
over deletions from all g; (2.3.2.3). The new database state consists of all tuples
that are in p and have not been deleted by p?*! (2.3.2.4).

pflel - q1,qs, - ..,qfel, R (2.3.2.2)
pdel - p‘fel;pgel; eee ;p,‘fel. (2.3.2.3)
prev - p,~pdel. (2.3.2.4)

42 2 Background

Second the re-derived tuples are all that have been deleted by p?* but can be
inferred through the new database states of the underlying predicates, i.e., ;"
(2.3.2.5). The new state of p includes all re-derived tuples (2.3.2.6).

pred - pdd,qTew,qgew, Y (2.3.2.5)
prev - pred, (2.3.2.6)

Third insertions are treated in a similar manner as deletions by providing a rule
for insertion to each underlying predicate p:f“s (2.3.2.7). The difference is that
insertions are based on the new database state g3*” for all predicates x # i that
the rule g;"* must unify with. Like deletions the set of all insertions p'"** stems from
the union of all insertions from all q; (2.3.2.8). Finally the new state includes all
insertion to the database (2.3.2.9).

p::ns . q;zew’q;lew’ . ’q;‘ns’ . ’qlr(zew. (2‘3_2_7)
P i pi; pins; s pins, (2.3.2.8)
pnew - pins' (2.3.2.9)

The general idea was presented in [GMS93] as the DRed (Delete and Rederive)
algorithm for stratified logic programs that can also use aggregations. Note, that
the counting algorithm is presented in the same paper and can be seen as a special
case of the DRed algorithm used for non-recursive views. A similar idea as the DRed
algorithm was presented by [Kiic91] for stratified recursive programs. However, the
work was criticized for not generating safe rules [GJSM96] and not treating some
special cases, such as duplicate rederivations, as efficiently as DRed.

In [UO92] the authors present a technique that rewrites queries with an explicit
support for an update operation (rather than only modeling insertions and dele-
tions). To enable efficient modeling of updates the concept of database keys was
introduced for logic predicates, and updates are only allowed on non-key arguments
of predicates. A key is modeled as a constraint that disallows arguments between
two tuples to share the same value. For example, as shown in (2.3.2.10) key?(K) is
the key constraint on p, where the first argument K is the key and hence no two
tuples may be stored using the same key. The program is translated into a new set
of rules that use existentially quantified subexpressions on the keys.

keyP(K) :- p(K,X),p(K,Y),X #Y. (2.3.2.10)

2.3 Incremental View Maintenance 43

From the maintenance rules summarized above it is easy to see that the general
idea relies on the availability of the old database state of the view p (i.e., rule
2.3.2.4). A modified version of the algorithm was given in [SJ96]. Their approach
alleviates the reliance on the old state of the view and focuses only on the availability
of the base relations.

Active Rules

Ceri and Widom [CW91] study views from the practical perspective of extending an
existing active database system with rules to support incremental view maintenance.
The rules define respective SQL statements as actions that manipulate the view
by inserting or deleting appropriate tuples. Hence, when a rule is triggered the
according update to the view is performed by the database. Active rules for the
insertions and deletions of tuples to the base relations are determined by a respective
algorithm. The authors consider nested sub-queries with positive and negative
existential quantification, as well as set union and difference operators. They define
efficient incremental maintenance rules for views if key information about base
relations is present. If no key information is present the views are re-computed in
their entirety.

Memoing/Tabling

The original idea behind memoing stems from a shortcoming in logic programming
languages that use the SLD® resolution mechanism. SLD resolution basically imple-
ments a backtracking search through all rules that make up a logic program. This
backtracking can be understood as evaluating the logic rules as procedure calls,
with extension for the logic language, i.e., a rule can have multiple body definitions
for the same head and parameters in the head may be variables that are unified
in the body. Hence, speaking procedurally, this extension makes logic languages
nondeterministic. Due to recursion, the procedure calls can easily enter infinite
loops, even for simple — and meaningful — programs. Memoing is a technique
that guarantees termination by storing intermediate results for already computed
procedure calls, i.e., if the same call is made later in the computation the procedure
is not re-executed but rather the stored result is used [War92, SSW94]. The term
tabling is commonly used for the memoing technique in logic languages, as the
already computed results are stored and retrieved from a result table. Tabling also

6 SLD resolution is termed after the initial letters in “Linear resolution with Selection function for

Definite programs”; cf. [Lif96] for a treatment of the SLD calculus

44 2 Background

serves as an optimization technique that overcomes the fact that the SLD resolution
technique may perform several calls repeatedly during backtracking.

The original tabling solution was not incrementally maintained and tables were
effectively completely deleted in the presence of modifications. With tabling becom-
ing an established feature of deductive databases, it was naturally extended with
incremental view maintenance techniques. Note, that earlier works on view main-
tenance such as [Kiic91, GMS93] maintain a storage similar to tabling, but were
either not implemented or were custom extensions to existing implementations.

In [SRO3] the authors present an adaptation of the DRed algorithm of [GMS93]
that maintains tabled views. The approach uses a deferred maintenance strategy
and is only applicable to a single view. The latter restriction is due to the fact that
accessing the view refreshes the tables of all required predicates, but since the whole
approach is a top-down deferred evaluation, the refresh is not propagated in any
way to other views that depend on these predicates. Furthermore the approach has
0(n®) space complexity if one assumes a program that effectively computes a graph
reachability problem; where n is the number of vertices in the graph. The additional
space — reconsider O(n?) is required for transitive closure — is due to the fact that a
vector of supporting facts is stored for each derived fact.

Optimization Techniques

Several optimization techniques have been proposed to in the context of materialized
view maintenance. The first two techniques are optimizations to (i) speed up
evaluation and (ii) decrease (disk/main) memory for incremental maintenance. The
last two techniques are concerned with providing optimal solutions in the presence
of redefinitions of views or multiple independently defined views.

Identifying irrelevant modifications

The key idea is to provide tests that determine whether a particular modification
affects a given view, i.e., if the modification is relevant. If the test is negative, i.e., the
modification is irrelevant, no maintenance operations are necessary. However this
only pertains to particular modifications and if the test fails another maintenance
technique must be applied to maintain the view. In [BLT86, BCL89] a proposal
is made to test SPJ views in relational algebra, which basically normalize the
view definition and test the satisfiability of selection conditions. The approach
was extended for logic programming languages in [Elk90], which also considers
integrity constraints and simple recursive rules. In [LS93] the approach was further
generalized and reduced to the equivalence problem for datalog programs. The
approaches were adapted by [ABM09] for active XML documents.

2.3 Incremental View Maintenance 45

Testing the satisfiability of predicates and the equivalence between queries is in
general undecidable. The identification of irrelevant updates is thus only useful
for simple cases that can be decided quickly. In general the test must be less
expensive than determining — via some view maintenance technique — that the set
of changes to the view is indeed empty. The main advantage comes into play when
the modification is phrased as a simple query over a (potentially) large dataset.
Consider for example the YoungLecturers view given in Sec. 2.3.1, where all lecturers
have an age under 40. A database operation that is phrased as a query, which
deletes all lecturers over 40, can easily be checked to have no relevance for the view
YoungLecturers and is more efficient — for large datasets — than testing all deleted
tuples for their relevancy w.r.t. YoungLecturers. However, a general decision when
the test is advantageous is not discussed in the above approaches.

Efficient storage

To minimize the memory requirements of the incremental view maintenance
for relational databases with persistence, the authors of [Rou91] propose a data
structure termed view caches. The idea is to store only pointers to tuples in the
underlying relations that contribute to a view, instead of storing the concrete values
of the tuples in the view. The work was performed in a traditional stored database
context and hence is mainly concerned with an optimal I/O criterion that the same
buffer page of the underlying relation(s) is read only a minimum number of times.
To combat the space complexity of incrementally tabled logic programs that use
supporting facts the authors of [SRO5b] propose a compression scheme that relies
on sharing the supports. Actual savings vary for the defined views and input data,
but can be considered close to tabling the results without supports.

Adapting views after Redefinitions

The main idea for this optimization is to maximize the reuse of results and
auxiliary data in the case when the definition of a view is redefined with slight
changes. The basic technique is discussed for relation algebra in [GMR95, MD96].
They discuss adaptations for different classes of changes, e.g., in the selection
conditions or in joins, and show which additional information must be kept in order
to react to redefinitions of views.

The authors of [VSMO05] discuss changing rules for an incrementally maintained
ontology language that is encoded in a logic database. Changes to the ontology
change the rules of the logic program, i.e., the previously defined views. In [GIT11]
the authors generalize the adaptations to a larger set of logic programs and relational
algebra expressions. In particular they provide a framework for reasoning about
queries with negation (or set difference).

46 2 Background

Optimizing queries using maintained views

This query optimization takes materialized views into account and was proposed
to speed up query processing time for arbitrary queries and not only the queries of
the incrementally maintained views. The technique finds alternative formulations of
queries — specified by the user without referring to a view — that incorporate already
existing views maintained by the database system. As an optimization technique
the approach also has a merit for the definition of materialized views, when views
are defined via general queries that are partially maintained by other views. In this
case, alternative formulations using existing views can help to reduce redundant
maintenance work.

In [CKPS95] the authors present an extension to traditional query optimizations
that takes information about maintained views into account. A similar discussion is
provided for deductive databases in [LMS95]. The authors extend previous works
by also considering the minimality, i.e., size of the expressions, and completeness,
i.e., usage of only views and built-in predicates, of the alternative formulations.

2.3 Incremental View Maintenance 47

3 Language-Integrated Database with Incremental View Maintenance

In this chapter the integration of incremental view maintenance into a host pro-
gramming language is discussed. The incentive for the language integration is
twofold. First, to provide a query (i.e., computation) capability that allows the
use of relational operators found in databases for the sake of automated incremen-
talization. Second, to materialize in memory (i.e., store permanently) only the
necessary amount of data that is required for the incremental maintenance. As
shown in the previous chapter, incremental view maintenance has a long history of
studies in the fields of relational and deductive databases. In particular, there exists
a good understanding of how the different relational operators can maintain their
results incrementally. From these insights we can deduce the minimal amount of
materialized data.

It is instructional to understand the language integration as a combination of the
following five points:

Base relations (or extents) represent a (multi-)set of objects — in the sense of objects
provided by the host language — that can be queried. Extents are similar to
tables in databases, or collections in programming languages. Yet, extents are
only a logical representation of the contained data and never actually store
the data.

