12,034 research outputs found

    Mapping and Characterizing Subtidal Oyster Reefs Using Acoustic Techniques, Underwater Videography and Quadrat Counts

    Get PDF
    Populations of the eastern oyster Crassostrea virginica have been in long-term decline in most areas. A major hindrance to effective oyster management has been lack of a methodology for accurately and economically obtaining data on their distribution and abundance patterns. Here, we describe early results from studies aimed at development of a mapping and monitoring protocol involving acoustic techniques, underwater videography, and destructive sampling (excavated quadrats). Two subtidal reefs in Great Bay, New Hampshire, were mapped with side-scan sonar and with videography by systematically imaging multiple sampling cells in a grid covering the same areas. A single deployment was made in each cell, and a 5-10-s recording was made of a 0.25-m2 area; the location of each image was determined using a differential global position system. A still image was produced for each of the cells and all (n = 40 or 44) were combined into a single photomontage overlaid onto a geo-referenced base map for each reef using Arc View geographic information system. Quadrat (0.25 m2 ) samples were excavated from 9 or 10 of the imaged areas on each reef, and all live oysters were counted and measured. Intercomparisons of the acoustic, video, and quadrat data suggest: (1) acoustic techniques and systematic videography can readily delimit the boundaries of oyster reefs; (2) systematic videography can yield quantitative data on shell densities and information on reef structure; and (3) some combination of acoustics, systematic videography, and destructive sampling can provide spatially detailed information on oyster reef characteristics

    Visual Communications on the Road in Arkansas: Analysis of Secondary Students Videos

    Get PDF
    In the summer of 2010, the Visual Communications on the Road in Arkansas: Creative Photo and Video Projects to Promote Agriculture program was initiated. The program consisted of a two-week agricultural communications curriculum that would be taught by agricultural science teachers in Arkansas. The curriculum was composed of lessons about photography, writing, and videography, and the program introduced students to digital photography and videography equipment and the proper uses of equipment. Once the curriculum was taught in secondary schools, a mobile classroom unit—consisting of a travel trailer, photography and videography equipment, and laptop computers equipped with editing software—would visit the school to assist students with the creation of short promotional videos about agriculture. The student-created videos were used as a hands-on extension of the curriculum learned in the classroom. Completed videos were posted to YouTube and then analyzed to assess student application of competencies taught in the curriculum. The researchers created a coding sheet to systematically assess all posted videos and inter- and intrarater reliability was maintained. An analysis of data gathered from the video assessment showed that secondary students were able to effectively apply many of the techniques taught in the curriculum through the agricultural videos created. Additional findings and recommendations for application and future research are presented

    Guidance for benthic habitat mapping: an aerial photographic approach

    Get PDF
    This document, Guidance for Benthic Habitat Mapping: An Aerial Photographic Approach, describes proven technology that can be applied in an operational manner by state-level scientists and resource managers. This information is based on the experience gained by NOAA Coastal Services Center staff and state-level cooperators in the production of a series of benthic habitat data sets in Delaware, Florida, Maine, Massachusetts, New York, Rhode Island, the Virgin Islands, and Washington, as well as during Center-sponsored workshops on coral remote sensing and seagrass and aquatic habitat assessment. (PDF contains 39 pages) The original benthic habitat document, NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation (Dobson et al.), was published by the Department of Commerce in 1995. That document summarized procedures that were to be used by scientists throughout the United States to develop consistent and reliable coastal land cover and benthic habitat information. Advances in technology and new methodologies for generating these data created the need for this updated report, which builds upon the foundation of its predecessor

    Video-Based Mapping of Oyster Bottom in the Upper Piscataqua River, Sturgeon Creek, and Spruce Creek

    Get PDF
    Towed, underwater videography was used to map and characterize the extent of oyster bottom in the upper Piscataqua River, Sturgeon Creek, and Spruce Creek. Georeferenced video imagery was obtained on five different days in summer and fall 2008. Significant shell bottom (with live oysters in most areas) was found only in the upper Piscataqua River in two areas: (1) the general location of the previously mapped (2003) upper Piscataqua River reef, and (2) in the Piscataqua River at the mouth of Sturgeon Creek. The Sturgeon Creek reef was classified into low and high density shell which covered a total area of 15.6 acres (~63,000 m2). Recommendations included additional survey work in the lower Salmon Falls and Cocheco Rivers, and Spruce Creek

    Light Reflectance Characteristics and Remote Sensing of Waterlettuce

    Get PDF
    Waterlettuce ( Pistia stratiotes L.) is a free-floating exotic aquatic weed that often invades and clogs waterways in the southeastern United States. A study was conducted to evaluate the potential of using remote sensing technology to distinguish infestations of waterlettuce in Texas waterways. Field reflectance measurements showed that waterlettuce had higher visible green reflectance than associated plant species. Waterlettuce could be detected in both aerial color- infrared (CIR) photography and videography where it had light pink to pinkish-white image tonal responses. Computer analysis of CIR photographic and videographic images had overall accuracy assessments of 86% and 84%, respectively. (PDF contains 6 pages.
    • …
    corecore