9,090 research outputs found

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Hacia el modelado 3d de tumores cerebrales mediante endoneurosonografía y redes neuronales

    Get PDF
    Las cirugías mínimamente invasivas se han vuelto populares debido a que implican menos riesgos con respecto a las intervenciones tradicionales. En neurocirugía, las tendencias recientes sugieren el uso conjunto de la endoscopia y el ultrasonido, técnica llamada endoneurosonografía (ENS), para la virtualización 3D de las estructuras del cerebro en tiempo real. La información ENS se puede utilizar para generar modelos 3D de los tumores del cerebro durante la cirugía. En este trabajo, presentamos una metodología para el modelado 3D de tumores cerebrales con ENS y redes neuronales. Específicamente, se estudió el uso de mapas auto-organizados (SOM) y de redes neuronales tipo gas (NGN). En comparación con otras técnicas, el modelado 3D usando redes neuronales ofrece ventajas debido a que la morfología del tumor se codifica directamente sobre los pesos sinápticos de la red, no requiere ningún conocimiento a priori y la representación puede ser desarrollada en dos etapas: entrenamiento fuera de línea y adaptación en línea. Se realizan pruebas experimentales con maniquíes médicos de tumores cerebrales. Al final del documento, se presentan los resultados del modelado 3D a partir de una base de datos ENS.Minimally invasive surgeries have become popular because they reduce the typical risks of traditional interventions. In neurosurgery, recent trends suggest the combined use of endoscopy and ultrasound (endoneurosonography or ENS) for 3D virtualization of brain structures in real time. The ENS information can be used to generate 3D models of brain tumors during a surgery. This paper introduces a methodology for 3D modeling of brain tumors using ENS and unsupervised neural networks. The use of self-organizing maps (SOM) and neural gas networks (NGN) is particularly studied. Compared to other techniques, 3D modeling using neural networks offers advantages, since tumor morphology is directly encoded in synaptic weights of the network, no a priori knowledge is required, and the representation can be developed in two stages: off-line training and on-line adaptation. Experimental tests were performed using virtualized phantom brain tumors. At the end of the paper, the results of 3D modeling from an ENS database are presented

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning

    Get PDF
    Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has the potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on the power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.Comment: See the final version published in Frontiers in Oncology here: https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful

    Proof of Concept: Wearable Augmented Reality Video See-Through Display for Neuro-Endoscopy

    Get PDF
    In mini-invasive surgery and in endoscopic procedures, the surgeon operates without a direct visualization of the patient’s anatomy. In image-guided surgery, solutions based on wearable augmented reality (AR) represent the most promising ones. The authors describe the characteristics that an ideal Head Mounted Display (HMD) must have to guarantee safety and accuracy in AR-guided neurosurgical interventions and design the ideal virtual content for guiding crucial task in neuro endoscopic surgery. The selected sequence of AR content to obtain an effective guidance during surgery is tested in a Microsoft Hololens based app

    A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom

    Get PDF
    Purpose: Benefits of minimally invasive neurosurgery mandate the development of ergonomic paradigms for neuronavigation. Augmented Reality (AR) systems can overcome the shortcomings of commercial neuronavigators. The aim of this work is to apply a novel AR system, based on a head-mounted stereoscopic video see-through display, as an aid in complex neurological lesion targeting. Effectiveness was investigated on a newly designed patient-specific head mannequin featuring an anatomically realistic brain phantom with embedded synthetically created tumors and eloquent areas. Materials and methods: A two-phase evaluation process was adopted in a simulated small tumor resection adjacent to Brocaâ\u80\u99s area. Phase I involved nine subjects without neurosurgical training in performing spatial judgment tasks. In Phase II, three surgeons were involved in assessing the effectiveness of the AR-neuronavigator in performing brain tumor targeting on a patient-specific head phantom. Results: Phase I revealed the ability of the AR scene to evoke depth perception under different visualization modalities. Phase II confirmed the potentialities of the AR-neuronavigator in aiding the determination of the optimal surgical access to the surgical target. Conclusions: The AR-neuronavigator is intuitive, easy-to-use, and provides three-dimensional augmented information in a perceptually-correct way. The system proved to be effective in guiding skin incision, craniotomy, and lesion targeting. The preliminary results encourage a structured study to prove clinical effectiveness. Moreover, our testing platform might be used to facilitate training in brain tumour resection procedures