Incrementally-maintained relational operators are provided for maintaining the re-
sults of complex queries over the extents. The operators store a necessary
minimum of data to perform incremental maintenance, but not more.

An SQL-inspired embedded domain specific language is provided to specify queries,
which are then compiled to a tree of relational operators. The language is
comparable to those found in OO databases (cf. Sec. 2.2.4).

Incrementally-maintained views can simply be defined by storing the compiled
query in a variable in the host language. This means that the OO exten-
sion mechanisms, e.g., subclassing, can be reused to make the definition of
views more modular. For example, we can define an interface for views of spe-
cific types and give different implementations based on particular application
scenarios. Note that a type termed Relation is the common supertype for all
operators (i.e., compiled queries) and extents. Thus clients are not required
to differentiate between compiled queries and extents, but can interchange
them freely.

49

Events are responsible for performing the incremental maintenance. Maintenance
starts by triggering events for the addition/removal/update of objects in the
base relations. The incremental changes are then propagated through the
operator tree and respective modification events are received by the view.
Clients can use views as materialized views, i.e., their data is retained in
memory and can be traversed similar to a list, or they can use a view without
materialization and subscribe to the event system of the incrementalization to
receive events whenever modifications to the results of the view are imminent.

All the above concepts are provided in the language Scala, which provides a very
good integration for building embedded domain specific languages (EDSLs).

For illustration consider the example depicted in Figure 3.1. The example uses
plain Scala (together with the proposed EDSL) and can be be compiled and run such
as it is presented. A base relation over objects of type Student is declared in line
1 and bound to the variable students; the concrete instance is of the type Extent
(line 2). A view of specific students is declared in line 4; the view is declared as
materialized via the type MaterializedRelation. The respective query in line 5
defines which objects are selected as results of the view. The query selects entire
student objects — denoted by (*) — from the base relation students that satisfy
the condition of having a first name equal to Sally. The incrementalization is
now performed automatically and the results are available via the variable view.
Incremental modifications are made to the base relation in lines 8 and 10, where
two new Student objects are added. After these modifications the execution of the
line 12 prints the string Sally. Note that the foreach basically takes a first-class
function and applies it to all elements in the collection; foreach is a standard Scala
method for collections, which is also supplied for materialized relations.

The presented approach uses ideas from the traditional view maintenance tech-
niques discussed in Sec. 2.3 to enable the incremental update exemplified above.
The notable difference is that incremental view maintenance in databases is typically
taken for materialized views, while the focus of this thesis is to perform as little
materialization as possible. More precisely, materialized views in databases are seen
as caches where the base relation and the views are materialized, whereas the data
in the computation is transient. In contrast, we wish to keep only the necessary
minimum of data required for the computation and treat the base relations and the
views as transient data. For example, in Figure 3.1 we do wish to materialize the set
of all students and the set of all students that are named “Sally”, but merely generate
events if students named “Sally” are added or removed from the database. Note that
the use of a materialized view in the example was made for illustrational purposes.
Typically, the results of the views are only generated as events and interested clients
can for example display them in a graphical user interface.

50 3 Language-Integrated Database with Incremental View Maintenance

val students: Relation[Students] =
new Extent[Student] ()

val view: MaterializedRelation[Student] =

SELECT (*) FROM students WHERE (_.firstName == "Sally")
val sally = new Student("Sally", "Fields")
students.add(sally)
val george = new Student("George", "Tailor")

students.add(george)

view. foreach(s => println(s.firstName))

Figure 3.1: Example of an incrementally maintained materialized view

Throughout this work the language Scala is used as the host programming
language. Hence, all examples discussed in the following are expressed in the
notation of Scala. The EDSL for writing queries in Scala provides complete type
safety. As a simple example, type safety guarantees that the objects returned as
results of the query in line 5 are of the type Student. As a more elaborate example,
type safety guarantees that the conditions in the query are compatible with the
objects found in the queried relation. In the above example the given condition
must be phrased as a function that takes a parameter! contra-variant to the type
Student (the type of the objects in the queried relation students).

Note that the notation of Scala is used in various discussions on typing issues.
In this respect Scala reflects the notation of type annotations found in textbooks
on type theory [Pie02]. In summary, the form e : T is used to denote that the
expression e has the type T. Subtyping is expressed via the form T <: S denoting
that T is a subtype of S. Parameterized types are denoted via square brackets, e.g.
R[T] denotes that R is parameterized by type T.

The remainder of this chapter is organized as follows: In Section 3.1 the data
definition, i.e., the layout of objects that can be queried via relations, is discussed
w.r.t. the integration into the host programming language. Section 3.2 discusses
the event system used for the manipulation of data. Section 3.3 introduces pro-
vided relational operators and discusses their semantics in the relational sense.

1 In the concrete example an anonymous function is used that can be translated to a function

taking a Student object as parameter

51

The incremental maintenance of the supported operators is discussed in section 3.4.
Section 3.5 discusses the optimality of the incremental maintenance in terms of
memory and runtime. Finally, we discuss further related works on incremental main-
tenance in section 3.6 The SQL inspired query language used to define automatically
incrementalized views is discussed in the next chapter.

3.1 Data Definition

Object-oriented database management systems typically provide their own languages
for data definition. In this thesis the database is directly integrated into an object-
oriented programming language. Hence, no external data definition language is
required. Instead, the definition of database objects is given directly as types in
the language. Thus, objects stored in the database retain the safety of a strongly-
typed host language. Database objects can be defined using the whole range of
mechanisms provided by the host language, i.e., as classes, traits, object types or
even structural types. The approach as a whole is not tied to a single programming
language (i.e., Scala) and can in fact be conceived as being parameterized by the
language. In the following paragraphs we discuss how data can be defined and how
different database concepts are realized within the host language.

class Student(val firstName: String,
val lastName: String,
val grades: List[Int])

def gradeAverage: Float = {
grades.reduce(_ + _) / grades.length

class Course(val title: String)

class Registration(val student: Student,
val course: Course)

Figure 3.2: Data definition for a student registration database

Figure 3.2 depicts a simple database schema for a registration system that records
students and the courses they are registered for. The data in this database is declared

52 3 Language-Integrated Database with Incremental View Maintenance

using Scala classes. A student (declared in lines 1-8) has three attributes, a first and
last name of type String and a list of her grade points of type Int. In addition a
student has a method to compute the average of the grades (line 5-7). A course
(line 10) has a title of type String. A registration (line 12-13) is a relation between
students and courses, which is encoded as a class holding respective objects.

3.1.1 Object Properties

Objects are used in queries (and views) via the accessible attributes and methods
that are defined for the types of the objects. In the following we denote all data
that can be accessed for a given type as object properties or in short properties. A
property can be a stored value, e.g., the name of a student (cf. Fig. 3.2), or it can be
computed via a method, e.g., the gradeAverage of a student. We assume that the
computation of the value has no side-effects. All properties are strongly typed due
to their definition in the host language. Hence, properties are guaranteed to return
values of the specified types.

We currently restrict properties to be immutable once an object resides in the
database, i.e., was logically added to an extent. Instead of having mutable state
an explicit event must be triggered to the extent holding the particular object,
to signify an update of the object’s values. This approach greatly simplifies the
incrementalization, since all operators can rely on the fact that all modifications
are received via a well-defined interface and results can not be invalidated due to
unexpected changes in the state of an object.

val susy = new Student("Susy", "Fields")
students.update(sally, susy)

view. foreach(s => println(s.firstName))

Figure 3.3: Example of an incremental update to object properties

For illustration, consider Figure 3.3 that updates an object in the student extent
declared in Figure 3.1. The first name of the object sally is updated to "Susy"
by notifying the database of the update (line 2). Instead of a state mutation, the
updated value is passed as a new object (created in line 1). Hence, the view is
notified of the changed value and the corresponding entry for "Sally" is removed.
Changing the state of the object sally via mutable fields would invalidate the
results in the defined view.

3.1 Data Definition 53

The treatment of properties as immutable is actually quite natural when com-
paring the approach with OO programming that uses collections such as hash sets
or hash maps. Defining object equality (or object hash codes) via mutable fields is
equally harmful as storing mutable objects in the database. In the case of collections
potential users of the collections can experience strange results. For example, storing
an object o in a hash set s and changing the state of o can yield a negative result for
the test s.contains (o). The book Effective Java [Blo08] provides a more detailed
discussion on the topic.

Whether state is required to be mutable is also greatly dependent on the underly-
ing scenario of how data changes. For example, immutable structures are sufficient
for static analyses on bytecode, which was the motivating use-case for this thesis.
The general workflow in this scenario is to read the bytecode that was generated by
a compiler. The bytecode is parsed into a new immutable object structure. Previous
versions of the bytecode (e.g., for a recompiled class) are also represented by an
object structure, however, the parsing process does not try to identify objects in the
previous versions and alter their state; this makes for a cleaner and more efficient
design of the parser. Hence immutable state is sufficient and updates from the
previous version to the next version are triggered as events on the database.

The incorporation of mutable object state is also a technical issue, which stems
from the fact that a mutable state must somehow notify the incremental view
maintenance of the changes. An explicit triggering of updates after mutating state
- by sending an event to the database — is feasible, but requires additional boiler
plate code. In essence an object’s state mutation must be monitored (at least for
objects participating in the incremental view maintenance) to trigger events to the
database. Such a monitoring is not easily introduced with the common language
semantics of most OO programming languages. Although languages based on
bytecode as an intermediate representation (e.g., Java, Scala, C#), can be subject to
instrumentation of the classes to introduce said monitoring and a respective trigger
[TSDNPO2].

3.1.2 Database Instances

A database instance consists of several extents and/or views. Logically an extent
represents® a (multi-)set of objects instances of a specific type. Note that multisets
allow duplicates of objects, which will be discussed in detail in Sec. 3.3. For example,
a database instance for the data in Figure 3.2 consists of three extents Egdentss
Ecourses a0 Epegistrations fOr €ach of the types Student, Course and Registration.

2 Asnoted in the beginning of this chapter extents do not actually store objects.

54 3 Language-Integrated Database with Incremental View Maintenance

Extents can be queried similar to tables (relations) in traditional databases. Each
property of an object corresponds to a column in a table and each object instance
corresponds to a row.

For illustration, Figure 3.4 depicts a database instance with the data in the extents
treated as being materialized. For example the database contains two students
(Figure 3.4a) as rows and all properties are represented as a respective column, i.e.,
first and last names, grades — represented as a set of integers for the purpose of this
illustration — and a grade average. Especially the grade average is not actually stored
as an attribute in the object, but in terms of querying the data it can be accessed in
the same manner as stored values.

