Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence
imaging technology that has the potential to increase intraoperative precision,
extend resection, and tailor surgery for malignant invasive brain tumors
because of its subcellular dimension resolution. Despite its promising
diagnostic potential, interpreting the gray tone fluorescence images can be
difficult for untrained users. In this review, we provide a detailed
description of bioinformatical analysis methodology of CLE images that begins
to assist the neurosurgeon and pathologist to rapidly connect on-the-fly
intraoperative imaging, pathology, and surgical observation into a
conclusionary system within the concept of theranostics. We present an overview
and discuss deep learning models for automatic detection of the diagnostic CLE
images and discuss various training regimes and ensemble modeling effect on the
power of deep learning predictive models. Two major approaches reviewed in this
paper include the models that can automatically classify CLE images into
diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and
models that can localize histological features on the CLE images using weakly
supervised methods. We also briefly review advances in the deep learning
approaches used for CLE image analysis in other organs. Significant advances in
speed and precision of automated diagnostic frame selection would augment the
diagnostic potential of CLE, improve operative workflow and integration into
brain tumor surgery. Such technology and bioinformatics analytics lend
themselves to improved precision, personalization, and theranostics in brain
tumor treatment.Comment: See the final version published in Frontiers in Oncology here:
https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful