2,550 research outputs found

    Magnetic suspension and vibration control of flexible structures for non-contact processing

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2000.Includes bibliographical references (p. 365-372).This thesis presents the design, analysis, and experimental testing of systems for noncontact suspension and control of flexible structures. Our particular focus is on the use of such suspensions in manufacturing processes which can be facilitated by the ability to control workpiece motion without contact. This can be of significant utility in processes such as coating, painting, heat treating, and web handling. We develop a novel approach for the control of such non-contact suspensions through what we term sensor averaging and actuator averaging. The difficult stability and robustness problems imposed by the flexible dynamics of the workpiece can be overcome by taking a properly-weighted average of the outputs of a distributed array of N motion sensors (sensor averaging), and/or by applying a properly-weighted distributed array of M forces (actuator averaging) to the workpiece. The theory for these dual techniques is developed in detail in the thesis. These approaches are shown to be independent of the specific boundary conditions or the longitudinal dimensions of the workpiece. These approaches are thus generally applicable to a wide range of structural control problems. We present both analytical and numerical analyses of the structural dynamics for typical flexible workpieces such as strings, beams, membranes, and plates. The analyses include axial translation of the workpiece. We have experimentally demonstrated the utility of our theory by application in the successful magnetic suspension of a 3 m long, 6.35 mm diameter, 0.89 mm wall thickness steel tube with varying boundary conditions. This is a very challenging problem due to the extremely light damping of the modes (< 0.001 with free ends). The experiment uses a set of 8 sensors and 8 actuators to measure and control the motion of the tube in the two lateral degrees of freedom. We present the details of the developed electromagnetic actuators, position sensors, modeling of the structural dynamics, the relevant vibration control techniques, and develop the associated theory for choosing sensor and actuator locations. Our results experimentally confirm the value of our averaging techniques, and suggest the wide future application of these ideas in industrial processes which require non-contact handling of workpieces.by Ming-chih Weng.Ph.D

    MIT's interferometer CST testbed

    Get PDF
    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances

    Precision slew/settle technologies for flexible spacecraft

    Get PDF
    Many spacecraft missions in the next decade will require both a high degree of agility and precision pointing. Agility includes both rotational maneuvering for retargeting and translational motion for orbit adjustment and threat avoidance. The major challenge associated with such missions is the need for control over a wide range of amplitudes and frequencies, ranging from tens of degrees at less than 1 Hz to a few micron radians at hundreds of Hz. TRW's internally funded Precision Control of Agile Spacecraft (PCAS) project is concerned with developing and validating in hardware the tools necessary to successfully complete the combined agile maneuvering/precision pointing missions. Development has been undertaken on a number of fronts for quietly slewing flexible structures. Various methods for designing slew torque profiles have been investigated. Prime candidates for slew/settle scenarios include Inverse Dynamics and Parameterized Function Space. Joint work with Processor Bayo at the University of California, Santa Barbara and Professor Flashner at the University of Southern California has led to promising torque profile design methods. Active and passive vibration suppression techniques also play a key role for rapid slew/settle mission scenarios. Active members with local control loops and passive members with high loss factor viscoelastic material have been selected for hardware verification. Progress in each of these areas produces large gains in the quiet slewing of flexible spacecraft. The main thrust of the effort to date has been the development of a modular testbed for hardware validation of the precision control concepts. The testbed is a slewing eighteen foot long flexible truss. Active and passive members can be interchanged with the baseline aluminum members to augment the inherent damping in the system. For precision control the active members utilize control laws running on a high speed digital structural control processor. Tip and midspan motions of the truss are determined using optical sensors while accelerometers can be used to monitor the motions of other points of interest. Preliminary results indicate that a mix of technologies produces the greatest benefit. For example, shaping the torque profile produces large improvements in slew/settle performance, but without added damping settling times may still be excessive. With the introduction of moderate amounts of damping, slew/settle performance is vastly improved. On the other hand, introducing damping without shaping the torque profile may not yield the desired level of performance

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Modelling and Characterization of Magnetic Microfibers

