33 research outputs found

    ERF valves controlled by plane capacitor electric field

    Get PDF
    Holes filled with electrorheological fluid (ERF) are used to form the Braille symbols or relief in Array Manipulators. Matrix of holes is made in the fabric-based copper laminate. Voltage applied to coppered upper and lower surfaces of the plate creates electric field, which controls ERF viscosity. Three methods to form a relief are investigated: (a) using an elastic membrane, covering the holes, (b) dielectric pins moving in the holes, (c) metallic pins moving in the holes. Electric field in a hole of the matrix was calculated as electric field in a hole of plane capacitor. In the case of metallic pins, the mean electric field near the electrodes is considerably stronger than in the case of dielectric pins. The controlling voltage can be decreased using multilayer copper laminate valves, composed of some fabric-based plates with opposite directions of electric field in neighbouring plate

    ERF valves controlled by plane capacitor electric field

    Get PDF
    Holes filled with electrorheological fluid (ERF) are used to form the Braille symbols or relief in Array Manipulators. Matrix of holes is made in the fabric-based copper laminate. Voltage applied to coppered upper and lower surfaces of the plate creates electric field, which controls ERF viscosity. Three methods to form a relief are investigated: (a) using an elastic membrane, covering the holes, (b) dielectric pins moving in the holes, (c) metallic pins moving in the holes. Electric field in a hole of the matrix was calculated as electric field in a hole of plane capacitor. In the case of metallic pins, the mean electric field near the electrodes is considerably stronger than in the case of dielectric pins. The controlling voltage can be decreased using multilayer copper laminate valves, composed of some fabric-based plates with opposite directions of electric field in neighbouring plate

    ERF valves controlled by plane capacitor electric field

    Get PDF
    Holes filled with electrorheological fluid (ERF) are used to form the Braille symbols or relief in Array Manipulators. Matrix of holes is made in the fabric-based copper laminate. Voltage applied to coppered upper and lower surfaces of the plate creates electric field, which controls ERF viscosity. Three methods to form a relief are investigated: (a) using an elastic membrane, covering the holes, (b) dielectric pins moving in the holes, (c) metallic pins moving in the holes. Electric field in a hole of the matrix was calculated as electric field in a hole of plane capacitor. In the case of metallic pins, the mean electric field near the electrodes is considerably stronger than in the case of dielectric pins. The controlling voltage can be decreased using multilayer copper laminate valves, composed of some fabric-based plates with opposite directions of electric field in neighbouring plate

    Development of Rotary Variable Damping and Stiffness Magnetorheological Dampers and their Applications on Robotic Arms and Seat Suspensions

    Get PDF
    This thesis successfully expanded the idea of variable damping and stiffness (VSVD) from linear magnetorheological dampers (MR) to rotary magnetorheological dampers; and explored the applications of rotary MR dampers on the robotic arms and seat suspension. The idea of variable damping and stiffness has been proved to be able to reduce vibration to a large degree. Variable damping can reduce the vibration amplitude and variable stiffness can shift the natural frequency of the system from excitation and prevent resonance. Linear MR dampers with the capacity of variable damping and stiffness have been studied by researchers. However, Linear MR dampers usually require larger installation space than rotary MR dampers, and need more expensive MR fluids to fill in their chambers. Furthermore, rotary MR dampers are inherently more suitable than linear MR dampers in rotary motions like braking devices or robot joints. Hence, rotary MR dampers capable of simultaneously varying the damping and stiffness are very attractive to solve angular vibration problems. Out of this motivation, a rotary VSVD MR damper was designed, prototyped, with its feature of variable damping and stiffness verified by experimental property tests in this thesis. Its mathematical model was also built with the parameters identified. The experimental tests indicated that it has a 141.6% damping variation and 618.1% stiffness variation. This damper’s successful development paved the way for the applications of rotary MR dampers with the similar capability of variable damping and stiffness

    Variable impedance energy dissipation on the micro-scale : field responsive fluids in novel geometries

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (leaves 187-189).The aim of this thesis was to further characterize the effectiveness of field responsive fluids (FRFs) in geometries pertinent to the soldier and to examine the effects of specific geometric and kinematic parameters, including patterned surface geometry, electrode gap distance, and normal force on the performance of homogeneous ERF composites. Field responsive fluid composites designed for variable impedance energy absorption incorporated electrorheological fluid (ERF) and shear-thickening fluid (STF) in novel geometries to absorb compressive and tensile/shear forces. ER and ST fluids change their apparent viscosity in the presence of elevated electric and shear fields, respectively, and the magnitude of this effect can be adjusted using the magnitude of the input field, allowing variable impedance operation. Several test fixtures were developed to test these novel FRF composites. A compression apparatus was designed and constructed to test STF-filled foam over a range of strain rates not previously examined in the literature. Silicon-based microchannel devices with etched features on the order of 100 pm and etch depths of 7-90 pm were fabricated to test homogeneous ER fluids in small electrode gaps.(cont.) Tests using these silicon devices allowed creation of 5 kV/mm (5 V/pm) electric fields across electrode gaps as small as 20 pm, with increases of measured shear force as high as 350% from no electric field to full 5 kV/mm operation. Production of these devices in bulk using established silicon processing techniques was demonstrated, and factors affecting the manufacture of these devices were investigated.by Ryan A. Griffin.S.M