OID firstName lastName grades gradeAverage

01 Sally Fields {1,3,2} 2.0
0, John Doe {4,1,1,3} 2.25

(a) EStudents

OID student course

OID title
- . 0¢ 0, 03
03 Introduction to Computer Science
. . 07 01 04
04 Data and Knowledge Engineering o o o
o5 Introduction to Software Engineering 8 2 3
% 02 Os
(b) ECourses

(C) ERegistrations

Figure 3.4: Example of a database instance for the student registration database

Objects in a database instance can have references to other objects. For example
the Registration class is defined with a reference to a student and a course. Each
entry in the registration extent uses the object identifiers (OID) to reference the
respective student and course, i.e., the first row in 3.4c means that the student
named “Sally Fields” is taking the course “Introduction to Computer Science”. Note
that object identifiers are not actually stored or maintained in the database, but
simply denote the object reference in memory used by the underlying programming
language. The column OID is merely presented for illustration.

As noted in the beginning of this chapter, extents are simply accessible via vari-
ables of the host language. In a typical scenario users design a database with multiple
extents (and views). In our scenario with the three extents defined in Figure 3.4, a
database can simply be defined as single a class. For illustration, Figure 3.5 depicts
an exemplary database definition. Using classes for database definition allows a
very flexible design, since OO extension mechanisms, e.g., subclassing, can simply

3.1 Data Definition 55

class StudentRegistrationDatabase

{
val students = new Extent[Student]
val courses = new Extent[Course]
val registration = new Extent[Registration]
val viewl =
}

Figure 3.5: Definition of a student registration database

be reused to extend a database definition, e.g., via additional views in the a subclass.
An instance of a database can then be obtained by instantiating the respective class.

For global accessibility, i.e., throughout an entire program, singleton instances can
be defined.

3.1.3 Object Identity and Object Equality

The proposed language integration treats object identifiers different from traditional
OO0 databases. Object identifiers are not explicitly managed by the language integra-
tion, since they arise naturally by allocating objects in memory, i.e., each object can
be uniquely identified by its address in memory and object references are pointers to
said addresses. In contrast an OO database is required to manage these identifiers
explicitly, since objects can either reside in memory or a persistent storage device
and in the latter case must be retrieved efficiently.

Potentially, the host programming language provides (limited) access to object
identifiers by providing an equality test that compares object references. For ex-
ample, the Scala construct “ol eq 02” returns true only if ol and o2 reference
the same object. However, for the purpose of memory efficient incrementaliza-
tion tests based on object identity are actually detrimental. In a treatment via
identity, the removal of an object would require that the exact same object be
identified in the extent and removed from it, hence this is not possible with-
out storing the object. For illustration consider the extent courses for objects
of type Course. The course with the title “Introduction to Computer Science” was
added at some prior point in time. Note that this knowledge is implicit in the
database client application, i.e., the value in Figure 3.4b is not actually stored. The
call courses.remove(new Course("Introduction to Computer Science")) re-
moves the respective entry, even though the passed parameter is in fact a new
(different) object.

56 3 Language-Integrated Database with Incremental View Maintenance

Treatment by equality can be seen as a consequence of achieving minimal memory
consumption for the incrementalization. Nevertheless, it is prudent to note the fact
that — as an approach — treatment by equality implies that the complete state® of an
object can be reconstructed by the database client without the help of the database.
In the above example the complete title of the removed entry (“Introduction to
Computer Science”) was — somehow — known to the client. In the case of using the
database for static analyses the client has this knowledge, since the data is input and
modified from source code files (or compiled bytecode files). As a simple example, if
an analyzed class is removed, the data is simply re-read from the respective bytecode
file and removed from the database, prior to the final deletion of the file. Note
that updates require a slightly more complex treatment which will be discussed
in detail Section 5.5. The important thing to note is that the treatment by value
equality is very flexible and does not require the extents to retain all the data. The
concrete state can be stored on disk in a form dictated by the client application
(as for example in the case of static analyses) or the state might be retained in
memory by the client application in some other form, hence storing them in extents
is a duplication. If this is not the case there is still the additional possibility to
materialize the data. In summary, treatment by equality allows the design decision
of where data is stored to be made by clients.

3.1.4 Subtyping and Querying

The types in the database definition retain the subtyping mechanisms of the host
language, i.e., introduction of additional data/behavior via subclassing, mix-in com-
position and structural subtyping. For example, Figure 3.6 depicts two extensions
to the class Course. The subclass MasterCourse (lines 1-3) represents a course
taken by students during their masters studies. A MasterCourse can have a set of
prerequisite courses which students must have already taken. A LabProject (lines
5-7) represents a hands-on training course, which can accommodate only a limited
number of students per semester. Due to the subtyping rules of the host language
both extension can be used whenever the common supertype Course is expected.
Queries on this supertype can, for example, uniformly access the property title in
a database containing all three classes.

Whether the extended properties (prerequisites or studentLimit) are acces-
sible by a query depends on the type of the extent or view on which the query is
specified. All extents and views are strongly typed and are parameterized by the
type of the objects they contain. For typing purposes we can treat extents and views

3 Or at least the parts of the state relevant for equality

3.1 Data Definition 57

class MasterCourse(val prerequisites: List[Course],
title: String)
extends Course(title)

class LabProject(val studentLimit: Int,
title: String)
extends Course(title)

Figure 3.6: Extension of the database definition via inheritance

uniformly as relations. The type of a relation is denoted by Relation [T], which
means that the relation contains objects of type T; from the typing perspective a
relation is similar to a heterogeneous list. For example, the type of the extent E,ces
is Relation [Course]. The properties available to views over a relation are those of
the parameter type T. For example a view defined on the type Relation [Course], can
access the property title. If the relation contains objects of types MasterCourse or
LabProject, their additional properties are not accessible.

Given a relation of type Relation [T], access to particular subtypes T' of T can
be obtained as a view. The view must (i) filter the elements, i.e., all objects of
type T satisfying a predicate that they are instances of T' and (ii) downcast all
elements to the particular subtype T'. For illustration, Figure 3.7 depicts a view of
all MasterCourse objects obtained from the base relation courses.

val masterCourses: Relation[MasterCourse] =
SELECT ((_:Course).asInstanceOf[MasterCourse]) FROM
courses WHERE (_.isInstanceOf[MasterCourse])

Figure 3.7: Providing object instances of subtypes as a view

Vice versa, given a set of n relations of types Relation [T], ..., Relation [T,]
(where all T; ... T, are subtypes of T), a combined view as Relation[T] can be
defined as the union of all relations. Hence, a complete relation over all subtypes
or a set of relations for each subtype can be freely transformed into one another.
Thus, a database can be designed with both a combined extent for the supertype
and several distinct extents for the subtypes or only either of the two possibilities.
Favoring one design over the other does not limit users of the database, but may

58 3 Language-Integrated Database with Incremental View Maintenance

require the definition of respective views if only one possibility is accessible in the
predefined database design.

3.2 Data Manipulation

The data manipulation is designed with the intent of performing efficient mainte-
nance of views. Since some views can be maintained without knowing the base
extents from which they were derived, data manipulation is not as straightforward
as in traditional databases, especially when treating deletions.

Databases can express modifications via a data manipulation language, which is
for example part of the SQL specification. In SQL deletions of objects in a database
can be phrased as a query, such as the following:

DELETE * FROM students WHERE firstName = ’'Sally’

The net effect of a query in a data manipulation language can be evaluated into a
delta of deleted objects from the underlying table, e.g., students. Such deltas are
the basis for incremental maintenance algorithms as presented in [BLT86, GJSM96].
Given an extent E and a set of modifications, a view maintenance algorithm uses
deltas (sets of objects) for additions (AZE) and deletions (Ay) that are known to
change the extent E as follows:

E"™ =(E—-A;)UA}

In this thesis the extents do not require explicit storage and concrete sets of
objects can not be derived for queries such as presented above. Consequently, the
data manipulation of extents is managed via explicit sets of objects and not by a data
manipulation language. Thus the approach makes no assumptions whether the data
is stored or only propagated to update views. According to this semantics methods
for data manipulation are introduced for the type Extent as depicted in Figure 3.8.
Extent defines methods that allow to manipulate single entries via add/remove or
update. Multiple modifications can be provided as sets of additions, deletions or
updates. The method modi fy is exemplified here (line 11), which allows to provide
modifications of all three types together. Note the type Iterable is a Scala type that
allows to iterate over an arbitrary collection. There are no restrictions on the data
contained in the modifications, i.e., objects can be added multiple times if necessary.

As an interesting side-observation one might think that databases computations
are based on sets of objects and, hence, the single valued manipulations are not
of great importance. However, from the point of view of runtime performance, a
treatment via single objects can be advantageous. The simple reason is that the

3.2 Data Manipulation 59

trait Extent[V] extends Relation[V]
def add(v: V)
def remove(v: V)

def update(oldV: V, newV: V)

def modify(additions: Iterable[V],
removals: Iterable[V],
updates: Iterable[V])

Figure 3.8: Excerpt of the Scala trait for base extents

aggregation of objects into collections also requires computation time, e.g., creation
of nodes in a linked list, or entries in a hash set. If this computation is performed
solely for the purpose of modifying the database, the runtime can decrease by factors
of 3to 5.

3.3 Definition of Relational Operators Using Functions as Parameters

The underlying execution model for which results are incrementally maintained
is an adaptation of the relational algebra [Cod70]. The presented formalization is
a comprehensive reformulation of relational operators with a uniform treatment
using functions as operator parameters. The traditional relational algebra passes
column names instead of functions to the various operators. For example, to signify
the columns on which a join between two tables is performed.

The relational algebra consists of relations, which are sets of tuples, and relational
operators, which query the relations and produce new relations as a result. Since
all operators consume and produce relations they can be freely combined to form
powerful queries. In addition, new operators can be defined that immediately work
with the existing model. Hence, the relational algebra provides a very flexible
formalism for expressing queries that supports composability.

Naturally, precursor formalizations were given in different related works. The
effective relational algebra for using multisets in SPJ views and in set-theoretic

60 3 Language-Integrated Database with Incremental View Maintenance

operators was first presented by Dayal et al. [DGK82]. We also adopt the multiset
approach where a multiset is a relation that can contain one or more copies of
the same value, i.e., {a, b, b} is a multiset with three elements. Multisets are the
standard model for modern relational databases and SQL [ISO11]. Hence, queries
can be formulated and understood by an audience familiar with standard database
technologies.

