591 research outputs found

    Whisking with robots from rat vibrissae to biomimetic technology for active touch

    Get PDF
    This article summarizes some of the key features of the rat vibrissal system, including the actively controlled sweeping movements of the vibrissae known as whisking, and reviews the past and ongoing research aimed at replicating some of this functionality in biomimetic robots

    Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex

    Get PDF
    In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or detachment. The transduction process is mediated by the mechanics of the whisker shaft and follicle-sinus complex (FSC), and the mechanics and electro-chemistry of mechanoreceptors within the FSC. An understanding of this transduction process and the nature of the primary neural codes generated is crucial for understanding more central sensory processing in the thalamus and cortex. However, the details of the peripheral processing are currently poorly understood. To overcome this deficiency in our knowledge, we constructed a simulated electro-mechanical model of the whisker-FSC-mechanoreceptor system in the rat and tested it against a variety of data drawn from the literature. The agreement was good enough to suggest that the model captures many of the key features of the peripheral whisker system in the rat

    Information Theory’s failure in neuroscience: on the limitations of cybernetics

    Get PDF
    In Cybernetics (1961 Edition), Professor Norbert Wiener noted that “The role of information and the technique of measuring and transmitting information constitute a whole discipline for the engineer, for the neuroscientist, for the psychologist, and for the sociologist”. Sociology aside, the neuroscientists and the psychologists inferred “information transmitted” using the discrete summations from Shannon Information Theory. The present author has since scrutinized the psychologists’ approach in depth, and found it wrong. The neuroscientists’ approach is highly related, but remains unexamined. Neuroscientists quantified “the ability of [physiological sensory] receptors (or other signal-processing elements) to transmit information about stimulus parameters”. Such parameters could vary along a single continuum (e.g., intensity), or along multiple dimensions that altogether provide a Gestalt – such as a face. Here, unprecedented scrutiny is given to how 23 neuroscience papers computed “information transmitted” in terms of stimulus parameters and the evoked neuronal spikes. The computations relied upon Shannon’s “confusion matrix”, which quantifies the fidelity of a “general communication system”. Shannon’s matrix is square, with the same labels for columns and for rows. Nonetheless, neuroscientists labelled the columns by “stimulus category” and the rows by “spike-count category”. The resulting “information transmitted” is spurious, unless the evoked spike-counts are worked backwards to infer the hypothetical evoking stimuli. The latter task is probabilistic and, regardless, requires that the confusion matrix be square. Was it? For these 23 significant papers, the answer is No

    Direct contribution of the sensory cortex to the judgment of stimulus duration

    Get PDF
    Decision making frequently depends on monitoring the duration of sensory events. To determine whether, and how, the perception of elapsed time derives from the neuronal representation of the stimulus itself, we recorded and optogenetically modulated vibrissal somatosensory cortical activity as male rats judged vibration duration. Perceived duration was dilated by optogenetic excitation. A second set of rats judged vibration intensity; here, optogenetic excitation amplified the intensity percept, demonstrating sensory cortex to be the common gateway both to time and to stimulus feature processing. A model beginning with the membrane currents evoked by vibrissal and optogenetic drive and culminating in the representation of perceived time successfully replicated rats' choices. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense of touch itself, suggesting that the experience of time may be further investigated with the toolbox of sensory coding

    Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.</p> <p>Results</p> <p>We found that the change of the vibrissal slip-resistance is a way to improve the roughness discrimination of surfaces. As roughness increased, the RMS values also increased in almost all cases. In addition, we observed a better discrimination performance in the retraction phase (maximum amount of information).</p> <p>Conclusions</p> <p>The evidence of amplitude changes due to roughness surfaces and slip-resistance levels allows to speculate that texture information is slip-resistance dependent at peripheral level.</p