    Advanced cranial navigation

    Get PDF
    Neurosurgery is performed with extremely low margins of error. Surgical inaccuracy may have disastrous consequences. The overall aim of this thesis was to improve accuracy in cranial neurosurgical procedures by the application of new technical aids. Two technical methods were evaluated: augmented reality (AR) for surgical navigation (Papers I-II) and the optical technique of diffuse reflectance spectroscopy (DRS) for real-time tissue identification (Papers III-V). Minimally invasive skull-base endoscopy has several potential benefits compared to traditional craniotomy, but approaching the skull base through this route implies that at-risk organs and surgical targets are covered by bone and out of the surgeon’s direct line of sight. In Paper I, a new application for AR-navigated endoscopic skull-base surgery, based on an augmented-reality surgical navigation (ARSN) system, was developed. The accuracy of the system, defined by mean target registration error (TRE), was evaluated and found to be 0.55±0.24 mm, the lowest value reported error in the literature. As a first step toward the development of a cranial application for AR navigation, in Paper II this ARSN system was used to enable insertions of biopsy needles and external ventricular drainages (EVDs). The technical accuracy (i.e., deviation from the target or intended path) and efficacy (i.e., insertion time) were assessed on a 3D-printed realistic, anthropomorphic skull and brain phantom; Thirty cranial biopsies and 10 EVD insertions were performed. Accuracy for biopsy was 0.8±0.43 mm with a median insertion time of 149 (87-233) seconds, and for EVD accuracy was 2.9±0.8 mm at the tip with a median angular deviation of 0.7±0.5° and a median insertion time of 188 (135-400) seconds. Glial tumors grow diffusely in the brain, and patient survival is correlated with the extent of tumor removal. Tumor borders are often invisible. Resection beyond borders as defined by conventional methods may further improve a patient’s prognosis. In Paper III, DRS was evaluated for discrimination between glioma and normal brain tissue ex vivo. DRS spectra and histology were acquired from 22 tumor samples and 9 brain tissue samples retrieved from 30 patients. Sensitivity and specificity for the detection of low-grade gliomas were 82.0% and 82.7%, respectively, with an AUC of 0.91. Acute ischemic stroke caused by large vessel occlusion is treated with endovascular thrombectomy, but treatment failure can occur when clot composition and thrombectomy technique are mismatched. Intra-procedural knowledge of clot composition could guide the choice of treatment modality. In Paper IV, DRS, in vivo, was evaluated for intravascular clot characterization. Three types of clot analogs, red blood cell (RBC)-rich, fibrin-rich and mixed clots, were injected into the external carotids of a domestic pig. An intravascular DRS probe was used for in-situ measurements of clots, blood, and vessel walls, and the spectral data were analyzed. DRS could differentiate clot types, vessel walls, and blood in vivo (p<0,001). The sensitivity and specificity for detection were 73.8% and 98.8% for RBC clots, 100% and 100% for mixed clots, and 80.6% and 97.8% for fibrin clots, respectively. Paper V evaluated DRS for characterization of human clot composition ex vivo: 45 clot units were retrieved from 29 stroke patients and examined with DRS and histopathological evaluation. DRS parameters correlated with clot RBC fraction (R=81, p<0.001) and could be used for the classification of clot type with sensitivity and specificity rates for the detection of RBC-rich clots of 0.722 and 0.846, respectively. Applied in an intravascular probe, DRS may provide intra-procedural information on clot composition to improve endovascular thrombectomy efficiency

    Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans

    Get PDF
    Intracranial hemorrhage can be a devastating complication associated with needle biopsies of the brain. Hemorrhage can occur to vessels located adjacent to the biopsy needle as tissue is aspirated into the needle and removed. No intraoperative technology exists to reliably identify blood vessels that are at risk of damage. To address this problem, we developed an “imaging needle” that can visualize nearby blood vessels in real time. The imaging needle contains a miniaturized optical coherence tomography probe that allows differentiation of blood flow and tissue. In 11 patients, we were able to intraoperatively detect blood vessels (diameter, \u3e500 μm) with a sensitivity of 91.2% and a specificity of 97.7%. This is the first reported use of an optical coherence tomography needle probe in human brain in vivo. These results suggest that imaging needles may serve as a valuable tool in a range of neurosurgical needle interventions
    corecore