In contrast to Dayal et al. [DGK82] we use freely definable functions, whereas
they use column names. The object-oriented approach requires additional operators
which were also provided by Shaw et al. [SZ90]. In addition, the typing rules are
different from those found in related works. For example in the treatment by Kuno
et al. [KR98], all operations produce new types (called virtual classes) as a result.
Thus, for example the union over several relations containing objects of different
types yields a new type that represents the union of said types. In our approach we
require all types (for extents or views) to be defined as part of the host language.
Using this approach type correctness can be proven for the defined views using the
type checker provided by the host language.

The relational algebra operators provided for automatic incrementalization are
described after a short discussion of the background on the formalization and the
used notation. The semantics of each operator is introduced in prose and by a formal
description using multisets. The operators are divided into four groups: (i) basic
operators (Sec. 3.3.2), used in traditional relational algebra; (ii) set theoretic opera-
tors (Sec. 3.3.3), e.g., union; (iii) advanced operators (Sec. 3.3.4), e.g., transitive
closure and recursion; (iv) derived operators (Sec. 3.3.5), which support common
(sub-)queries for existential quantification.

3.3.1 Notation and Background

Multisets are formalized as sets of pairs where each pair consists of the value and
an additional count for the occurrences of the value. Hence, {a, b, b} is written as
{{a, 1), (b,2)}. For simplicity in the below definitions we can assume that (t,0) € A
is true if there does not exist a pair (t,i) in the multiset A, i.e., if the element is
not in the multiset we obtain a count of 0. From an implementation perspective
elements with a count of zero are removed from multisets. As discussed in Sec. 3.2
data manipulation relies on object equality rather than object identity. Consequently,
the formalization regards two objects in a multiset as identical if the values of all
their properties are equal. Hence, inserting an object to a multiset will increase the
counter, if the multiset already contains an equal object. In practice this means that
classes must implement respective equals and hashcode methods. This requirement
is in the spirit of the underlying programming language, i.e., the same methods are

3.3 Definition of Relational Operators Using Functions as Parameters 61

required for correct treatment of objects in sets or hash tables and, thus, known to
developers from working with these collection types.

Properties of objects, predicates, and transformations are uniformly treated as
functions. For example, given an object o : T, then retrieving the property v : V
can be written as o.v which returns a value of type V. Retrieving the property
can be seen as a function from T to V which is denoted by the type T — V. For
example retrieving the title of a Course (as defined in Figure 3.2) is a function of
type Course — String. Likewise a predicate on objects of type T is a function of the
type T — Boolean, that returns true for all objects satisfying the predicate. Finally
transformations of the objects processed by an operator to a different output are
treated as function T — O where T is the type of the input and O the type of the
output.

We use a lambda notation for concrete functions supplied to the various operators.
For example, Ax.x is the function that takes a parameter x and returns the parameter
as a result, i.e., the identity function. The lambda functions are used without any
type annotations for the sake of readability. The concrete types of parameters of
a lambda function are always deducible by the respective relations on which the
functions are used. For example, the function As. s.firstName = ‘Sally‘ is a lambda
function on students, which returns true if a students first name is “Sally”. The
function can for example be used in a filter on a relation over student objects.

Where appropriate the Scala notation for tuple types is used, i.e., a tuple of two
objects with types U and V is denoted by the type (U, V). For readability by a
non-Scala audience we denote access to the components of a tuple by properties
first and second, i.e., if o : (U, V) then o.first returns a value of type U and o.second
a value of type V. Tuples with more entries are treated accordingly, e.g., a tuple
with three values o : (U, V, W) can access the third component as o.third.

All operators are defined on multisets and the respective type for their operands is
denoted by the type MultiSet[T], i.e., a multiset that ranges over objects of type T. A
set (denoted by Set[T]) is a specialization of a multiset, i.e., Set[T] <: MultiSet[T]
and thus all operators accepting multisets also accept sets. The differentiation
between sets and multisets is advantageous for query optimization. For example, a
(simple) optimization is that the operator for duplicate elimination (cf. Sec.3.3.2)
transforms a multiset into a set and can thus be omitted if the operand is a set.
Hence, we discuss which operators retain the set property of their operand.

62 3 Language-Integrated Database with Incremental View Maintenance

3.3.2 Basic Operators

Let A: MultiSet[T] and B : MultiSet[V] be two multisets containing objects of types
T and V, respectively, then the basic operators of the relational algebra are defined
as follows:

Selection 0g(A) : MultiSet[T], where 0 is a boolean predicate of the type T —
Boolean (i.e., the domain is T and the range is Boolean). The selection yields
all objects from A that satisfy 6. The selection preserves sets, i.e., if A: Set[T]
then oy(A) : Set[T].

oo(A) = {(v,0) | (v,i) €ANO(v)}

Projection m,(A) : MultiSet[S], where p : T — S is a function that transforms the
objects in A to objects of type S. Multiple tuples can be transformed to the
same result. Hence, the result may always be a multiset and the count of an
object in the result is equal to the sum of all objects that are projected onto
the same image.

oA = {{, k) [T (x,n) ANV =p(x)Ak= Y i}
(a,i)eA N
v=p(a)

Cartesian product (A x B) : MultiSet[(T, V)] builds tuples of all combination of the
objects in A and B. The Cartesian product preserves sets if both input relations
are sets, i.e., if A: Set[T] and B : Set[V] then A x B : Set[(T,V)].

AxB={((u,v),i*j)|{u,i)€AN(v,j) € B}

Join (A o B) : MultiSet[(T, V)] builds tuples of all combinations of the objects
t € Aand v € B, where the join condition p(t) = ¢(v) is true. The functions
p:T —J; and ¢ : V — J, can return values of any types J;,J, under the
condition that an equality comparison operator is defined between J; and J,.

The result of a join is equivalent to o4(A x B), where the filter function 6
encodes the join condition.

The filter function takes a tuple procured by the Cartesian product — thus
filter has the type 0 : ((T,V)) — Boolean — and evaluates the functions p and
¢ on the first and second component of the tuple. Hence, in the definition
below we assume that the components can be accessed as properties first
and second via the dot notation. The join operator preserves sets, as per the
definition of selection and Cartesian product.

A ngp B= O.7Lt.p(tﬁrst):go(t.second)(A X B)

3.3 Definition of Relational Operators Using Functions as Parameters 63

Duplicate Elimination &(A) : Set[T], transforms a multiset A into a set.

6(A) = {v|(v,i) €A}

Aggregation 7, ,(A) : Set[(G,AV)], where p : T — G is a function that transforms
the objects in A to objects of type G, and a : MultiSet[T] — AV is an aggrega-
tion function over multisets that builds a single value of type AV. Informally
the aggregation forms groups of objects over the relation, where all elements
in the group are transformed to the same value under p. Hence, the set of all
groups is given by 6(7,(A)). The final results of the operator are the tuples
containing the image of p and the aggregate value of the respective group.

Typical aggregation functions are COUNT, SUM, MIN, MAX, that work over
integers, but the operator works with any aggregation functions over any type.
In the case the of the typical integer aggregation functions, we provide default
implementations that are parameterized by an additional function T — Int,
e.g., MIN(Ax x.age). The latter is similar to the treatment of aggregation
functions in SQL where the function is parameterized by the column names
over which the aggregation should be performed.

Note that the grouping function (p) can be considered optional, i.e., if no
grouping is present the entire aggregation function is applied to the entire
relation. Omission of the grouping function is semantically equivalent to
using a grouping function that returns the same value for all elements, e.g.,
Ax. 0.

Yoa@=|J {(ga)la=a(os =@}

ged(m,(A)

3.3.3 Set-Theoretic Operators

The algebra features set operators for union, intersection and difference, of multisets.
The standard set-theoretic semantics can be extended in two different ways for
multisets. The difference lies in the treatment of multiple occurrences of objects
that are identical in their properties, i.e., all properties in two objects yield the
same values. The first extension treats multiple occurrences of identical objects as
indistinguishable. The second extension treats all objects as differing, even though
they may be identical in their values. Both extensions have their utility.

The indistinguishable semantics is useful for formulating correct transformations
of boolean predicates in selections. Recall that in relational algebra the combination
of predicates using boolean operators is translated via the following formulas:

64 3 Language-Integrated Database with Incremental View Maintenance

Ogvo, =09, UTg, Ogne, =0g N0y, Oga-,=0g — 0y,

These properties are carried over by the indistinguishable semantics of the set
operators, since these operators reduce to their usual semantics if the operands
are sets. Consider for example a query on the student registration database in
Figure 3.4a, that selects all students named “Sally” or all students with an average
grade below 3.0:

O 2s. s.firstName="Sally‘ v s.gradeAverage<3.0(EStudents)

Clearly this query should yield the first two rows in Figure 3.4a and each row
should be present only once in the result. However, the disjunction in the predi-
cate will yield true for both the first condition (firstName = ‘Sally‘) and the second
condition (gradeAverage < 3.0) for the row containing the student named “Sally”.
However, the union over two selections that evaluate the first and second condi-
tion separately must contain the row for “Sally” only once, i.e., both results are
indistinguishable.

In contrast the differing semantics is required for correct unions over projec-
tions. In the relational algebra a union of two projections (7,(A) U 7t,(B)) can be
transformed using the following formula.

n,(AUn,(B)=r,(AUB)

For illustration, consider A = Eg,, 4., (as in Figure 3.4a), and let B be the relation
as shown below in Figue 3.9, and p = As. s firstName. Then the result of 7,(AUB)

OID firstName lastName grades gradeAverage

010 John Smith {3,4} 3.5

Figure 3.9: Additional student stored in relation B

should clearly be a the multiset {(Sally, 1), (John,2)}. However, in the union over
two projections, the indistinguishable semantics treats instances of the name ‘John”
as duplicate values and, hence, 7t,(A) U 7, (B) = {(Sally, 1), {(John, 1)}.

To remedy the above situation a separate operator (denoted AW B) is defined for
union with the differing semantics. The differing semantics has the added benefit
of being cheaper to maintain in materialized views. Note that the operators for set
intersection and set difference reduce to trivial meanings under the assumption that
all elements are differing, i.e., AN B = () and A — B = A; thus they require no special
treatment.