    Adaptive Magnetorheological Sliding Seat System for Ground Vehicles

    Get PDF
    Magnetorheological (MR) fluids (MRFs) are smart fluids that have reversible field dependent rheological properties that can change rapidly (typically 5 - 10 ms time constant). Such an MRF can be changed from a free flowing fluid into a semi-solid when exposed to a magnetic field. The rapid, reversible, and continuous field dependent variation in rheological properties can be exploited in an MRF-based damper or energy absorber to provide adaptive vibration and shock mitigation capabilities to varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. Electronically controlled electromagnetic coils are typically used to activate the MR effect and tune the damping force so that feedback control implementation is practical and realizable. MR devices have been demonstrated as successful solutions in semi-active systems combining advantages of both passive and active systems for applications where piston velocities are relatively low (typically < 1 m/s), such as seismic mitigation, or vibration isolation. Recently strong interests have focused on employing magnetorheological energy absorbers (MREAs) for high speed impact loads, such as in helicopter cockpit seats for occupant protection in a vertical crash landing. This work presents another novel application of MREAs in this new trend - an adaptive magnetorheological sliding seat (AMSS) system utilizing controllable MREAs to mitigate impact load imparted to the occupant for a ground vehicle in the event of a low speed frontal impact (up to 15 mph). To accomplish this, a non-linear analytical MREA model based on the Bingham-plastic model and including minor loss effects (denoted as the BPM model) is developed. A design strategy is proposed for MREAs under impact conditions. Using the BPM model, an MREA is designed, fabricated and drop tested up to piston velocities of 5 m/s. The measured data is used to validate the BPM model and the design strategy. The MREA design is then modified for use in the AMSS system and a prototype is built. The prototype MREA is drop tested and its performance, as well as the dynamic behavior in the time domain, is described by the BPM model. Next, theoretical analysis of the AMSS system with two proposed control algorithms is carried out using two modeling approaches: (1) a single-degree-of-freedom (SDOF) rigid occupant (RO) model treating the seat and the occupant as a single rigid mass, and (2) a multi-degree-of-freedom (MDOF) compliant occupant (CO) model interpreting the occupant as three lumped parts - head, torso and pelvis. A general MREA is assumed and characterized by the Bingham-plastic model in the system model. The two control algorithms, named the constant Bingham number or Bic control and the constant stroking force or Fc control, are constructed in such a way that the control objective - to bring the payload to rest while fully utilizing the available stroke - is achieved. Numerical simulations for both rigid and compliant occupant models with assumed system parameter values and a 20 g rectangular crash pulse for initial impact speeds of up to 7 m/s (15.7 mph) show that overall decelerations of the payload are significantly reduced using the AMSS compared to the case of a traditional fixed seat. To experimentally verify the theoretical analysis, a prototype AMSS system is built. The prototype seat system is sled tested in the passive mode (i.e. without control) for initial impact speeds of up to 5.6 m/s and for the 5th percentile female and the 95th percentile male. Using the test data, the CO model is shown to be able to adequately describe the dynamic behavior of the prototype seat system. Utilizing the CO model, the control algorithms for the prototype seat system are developed and a prototype controller is formulated using the DSPACE and SIMULINK real time control environments. The prototype seat system with controller integrated is sled tested for initial impact speeds of up to 5.6 m/s for the 5th female and 95th male (only the 95th male is tested for the Bic control). The results show that the controllers of both control algorithms successfully bring the seat to rest while fully utilizing the available stroke and the decelerations measured at the seat are substantially mitigated. The CO model is shown to be effective and a useful tool to predict the control inputs of the control algorithms. Thus, the feasibility and effectiveness of the proposed adaptive sliding seat system is theoretically and experimentally verified

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Soft Robotics: Design for Simplicity, Performance, and Robustness of Robots for Interaction with Humans.

    Get PDF
    This thesis deals with the design possibilities concerning the next generation of advanced Robots. Aim of the work is to study, analyse and realise artificial systems that are essentially simple, performing and robust and can live and coexist with humans. The main design guideline followed in doing so is the Soft Robotics Approach, that implies the design of systems with intrinsic mechanical compliance in their architecture. The first part of the thesis addresses design of new soft robotics actuators, or robotic muscles. At the beginning are provided information about what a robotic muscle is and what is needed to realise it. A possible classification of these systems is analysed and some criteria useful for their comparison are explained. After, a set of functional specifications and parameters is identified and defined, to characterise a specific subset of this kind of actuators, called Variable Stiffness Actuators. The selected parameters converge in a data-sheet that easily defines performance and abilities of the robotic system. A complete strategy for the design and realisation of this kind of system is provided, which takes into account their me- chanical morphology and architecture. As consequence of this, some new actuators are developed, validated and employed in the execution of complex experimental tasks. In particular the actuator VSA-Cube and its add-on, a Variable Damper, are developed as the main com- ponents of a robotics low-cost platform, called VSA-CubeBot, that v can be used as an exploratory platform for multi degrees of freedom experiments. Experimental validations and mathematical models of the system employed in multi degrees of freedom tasks (bimanual as- sembly and drawing on an uneven surface), are reported. The second part of the thesis is about the design of multi fingered hands for robots. In this part of the work the Pisa-IIT SoftHand is introduced. It is a novel robot hand prototype designed with the purpose of being as easily usable, robust and simple as an industrial gripper, while exhibiting a level of grasping versatility and an aspect comparable to that of the human hand. In the thesis the main theo- retical tool used to enable such simplification, i.e. the neuroscience– based notion of soft synergies, are briefly reviewed. The approach proposed rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive underactuated mechanisms, which is called the method of adaptive synergies, is discussed. This ap- proach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the method of adaptive syner- gies, the Pisa–IIT SoftHand is then described in detail. The design and implementation of the prototype hand are shown and its effec- tiveness demonstrated through grasping experiments. Finally, control of the Pisa/IIT Hand is considered. Few different control strategies are adopted, including an experimental setup with the use of surface Electromyographic signals

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results
    corecore