    Tactile cognition in rodents

    Get PDF
    Since the discovery 50 years ago of the precisely ordered representation of the whiskers in somatosensory cortex, the rodent tactile sensory system has been a fertile ground for the study of sensory processing. With the growing sophistication of touch-based behavioral paradigms, together with advances in neurophysiological methodology, a new approach is emerging. By posing increasingly complex perceptual and memory problems, in many cases analogous to human psychophysical tasks, investigators now explore the operations underlying rodent problem solving. We define the neural basis of tactile cognition as the transformation from a stage in which neuronal activity encodes elemental features, local in space and in time, to a stage in which neuronal activity is an explicit representation of the behavioral operations underlying the current task. Selecting a set of whisker-based behavioral tasks, we show that rodents achieve high level performance through the workings of neuronal cir-cuits that are accessible, decodable, and manipulatable. As a means towards exploring tactile cognition, this review presents leading psychophysical paradigms and, where known, their neural correlates

    Sensing the Environment With Whiskers

    Get PDF

    The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics

    Get PDF
    Chapter 10 The Robot Vibrissal System: Understanding Mammalian Sensorimotor Co-ordination Through Biomimetics Tony J. Prescott, Ben Mitchinson, Nathan F. Lepora, Stuart P. Wilson, Sean R. Anderson, John Porrill, Paul Dean, Charles&nbsp;..

    Sensory coding in supragranular cells of the vibrissal cortex in anesthetized and awake mice

    Get PDF
    Sensory perception entails reliable representation of the external stimuli as impulse activity of individual neurons (i.e. spikes) and neuronal populations in the sensory area. An ongoing challenge in neuroscience is to identify and characterize the features of the stimuli which are relevant to a specific sensory modality and neuronal strategies to effectively and efficiently encode those features. It is widely hypothesized that the neuronal populations employ “sparse coding” strategies to optimize the stimulus representations with a low energetic cost (i.e. low impulse activity). In the past two decades, a wealth of experimental evidence has supported this hypothesis by showing spatiotemporally sparse activity in sensory area. Despite numerous studies, the extent of sparse coding and its underlying mechanisms are not fully understood, especially in primary vibrissal somatosensory cortex (vS1), which is a key model system in sensory neuroscience. Importantly, it is not clear yet whether sparse activation of supragranular vS1 is due to insufficient synaptic input to the majority of the cells or the absence of effective stimulus features. In this thesis, first we asked how the choice of stimulus could affect the degree of sparseness and/or the overall fraction of the responsive vS1 neurons. We presented whisker deflections spanning a broad range of intensities, including “standard stimuli” and a high-velocity, “sharp” stimulus, which simulated the fast slip events that occur during whisker mediated object palpation. We used whole-cell and cell-attached recording and calcium imaging to characterize the neuronal responses to these stimuli. Consistent with previous literature, whole-cell recording revealed a sparse response to the standard range of velocities: although all recorded cells showed tuning to velocity in their postsynaptic potentials, only a small fraction produced stimulus-evoked spikes. In contrast, the sharp stimulus evoked reliable spiking in a large fraction of regular spiking neurons in the supragranular vS1. Spiking responses to the sharp stimulus were binary and precisely timed, with minimum trial-to-trial variability. Interestingly, we also observed that the sharp stimulus produced a consistent and significant reduction in action potential threshold. In the second step we asked whether the stimulus dependent sparse and dense activations we found in anesthetized condition would generalize to the awake condition. We employed cell-attached recordings in head-fixed awake mice to explore the degree of sparseness in awake cortex. Although, stimuli delivered by a piezo-electric actuator evoked significant response in a small fraction of regular spiking supragranular neurons (16%-29%), we observed that a majority of neurons (84%) were driven by manual probing of whiskers. Our results demonstrate that despite sparse activity, the majority of neurons in the superficial layers of vS1 contribute to coding by representing a specific feature of the tactile stimulus. Thesis outline: Chapter 1 provides a review of the current knowledge on sparse coding and an overview of the whisker-sensory pathway. Chapter 2 represents our published results regarding sparse and dense coding in vS1 of anesthetized mice (Ranjbar-Slamloo and Arabzadeh 2017). Chapter 3 represents our pending manuscript with results obtained with piezo and manual stimulation in awake mice. Finally, in Chapter 4 we discuss and conclude our findings in the context of the literature. The appendix provides unpublished results related to Chapter 2. This section is referenced in the final chapter for further discussion

    Texture discrimination and multi-unit recording in the rat vibrissal nerve

    Get PDF
    BACKGROUND: Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control) – vibrissa sweeping the air – and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). RESULTS: We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. CONCLUSION: Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination
    • …
    corecore