3.3 Definition of Relational Operators Using Functions as Parameters 65

Definitions

Let A : MultiSet[T] and B : MultiSet[V] be two multisets containing objects of

types T and V then the set-theoretic operators of the relational algebra are defined
as follows:

Union (indistinguishable) (AUB) : MultiSet[U], contains occurrences of objects that

are contained in A or in B or both. Duplicates for equal objects occurring in
both relations amount to the maximum of all duplicates in A and B. The type
U of the elements contained in the union must be a common supertype of
Tand V,ie.,, T <: UAV <:U. The type must be provided as part of the
operator and object equality must be defined between elements of type T
and elements of type U (or between V and U). The indistinguishable union
yields a set if both operands are sets, i.e., if A: Set[T] and B : Set[V'] then
AUB : Set[U].

AUB = {(v,k)|3i3j.(v,i) €AA (v,j) € BAk =max(i,j) Ak #0}

Union (differing) (AW B) : MultiSet[U], contains all occurrences of all objects from

A and B. Duplicates for equal objects occurring in both relations amount to
the sum of all duplicates in A and B. The type U of the elements contained in
the union must be a common supertype of T and V,i.e., T <:UAV <: U.
The type must be provided as part of the operator. A notion of object equality
is not necessary, since the differing union treats all objects as unique elements.
The differing union yields a multiset in general. A set is only returned if
both operands are non-overlapping sets, i.e., if A: Set[T] and B : Set[V] and
ANB=0thenAwB : Set[U].

AwB = {(v,k)|3iTj.(v,i) €AA(v,j) €EBAk=1+jAk#0}

Intersection (AN B) : MultiSet[U], contains all objects that are both in A and

B. Duplicates for equal objects occurring in both relations amount to the
minimum of all duplicates in A or B. The type U of the elements contained in
the intersection must be a common supertype of T and V,ie., T <:UAV <:
U. The type must be provided as part of the operator and object equality
must be defined between elements of type T and elements of type U (or
between V and U). Otherwise the result is guaranteed to be the empty set,
since no combination of two objects from A and B can be considered equal.
The intersection yields a set if either operand is a set, i.e., if A : Set[T] or
B :Set[V] then ANB : Set[U].

ANB={(v,k)|(v,i) €AA(v,j) €BAk=min(i,j) A k # 0}

66

3 Language-Integrated Database with Incremental View Maintenance

Difference (A — B) : MultiSet[T], contains all objects that are in A and not in B.
Duplicates for tuples occurring in both relations amount to the difference of
all duplicates in A and B. The types T and V of the elements in the operands
must either be subtypes, i.e., T <: V (or V <: T), or they must have a
common supertype U and object equality must be defined between elements
of type T and elements of type U (or between V and U). Otherwise the result
is guaranteed to be the set A, since no combination of two objects from A and
B can be considered equal. The difference yields a set if the first operands is
aset, i.e., ifA: Set[T] then ANB: Set[T].

A—B={(v,k)|(v,i) €A, (v,j) € BAk=max(i—j,0) Ak # 0}

3.3.4 Advanced Operators

The operators (UnNest and Nest) deal with objects that contain collections as part of
their definition?, e.g., the grades attribute of the type Student as depicted in 3.2.
Such objects can occur frequently in an OO design, when the data contained in the
collection is deemed a logical constituent of the enclosing object. In the example in
Figure 3.4 we modeled the data for a student’s grades as a nested collection that
naturally belongs to a student. In first-normal-form the student grades would be
unnested as a “flat” relation. Figure 3.10 exemplifies the flattened relation of all
student grades. We omit object identifiers for each entry for brevity.

student grade

04 1
01
01
02
03
03
02

W= = BN W

Figure 3.10: Example of an extent (Eg,,4es) With unnested student grades

Each representation (nested or unnested) offers a concise form of querying for
a certain scenario. The nested representation is more concise for queries that

4 Asituation also found in relational database that are in “non first-normal-form” [JS82]

3.3 Definition of Relational Operators Using Functions as Parameters 67

involve only the values in a collection belonging to one object. The unnested
representation is more concise for queries that involve the values of all collections in
all objects. Hence, the Nest and UnNest operators can transform a flat representation
of database tuples into a collection that belongs to an object (Nest) and vice versa
(UnNest).

For illustration consider our running example of students and their grades. The
unnested relation Eg,,4,, works well with relational algebra operators that reason
over all grades for all students. Consider for example the following query:

Find the minimal grade given to any student

In the relational algebra the query can easily be formulated as an aggregation using
the MIN function over the unnested relation:

Y MIN (Ax x.grade) (EGrades)

The query is not as concise if we only have the nested relation available, i.e. without
support for for unnesting. In this case the nested relation must be queried by
building the minimum of the grades for each student and then a minimum over the
resulting values:

YMIN(Ths MIN(s.grades) (EStudents))

In contrast, the nested relation works well for queries that reason over the grades of
a single student. Consider for example the following query:

Find all students that have at least one grade equal
to 1 and one grade equal to 4.

Given that the collections support appropriate abstractions, we can phrase the query
such that the set 1,4 is a subset of a student’s grades as follows:

O s Set(1,4).subset(s.grades) (EStudents)

The unnested relation requires a join to state the same query, since we can only
reason over one grade at a time. Thus we have to find two entries, i.e., one for
the grade 1 and one for the grade 4, and join them to see that they belong to the
same student. The following operators briefly exemplify the join (the concrete join
conditions are omitted):

O)s s.grade=1 (EGrades) >0y s.grade:4(EGrades)

68 3 Language-Integrated Database with Incremental View Maintenance

In summary, the Nest and UnNest operators can transform the database represen-
tation to allow more concise queries. In practice, we were mostly interested in the
unnest operator, since it was more common that a query was better expressible in
the unnested relation, while queries where the nested relation has an advantage —
as exemplified above — were rare.

The transitive closure operator provides a limited form of recursion. Consider for
example the class MasterCourse — as defined in Figure 3.6 — that has a prerequisite
course. Since the prerequisite can also be a master course a transitive chain of
prerequisite courses can exist. Queries using the basic and set-theoretic operators
defined in the previous sections can only express selections on the direct prerequisite
course; retrieved via the prerequisites property of the MasterCourse. A transitive
closure operator can find all direct and transitively reachable prerequisites.

Recursion allows the results of an operator that depends on values from A to be
used as new inputs for A. As noted in Chapter 2 the transitive closure also provides a
limited form of recursion. Hence, it is important to differentiate these two concepts a
little further. The transitive closure allows a recursive traversal over a graph formed
by the objects contained in a relation. However, the underlying assumption is that
all objects that form the graph are present as values in the relation. This allows to
express a large category of recursive functions. Yet, it can not express functions that
recursively depend on values computed as part of the recursion.

For illustration, consider the function rec in Figure 3.11. The function defines a

def rec(in: List[Data], fix: List[Data]): List[Data] = {
val next = new Data(transform(in.head))
if(!fix.contains(next))
rec(next :: in, next :: fix)
else if(in != Nil)
rec(in.rest, fix)
else
fix

Figure 3.11: Example for a fixpoint recursion

fixpoint recursion, where the initial input data is passed as a list in and the fixpoint
is also passed as a parameter fix (line 1); typically with the value Nil when the
recursion is started. In each step, a new value is computed as a transformation from
the first element in the list (line 2). If the new value is not contained in the fixpoint
(line 3) it is passed into the recursion as new input data (line 4). Otherwise, the

3.3 Definition of Relational Operators Using Functions as Parameters 69

rest of the input is processed (line 6) until no more elements are left in the input
(line 8). The transitive closure cannot express a recursive addition of computed
values, e.g., a call as found line 4. However, the important thing to note here is
that the transitive closure can be seen as a special case of recursion, i.e., a recursive
traversal over a set of edges, and can be maintained more efficiently in terms of the
runtime of incremental updates.

Definitions
Let A : MultiSet[T] be a multiset containing objects of types T then the set
extended operators of the relational algebra are defined as follows:

Nest v, ,(A) : Set[(S,MultiSet[V])], where p : T — S is a function that transforms
the objects in A to objects of type S and ¢ : T — V is a function that
transforms the objects in A to objects of type V. Informally the nesting groups
objects in the relation, where all elements in the group are transformed to
the same value under p. For each group a multiset of objects — containing
elements transformed using the function ¢ - is returned, that contains the
nested values.

The operator can be reduced to a special form of aggregation (cf. Sec. 3.3.2).
This is due to our broad treatment of aggregation, i.e., we consider arbitrary
aggregation functions and not only aggregations over integers such as COUNT,
AVERAGE, etc. The aggregation function a takes as input the multiset of the
group and transforms the values using . Hence, the aggregation function
is an application of the function map in the usual functional programming
sense [Pie02].

Note that we give a definition of the nesting operator where the returned
values can be transformed — via map - to construct new objects. These objects
contain the nested values, e.g., as a property. The same effect could be
achieved by defining a projection on top of a simple operator, i.e., storing
the original objects in a collection and applying the map function in the
projection. However, since all objects are processed by the operator in any
case, the given definition is more efficient.

Voo A= Y p,AG. map(G,tp)(A)

UnNest u,(A) : MultiSet[(T,V)] , where p : T — MultiSet[V] is a function that
transforms the objects in A to multisets containing objects of type V. The
unnesting takes all values contained in the multiset returned by p and com-
bines them with the respective object of A, which contained the multiset. The

70 3 Language-Integrated Database with Incremental View Maintenance

operator returns a set if A is a set and for all t € A the function p returns a
set.

uo(A) = {{(t,v),ixk) |{t,i)) €EAAS = p(t) A (v,k) € S}

Transitive Closure TC, ,(A) : Set[(S,U)], where the objects in A represent edges
and p : T — S and ¢ : T — U are functions that are used to transform
the edges to their respective start and end vertex. The graph over A is then
defined as G, = (V, E) where E is the set of edges and V the set of vertices,
which are defined as:

E={(v,w)|3t€ANv=p(t) Au=¢(t)}
V ={v|du.(u,v) € EVv Iu.(v,u) € E}

A sequence of vertices (vy, V1, ..., V,) is a path of length n if (v;, v;,,) € E for
allie€ [0...n—1] and if v; # v; for all 0 < i < j < n. The sequence is a cycle
of length n if v, = v,.

The transitive closure over A is then defined via the existence of a positive
path in G, (cf. [AMO93]). The result are always tuples of vertices, i.e.,
of type (S,U), since — while original objects in A are edges of type T — a
general transformation from a pair of vertices to objects of type T can not
be automatically derived. If such a transformation exists, it can be expressed
as an additional projection on the result of the transitive closure. Note that
the start and end vertex are not required to have the same type. During the
construction of paths all objects are compared via object equality, hence there
can be no runtime errors.

The transitive closure operator used in this thesis always treats the results as a
set, i.e., multiple paths from one vertex to another are not treated as multiple
results. In this respect the defined transitive closure differs from the treatment
of right-linear-chain recursion in logic programming (cf. Sec. 2.3.1), where
multiple paths yield multiple results. However, (at least) for the purposes of
the static analyses defined in this thesis this treatment is sufficient.

TC, ,(A) = {(u, v)|3 a path with positive length from u to v in G,}

Note that we make no differentiation for cyclic or acyclic graphs w.r.t. the
above defined set semantics, since the existence of a path of positive length is
indifferent to cyclic or acyclic paths. Nevertheless, a treatment of cycles must
be performed in the computation of results, which will be discussed together
with the incremental maintenance of the operator in Section 3.4.3.

3.3 Definition of Relational Operators Using Functions as Parameters 71

Recursion REC(A,Op(A)) : MultiSet[U <: T], where Op(A) is a combination of

relational algebra operators that depend on A, i.e., have A as one of their
parameters. The recursion considered in this thesis is a fixpoint recursion
that eliminates duplicate recursive derivations. Hence, recursive functions
that would generate an infinite number of derivations are expressible and the
finiteness is ensured by our treatment of recursion.

The recursion is basically a substitution in the tree formed by operators that
depend in some way on the input relation A. The operators can form a
complex expression which is denoted as Op(A) in the following. To define
recursion we introduce a notion of substituting operators in Op(A) such that
the recursion can introduce a cyclic dependency into the operator tree which
lets results of Op(A) be propagated back to A. Let R be a tree of operators of
the relational algebra. Then a substitution is denoted by:

Subst (R, Old, New) = R’ : all occurrences of Old in R are replaced by New in R’

A recursive definition performs a substitution in the tree of Op(A) at the place
where A is used. The substituted value is the union of all original elements
from A together with the results from Op(A). To introduce the notion of
fixpoints the results of Op(A) are passed to an operator FIX, which can for now
be thought of as taking the union of two inputs and removing all duplicates,
i.e., FIX(A,B) = 6(AW B). Note that for an incremental computation the
semantics of FIX is more complex. For type-safety the elements in Op(A) must
be compatible to the elements in A. Hence, if the type of the elements in A is
T then the type of the elements in Op(A) must be of some U <: T.

REC(A, Op(A)) = Subst (Op(A),A, FIX (A, Op(A)))

For illustration consider Figure 3.12, where the non-recursive definition of
Op(A) is shown in Figure 3.12a and the substituted operator tree is shown in
Figure 3.12b. The initial operator tree is defined by the expression Op(A) =
A< B - note that the concrete join-functions are omitted for brevity. Arrows
indicate the direction in which data flows between the operators.

Recursion and transitive closure

As noted earlier the transitive closure is a special case of recursion. Using the
above definition we can phrase the transitive closure via a general recursion
as shown in the equation below. Note that the results of the transitive

72

3 Language-Integrated Database with Incremental View Maintenance

> >

AN N
A B FIX B
A
(a) Non-Recursive Definition: (b) Substituted Operator Graph:
Op(A) =A< B Subst (Op(A), A, FIX (A, Op(A)))

Figure 3.12: Substitution of Recursive Operators

closure are always tuples of vertices, i.e., of type (S, U) where S is the type
of elements returned by p and accordingly U is returned by (. Hence, the
equality below is given by wrapping the transitive closure in a projection,
where the projection function a transforms the tuples back into elements
of A; in short, the type of a is (S,U) — T. A formulation using only TC on
the left hand side is also possible, but states equality to a recursion over a
projection of A to vertices and not a recursion over A itself.

Ty (Tcp,tp(A)) =0 (A WREC (A? Tx. a(p(x.ﬁrst),cp(xsecond)) (A (pr A)))

The equality between transitive closure and recursion can be understood
as follows: First the transitive closure contains all edges themselves, i.e., A
plus all edges that can be found by recursively concatenating existing edges.
Concatenation in this case means that (u, v) and (v, w) are concatenated to
(u,w). Note that the recursion will only find concatenated edges and not
necessarily those in A, but the edges in A can be derived a second time in
case of cyclic graphs. Hence, the complete result is wrapped in a duplicate
elimination to make it comparable to the treatment of TC, where recursively
concatenated edges that are already in A do not count as a new result.

The concatenation of edges via a join in the recursion is similar to the treat-
ment of the transitive closure. In the transitive closures paths are built by
joining edges, where edges are constructed from objects via the functions p
and ¢. Thus, if there are two objects 0, and o0,, the constructed edges are
(p(01),¢(01)) and (p(0,), p(05)). A joined edge — or path - exists if the end
vertex of the first edge is equal to the start vertex of the second edge, in short
p(07) = p(04). In this case the resulting joined edge is between the start
vertex of the first edge and the end vertex of the second edge, i.e., the result

3.3 Definition of Relational Operators Using Functions as Parameters 73

is (p(01), ¢(05)). In the recursion the equivalent to finding the existence of
a new paths is the self-join on A with the respective functions ¢ and p, i.e.,
the join P, will find corresponding objects such that ¢(0;) = p(0,). The
result is a tuple (0;,0,) from which the concrete new path is constructed via
a projection. The recursion — as the transitive closure — runs until a fixpoint
is reached, i.e.,until no new paths are constructed. The existence of previ-
ously computed paths is ensured via the fixpoint operator FIX. To provide a
correctly typed recursive definition the constructed edge is transformed by a.
Thus the resulting objects of the recursion are always objects of the type that
elements in A have.

Restrictions on recursion

It is a well-known fact in deductive databases that negation inside a recursion
can lead to non-monotonicity. Hence, these systems only allow stratified
negation, i.e., a negation may only be used inside a recursion if it does
not depend on that recursively defined rule. In terms of operators in the
relational algebra, this means that recursive definitions using set differences —
the algebraic form of negation — are not allowed. For example, a recursive
definition of R = A —R is not allowed. The problem of non-monotonicity
manifests itself in an oscillating behavior of the evaluation. For illustration
consider the stepwise evaluation of R shown in the table below. In the first
step the value 1 is added A and R is empty. In the second step 1 is added
to R, since A — R evaluates to {1} — 0. However, due to the recursion this
means that the R must be evaluated again with the new value. This third
step reduces R again to the empty set, since {1} — {1} = @. This situation is
repeated endlessly, thus we can not find a faithful evaluation of R.

A R
Step1: {1} 0
Step 2: {1} {1}
Step3: {1} 0

It is less well known that for aggregations the same restrictions apply. For
deductive databases this is not frequently discussed since not all systems allow
aggregations. Nevertheless, the issue is discussed in the context of recursive
extensions to relational databases (e.g. by Garcia-Molina et al. [GMUWO08]
who give an argument about aggregations and sums as we will use below).
The argument is in essence the same as for negations. Consider a recursive
definition of R = ygy (AWR), i.e., the summation of all values from A and

74

3 Language-Integrated Database with Incremental View Maintenance

R. The stepwise evaluation would proceed as shown below. The interesting
points are steps 4 and 5. In step 4 the value of the aggregation is updated
recursively to the result 10. However, when the new result enters the recur-
sion again in step 5, we have lost the previous value of R, i.e., the value 5 is
no longer present in AW R. Thus, the behavior of the recursive aggregation is
non-monotonic.

A R AWR Ysum (AWR)
Step1: {1,4} 0 {1,4} 5
Step2: {1,4} {5} {1,4} 5
Step3: {1,4} {5} {1,4,5} 10
Step4: {1,4} {10} {1,4,5} 10
Step 5: {1,4} {10} {1,4,10} 15

Note that non-monotonicity in recursive aggregation is a tricky argument.
Intuitively, there are a lot of day-to-day recursive computations that work
towards a fixpoint and use operations similar to aggregations. The underlying
assumption is always that the aggregation functions eventually converge to a
single value. However, even such functions are problematic in the database
setting and basically suffer from the problem that the fixpoint becomes self-
sustaining. For illustration, consider the stepwise evaluation of R =y, (AWR)
(shown below). In this setting the values in the database are sets and the
aggregation is performed as set union, which eventually converges to a single
value. In the below example we add elements {a} and {b} to A until we
eventually reach a fixpoint {a, b} for the aggregation in step 3. In step 4 the
fixpoint is added to R and, since the aggregation is a convergent function the
value does not change further. However, if we remove the value {a} in step
5, no change is performed for the aggregation, since the fixpoint sustains
itself. This behavior is very unintuitive and typically does not arise when
using fixpoint computations in recursive programming, since the input data
is usually not subject to incremental changes.

A R AWR Yu (AWR)
Step 1: {{a}} 0 {{a}} {{a}}
Step 2: {{a}} {{a}} {{a},{a}} {{a}}

Step 3: {{a},{b}} {{a}} = {{a},{a},{b}} {{a,b}}
Step4: {{a},{b}} {{a,b}} {{a},{b},{a,b}} {{a,b}}
Step 5: {{b}} {{a,b}} {{b},{a,b}} {{a, b}}

3.3 Definition of Relational Operators Using Functions as Parameters 75

3.3.5 Derived Operators

The following operators provide existential quantification over multiple relations.
The semantics for existential quantification can in general be derived from the
operators defined in the previous sections; hence, they are categorized as derived
operators.

Queries with existential quantification act similar to a selection operator with a
filter condition (discussed in Sec. 3.3.2). However, the filter condition is now based
on existential quantification over a second relation, i.e., the existential quantification
is a selection of all elements that also exist in another relation. Consider for
example the relations Egygenes and Epegiserations from Figure 3.4. Using existential
quantification we can select all students that have registered for a course, i.e., there
exists at least one entry in Epegis¢rarions fOT the respective student. Likewise we can
select all students that have not registered for any course, i.e., there exists no entry
in Epegiserations fOT the respective student.

In standard database terminology the respective operators are termed semi-join
(exists) and anti-semi-join (not exists).

Definitions

Let A : MultiSet[T] and B : MultiSet[V] be two multisets containing objects of
types T and V then the basic operators of the relational algebra are defined as
follows:

Semi-Join (A L B) : MultiSet[T] selects objects from A such that for t € A and
v € B, the condition 3y.y = p(v)Ay = p(t) is true. The functions p : T — J;
and ¢ : V — J, can return values of any types J;,J, under the condition that
an equality comparison operator is defined between J; and J,. The semi-join
returns a set if the relation A is a set.

In general the semi-join can be expressed as a join. The right-hand side
is the relation A, the left-hand side is the set of values that are the images
of the function ¢ when applied to objects in B. Using a set — by duplicate
elimination — on the left-hand side reflects the semantics, that at least one
object has to exist in B that matches a respective object in A. The outermost
projection retrieves the elements from A form the joined tuples.

ApD(n,a B=m,, t.ﬁrst(A PlarTe: 6(7'%(3)))

Anti-Semi-Join (A oo B) : MultiSet[T] selects objects from A such that for t € A
and v € B, the condition Ay.y = ¢(v) Ay = p(t) is true. The functions

76 3 Language-Integrated Database with Incremental View Maintenance

p: T —J, and ¢ : V — J, can return values of any types J;,J, under the
condition that an equality comparison operator is defined between J; and J,.
The anti semi-join returns a set if the relation A is a set.

In general the anti-semi-join can be expressed via a set difference and a
semi-join. The right-hand side of the difference is the relation A, the left-hand
side is semi-join of A and B, i.e., we subtract from A the (multi-)set of objects
in A that have a corresponding object in B.

A > B=A- (Apb((pB)

3.4 Incremental Maintenance of Relational Operators

The incrementalization works by building an operator tree in which each operator
knows its immediate successors. The successors are notified of respective modifi-
cation events, whenever the data of the underlying operator changes. Hence, the
incrementalization works similar to an observer pattern [GHIV95]. The operators
are registered as successors (observers) during the compilation of queries. Note
that operators also know their predecessors and can — in essence — perform a non-
incremental top-down evaluation using these references. This form of evaluation
is used, for example, to initialize operators that are defined on top of materialized
views which already contain evaluation results.

3.4.1 Observer Pattern Style Change Propagation

To illustrate the observer pattern style used for the maintenance of views, consider
the definition of the Observer trait in Figure 3.13. The observer declares three
atomic events for additions (line 2), removals (line 3) and updates (line 4). An
operator registers itself as an observer and receives atomic modification events
through any of these three methods.

In addition to atomic modifications each operator can receive a set of modifica-
tions — basically a transaction without any rollback functionality — via the method
modified (line 6). A set of modifications is a triple consisting of additions, deletions
and updates. The concrete modifications use a multiplicity counter, e.g., the type
Addition includes a reference to the added value and a number indicating how
often the value is added. Treating the set of modifications as an atomic event allows
to enforce minimality conditions, e.g., no elements are added and immediately
deleted afterwards. The minimality of the set of modifications will be treated in
Sec. 3.4.3.

3.4 Incremental Maintenance of Relational Operators 77

trait Observer[V] {
def added(v: V)
def removed(v: V)
def updated(oldV: V, newV: V)

def modifed(additions: Set[Addition[V]],
removals: Set[Removal[V]],
updates: Set[Update[V]])
}

Figure 3.13: Observer trait used during change propagation

Base relations (of type Extent) and operators of the relational algebra for mul-
tisets (presented in Sec. 3.3) are defined as instances of the trait Observable (cf.
Figure 3.14).As such each base relation and each view — defined via one or more
operators — can notify other views of respective changes. Notifications are triggered
by respective notify methods, e.g., for additions (line 4); deletions, updates and
sets of modifications work accordingly. The triggering of notifications happens in
response to a received event and is specific to each operator. For example, when an
operator receives an added event, the operator must determine which elements are
added in response to the event. Note that additions can result in deletions and vice
versa — depending on the current operator.

trait Observable[V] {
def observers: Set[Observer[V]]

def notify_added(v: V) {
observers. foreach (_.added (v))

Figure 3.14: Excerpt of the trait Observable

To illustrate the notification process an excerpt of the projection operator is
presented in Figure 3.15. The projection observes an underlying relation of the type
Domain (line 3) and transforms the elements using a projection function (line 2).
Hence, the result of the projection is of type Range and the operator as a whole is
accordingly declared as a respective Observable (line 4). The event notification

78 3 Language-Integrated Database with Incremental View Maintenance

is comparatively simple. For example, when the projection is notified that a new
element is added, the element is transformed and a respective notification is fired to
all observers (line 7).

class Projection[Domain, Range]
(val projection : Domain => Range)
extends Observer[Domain]
with Observable[Range]
{
def added(v: Domain) {
notify_added (projection (v))
}

Figure 3.15: Excerpt of the Scala class for projections

Binary operators are treated in a slightly different way, since an observer is
required for the left-hand side as well as for the right-hand side operand. Consider,
for example, the class for the Cartesian product operator in Figure 3.16. The
binary operator builds the cross product over elements from two different domains
(DomainA on the left hand and DomainB on the right hand side of the operator).
Hence, we require two differently typed observers (line 6 and 15) that also propagate
changes slightly differently. For example, the addition of an object to the operand
on the left hand side (line 7) results in new tuples for the added object together
with all objects stemming from the relation on the right hand side. In the example
this semantics is achieved by iterating over all objects in the right hand side operand
(foreach in line 8). The resulting tuples are propagated by an anonymous function
passed to foreach (line 9), that is called for every object b in the right hand
side operand. The observer of the right hand side treats an addition accordingly
by mirroring the behavior for the left hand side. Note that while we introduce
internal observers, e.g., for the left- and right-hand side in the Cartesian product,
we omit these observers in the following treatment of operators. That means we
uniformly treat operators as successor without going into the details of internally
used observers e.g., the Cartesian product operator is the successor of its left- and
right-hand operand.

Each operator registers itself (or appropriate internal objects) as an observer to its
operand(s) at the time a query is compiled. Optimizations of the query expression
are considered before compiling the query and are discussed in Chapter 4. An
operator can be passed multiple times as an operand, and such an operator hence

3.4 Incremental Maintenance of Relational Operators 79

class CartesianProduct[DomainA, DomainB](
val left: Relation[DomainA],
val right: Relation[DomainB])

extends Observable[(DomainA, DomainB)]

object LeftObserver extends Observer[DomainA] {
def added(v: DomainA) {
right. foreach (
b => { notify_added (v, b) }

object RightObserver extends Observer[DomainB]

Figure 3.16: Excerpt of the Scala class for Cartesian product

has multiple observers. This behavior basically reflects sharing of sub-queries, i.e.,
the result of a maintenance event is only computed a single time for the operator
and then propagated to multiple observers.

3.4.2 Examples for View Maintenance

To illustrate the incremental view maintenance, consider the following two examples
of views on the student registration database depicted in Figure 3.4.

Example 1 - Selection of last names of a filtered set of students

The first example filters all students that have an average grade below 3.0 and
selects their last name as a result. The respective query using the defined operators
is given as view; in the following equation:

VIEW] = TC)s. s lastName (O-As‘ s.gradeAverag€<3.0(EStudents))

The result of the query for a (non-incremental) evaluation on the data presented in
Figure 3.4a, is depicted in Figure 3.17. Both students in the extent Egyg.n:s Pass the

80 3 Language-Integrated Database with Incremental View Maintenance

test in the filter, i.e., their grade average is lower than 3.0. Hence, their last names
are selected into the result.

The incremental evaluation is performed via events in the operator tree of view;
depicted in Figure 3.18. The successor relation in the tree is depicted by respective
arrows in the Figure, e.g., from Eg 4o to the o operator. The tree of view; is
very simple, since each operator only has a single successor. The data flow of the
incrementalization starts by adding (removing) objects to (from) the extent Egdents-
Respective events are then propagated to the successor (the o operator), which in

turn filters the students and propagates events to the 7 operator, if an object passes
the filter.

TCxs. s.lastName

OID value ‘
011 Fields O 2. s.gradeAverage<3.0
012 Dow ‘
EStudents
Figure 3.17: Result of view; for data
in Fig. 3.4a Figure 3.18: Operator tree for view;

To illustrate the incrementalization an event for adding a new object is depicted in
Figure 3.19 as a UML sequence diagram. The event is received by the base relation
Egiudents (leftmost lifeline denoted as students) and propagated to the operators
defined by view;. The top most operator (7 in Figure 3.18) of the view is marked in
gray in the figure and basically represents the result. In addition the Figure includes
a MaterializedRelation node that is registered as an observer of the view and
stores the results. Reconsider that the view itself makes no a priori assumptions
whether it is only an intermediate step in a computation or the final result. Hence,
the top most operator does not store results by itself, but delegates storage to the
materialized node.

The data flow of the depicted event starts with adding an object to the extent
students as follows:

val v = new Student(’John’, ’Smith’, List(2, 2))
students.add(v)

The added(v) event propagates from the extent to the Selection (o) operator. The
object defined above passes the test of the Selection — average grade 2.0 < 3.0 -
and the event is then propagated to the Projection (7r) operator. In the Projection
the object is transformed using the provided operation As. s.lastName into a new

3.4 Incremental Maintenance of Relational Operators 81

’ students : ident] ‘ ’ :] ‘ viewl : tring]

’ : ion[String]

T
addy) |

added(v)

notify_added(v)

opt,
[v.gradeAverage < 3.0]

notify_added(v)

added(v) e = v.lastName

notify_added(e)
added(e)

1
K- mm] !
!

Figure 3.19: Data flow for propagating an addition from the base relation to view;

value e. In the given example the transformed value e is propagated to an instance
of MaterializedRelation that stores the results of view;.

As can be seen by the above example, the modifications are only propagated
in the operator tree as far as they apply. Selections filter many elements out of
the propagation process, e.g., all events (additions/deletions/updates) containing
students that have an average grade above 3.0 are only propagated as far as the
node of the selection operator. Other operators, such as duplicate eliminations, also
propagate events only under certain condition, e.g., if an added element was not
already present in the duplicate elimination.

Example 2 - Selection of a filtered set of students registered for a course

The second example features a more complex view with a binary operator. The
view selects all students with an average grade below 3.0, which also have registered
for a course. The respective query is defined below as view,. The students are
filtered similar to view; and the binary operator exists () is used to find students
that also have a registration. The exists operator can be simplified to a join — as
discussed in Section 3.3.5 — with the duplicate elimination (&) of registered students
(ﬂ:kr. r.student(ERegisrrations)) as the I'ight hand Operand'

viewy; = O-As.s.gradeAverage<3.0(EStudents) As.s[)(lr. r.student ERegistrations
= Txt. t.ﬁrs[(o.ks.s.gradeAverage<340(ESt'udents) }Ls.sMM.t 5(7T7Lr. r.student(ERegistrations)))

The incremental evaluation is performed by propagating events from the two base
relations Egygenes and Epegiserarions- EVENts are propagated from one base relation

82 3 Language-Integrated Database with Incremental View Maintenance

at a time via the operator tree depicted in Figure 3.20. Hence, the data flow starts
either in Eg, 4., and propagates through the filter to the join or the data flow starts
In Epegiserations and propagates through the projection and the duplicate elimination
to the join.

TCxt. t first
|
/ ls.sMAt.t
\
O s. s.gradeAverage<3.0 o
|
EStudents TCAr. r.student
|
ERegistrations

Figure 3.20: Operator tree for view,

To illustrate the different data flows the sequence diagram in Figure 3.21 depicts
one addition event for each base relation. The data flow is exemplified up to the join
— marked in gray — which is positioned in the middle, such that the sequence diagram
mimics the layout of the operator tree. Left of the join in the sequence diagram are
the operators representing the left sub-tree of the join and the right hand is laid out
accordingly. The base extents Egggents and Egegisrations are the outermost operators
in the sequence diagram.

The first addition event is performed on Eg, 4.n:s and propagation works similar to
the propagation in Figure 3.19. Once the added object reaches the join it is internally
added to the left hand side index (addToLeftIndex(v)). Note that the internal
workings of the join are abbreviated here for space reasons. Conceptually the index
is yet another observer of the underlying relation which notifies the join. From the
added value and the right hand side index a (possibly empty) delta of new joined
objects is computed (delta = join(v, getRightIndex())). Here we see that, in
order to determine possible joined objects, the operator requires a materialization
of all the data stemming from the right hand operand and the operator uses indexed
data to efficiently determine joined tuples. After obtaining the delta, all observers
of the join are notified for each added tuple (notify_added(delta[i])). As can
be seen the addition of a single element can lead to multiple additions of results
in a join operator. Note that a loop construct that emits atomic addition events
was chosen in order to remain in this formalism and not interchange atomic valued
events with sets of modifications.

3.4 Incremental Maintenance of Relational Operators 83

‘ ‘ ‘ ‘ ’ + Joi Student]

DI i ‘ ‘ < Proj T Student]

! 1 ! ! !
.add(V) | | I I I I
notity_added(v) | ! } i |
| | | | |
added(v) | } } } }
I | | |
opt, ‘ ‘ | | | |
| | | |
Vg ge <3.0] I I | |
noty_added(v) | ! ! !
:‘ added(v) } addToLeftindex(v) } } }
i i i
<J | | |
delta = join(v, ! ! !
; getRightindex()) | | |
loop (0, delta.size)) } } }
notify_: | | |
,,,,,,,,,,,, | | |
- ' | | |
R] I I | add()
T H | | | noty_adided() 1% ®
i i i i i added(r) :_‘
I I I I
} } } } :_‘ v = rstudent
| | | |
I | | | add(v) :_‘ notify_added(v)
| | |
! ! ! updateCount(v)
| | i :l
| | T
I P [eed |
} } feount(v) ==1] | add(v) notify_added(v)
— |
| |
| | addToRightindex(v)
| | detta = join(y,
! ! ; getLeftindex())
} } loop (0, delta.size))
} } notify_added(deltafil)
| | .
| |
| |
I [N [R
| | s
| | N | S ———, >|
| | | U
} } } | 1 > U

Figure 3.21: Data flow for propagating additions from the base relations to view,

The second addition event is performed on Egegistrarions- 1he first propagation is a
projection which is similar to Figure 3.19. Afterwards the event is propagated to the
duplicate elimination, which is one of the operators based on counting. As can be
seen the duplicate elimination internally updates the count for the added element
(updateCount (v)). An event is only fired if this was the first time the element was
added to the duplicate elimination (count(v) == 1), otherwise the element was a
duplicate and hence is already present as a result in subsequent observers. When
the element is added for the first time, an according event is propagated to the join
operator. As in the previous propagation from Eg, 4.5, the element is added to the
index (but on the right hand side) and a delta of added objects is computed and
propagated as results.

84 3 Language-Integrated Database with Incremental View Maintenance

3.4.3 Change-Propagation Expressions

This section shows how each operator is maintained with respect to change events
from underlying relations. The expressions obtained in this section are the min-
imal requirements for self-maintainability of each operator. In other words the
expressions are derived such that a minimal amount of materialization is required
to maintain one operator. The response to changes from underlying relations are
discussed algebraically by giving a change-propagation expression for each operator,
i.e., the expression basically models what happens in the observer pattern between a
received event and a notification of subsequent observers. The algebraic discussion
allows to reason over multisets of the underlying data that are required to be materi-
alized. The implementation provided as part of this thesis also closely resembles the
given propagation expressions. A treatment of optimizations for multiple operators
is discussed at the end of this chapter.

In the following, the notation for modifications and prerequisites for the change-
propagation expressions is discussed first. Then we discuss the maintenance of
self-maintainable operators without auxiliary data. Finally, those operators that
require some form of auxiliary data to be self-maintainable are discussed.

Notation of modifications

The change-propagation expressions are presented such that for each operator a
set of modifications for addition (A™), deletions (A™) and updates (A% is derived.
This basically reflects the three sets of modifications passed as parameters to the
modified method of the observer depicted in Figure 3.13. Modifications always
pertain to a specific relation (e.g., A), where additions and deletions are multisets
— in the sense defined in Section 3.3 - of added and deleted elements (Equations
3.4.3.1 and 3.4.3.2) attached with a count of how many objects are added or deleted.
Updates are sets of triples that contain the old value, the new value, and the number
of updated objects (3.4.3.3). For abbreviation the combination of all three types of
modifications for a given relation A is written as a transaction (T,), which is a triple
of additions, deletions and updates to the relation (3.4.3.4).

A ={(v,k)| v is added k times} (3.4.3.1)
AL ={(v,k)|vis removed k times} (3.4.3.2)
Azpd ={(v,u, k) v is updated to u, k times} (3.4.3.3)
T,= (a7, 85, 88" (3.4.3.4)

3.4 Incremental Maintenance of Relational Operators 85

Prerequisites for change-propagation expressions

The change propagation of all operators is defined in such a way that correctness
and consistency of observing operators is enforced via the following two conditions:
First, the set of deletions only contains objects that are already in the underlying
relation. This means also that the objects are removed at most in the quantity
in which they are present (3.4.3.5). Second, the set of updates contains only
modification to objects that are also in the underlying relation, and no more objects
can be updated than are present in the underlying relation (3.4.3.6).

Vv, k. (v,k) € Ay A(v,i) €ANk ST (3.4.3.5)
Vo, k. (v,u,k) € AP A (v,i) €ANK < i (3.4.3.6)

To obtain a minimal set of modifications — that are propagated through the op-
erator tree — the following conditions must hold. First, the same objects are not
deleted and then re-added by the same transaction (3.4.3.7). Second, updates are
real updates, i.e., there are no tuples in the updates that have the same old and
new value (3.4.3.8). In contrast to the earlier defined conditions, these latter two
conditions can be loosened, which will be discussed in the context of optimization in
Chapter 4. Note that loosening the condition 3.4.3.7 requires an internal treatment
of modifications in the correct order. Deletions must be processed prior to additions,
i.e., first the value is removed and then re-added. Due to this treatment a modifica-
tion that adds and removes a completely new tuple is not allowed, since deletions
are processed first and, hence, the very first condition (3.4.3.5) would be violated.

ArNnA; =0 (3.4.3.7)
Yo,u, k. (v,u,k) € Axpd —v#u (3.4.3.8)

Notation for change-propagation expressions

A change-propagation expression is derived for each operator by determining the
sets of modifications that must be propagated after applying a given transaction to
an operator. Formally, the expression is derived for each set of modifications in a
transaction, i.e., for the set of additions, deletions and updates. The modifications
are derived as the results of three functions (A", A~, A¥%), which are defined
for each operator (op), such that the following three equations hold. Note that
the functions (A*, A™, A®?) can always depend on the whole transaction, e.g.,
additions may be derived from deletions or updates or vice versa.

86 3 Language-Integrated Database with Incremental View Maintenance

op(Aw AT) = op(A) w A" (op(Ty)) (3.4.3.9)

op(A—A,) =op(A) — A" (op(T4)) (3.4.3.10)
op(A — A% = op(A) — A% (0p(T,)) (3.4.3.11)

First, the result of the operator after adding AT to the base relation A (via the union
operator W) is equal to adding the result of A™ for the transaction T, to the previous
results of op(A) (3.4.3.9). Second, the result of removing A, from A (via the set
difference operator —) is equal to removing the result of A~ for the transaction T,
from the previous results op(A) (3.4.3.10). Third and finally, the result after the
application of all modifications A" Yo Ais equal to the application of the result of
A" for the transaction T, from the previous results op(A) (3.4.3.11).

Note that the operator (<) is introduced as a shorthand for applying an update
to a relation, in order to keep the above definition simple. Formally, an update
can be applied as shown in 3.4.3.12. The equation is a quite complex due to the
treatment of multisets. The three conditions in each line in 3.4.3.12 basically do the
following: first decrease the respective counts to remove old elements (first line),
then add previously not existing elements (second line) and finally increase the
count for previously existing elements (third line).

At AP = ((e, k) |({e,i) €AN (e,u,j) € AP Nk =i — j)v
(v,e,j) € A% A (e, i) eANK = j)V (3.4.3.12)
((v,e,j) € AP AT (e,i) €ANk =j+1)

Using the three equations (3.4.3.9 — 3.4.3.11) the net effect of a change event — in
terms of modified objects — can be determined. The application of the three functions
(A*(op(T,)), A= (op(Ty)), A% (0p(T,)))) yields basically the sets of elements that
need to be propagated to the observers of an operator. In the following sections the
result of these three functions is defined for each operator from Section 3.3. We
distinguish two categories of operators:

Self-maintainable operators (Sec. 3.4.3) have a net effect that can be determined
solely by using the delta of each change. Formally, the results of the three
functions (A*(op(T,)), A~ (op(T4)), A4 (0p(T,)))) only depend on values
obtained from AT, A7, AP d

Non self-maintainable operators (Sec. 3.4.3) have a net effect that either depends
on the underlying relation (i.e., A) or further auxiliary data.

3.4 Incremental Maintenance of Relational Operators 87

Note that a similar formalization was given by Griffin et al. [GL95] for SPJ
views and the set-theoretic operators (i.e., not including aggregations and other
advanced operators). This formalization did not include updates. Also, their focus
was to obtain delta expression