    Get PDF
    Polymer fibers of varying microfluidic properties can be fabricated in a lab setting. Fibers coated with paramagnetic particles act like slender paramagnetic beams. These fiber moves in a magnetic field. Thus polymer fibers coated with paramagnetic particles can be used as actuators in various microfluidic applications, such as DNA separation, droplet manipulation and liquid transport. In order to use the fibers as actuators, it is necessary to model the fiber and develop control strategies. A static model of the paramagnetic fiber based on energy methods is presented in [1]. The model relies on a demagnetizing factors approximation to determine the magnetic field inside the fiber. The first part of the thesis examines the conditions under which the demagnetizing factors approximation holds. The model allows for implementation of simple feedforward control strategies to control the position of the fiber. For implementation of better control algorithms, methods to sense the shape and the tip position of the fiber are required. These sensing methods are also presented here. The model depends on the bending rigidity and magnetic susceptibility of the fiber. Since the fibers can be synthesized in a lab setting, these properties are usually not known. This thesis also presents methods to characterize the bending rigidity of the fiber, based on the sensing methods. The bending rigidity and the magnetic susceptibility of the fiber, along with the model can be used to implement a basic feedforward control strategy to accurately position the tip of the fiber. This enables the use of the fiber as a microfluidic actuator

    Feedback vibration control of a base-isolated building with delayed measurements using h∞ techniques

    Get PDF
    n this paper we address the problem of vibration reduction of buildings with delayed measurements, where the delays are time-varying and bounded. We focus on a convex optimization approach to the problem of state-feedback H ∞ control design. An appropriate Lyapunov-Krasovskii functional and some free weighting matrices are used to establish some delay-range-dependent sufficient conditions for the design of desired controllers in terms of linear matrix inequalities (LMIs). The controller, which guarantees asymptotic stability and an H ∞ performance, simultaneously, for the closed-loop system of the structure, is then developed. The performance of the controller is evaluated through the simulation of an n-story base-isolated building

    The implementation of optimal full state feedback using area averaging sensors

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1994.Includes bibliographical references (leaves 123-126).by Patrick Anthony Cazeau.M.S

    Precision Control of High Speed Drives using Active Vibration Damping

    Get PDF
    In order to meet industry demands for improved productivity and part quality, machine tools must be equipped with faster and more accurate feed drives. Over the past two decades, research has focused on the development of new control strategies and smooth trajectory generation techniques. These developments, along with advances in actuator and sensor technology, have greatly improved the accuracy of motion delivery in high speed machine tools. However, further advancement is limited by the vibration of the machine’s structure. The purpose of the research in this thesis is to develop new control techniques that use active vibration damping to achieve bandwidths near the structural frequencies of machine tools, in order to provide better dynamic positioning of the tool and workpiece. Two machine tool drives have been considered in this study. The first is a precision ball screw drive, for which a pole-placement technique is developed to achieve active vibration damping, as well as high bandwidth disturbance rejection and positioning. The pole-placement approach is simple and effective, with an intuitive physical interpretation, which makes the tuning process straightforward in comparison to existing controllers which actively compensate for structural vibrations. The tracking performance of the drive is improved through feedforward control using inverted plant dynamics and a novel trajectory pre-filter. The pre-filter is designed to remove tracking error artifacts correlated to the velocity, acceleration, jerk and snap (4th derivative) of the commanded trajectory. By applying the least-squares method to the results of a single tracking experiment, the pre-filter can be tuned quickly and reliably. The proposed controller has been compared to a controller used commonly in industry (P-PI position-velocity cascade control), and has achieved a 40-55 percent reduction in peak errors during tracking and machining tests. The controller design, stability analysis, and experimental results are discussed. The second drive considered is a linear motor driven X-Y stage arranged as a T-type gantry and worktable. The worktable motion is controlled independently of the gantry using a loop shaping filter. The gantry is actuated by dual direct drive linear motors and is strongly coupled to the worktable position, which determines its inertial characteristics. A 94 Hz yaw mode is handled in the gantry control law using sensor and actuator averaging, and active vibration damping. The stability and robustness of the design are considered using multivariable frequency domain techniques. For the worktable motion along the gantry, a bandwidth of 130 Hz is achieved. The gantry crossover frequency is 52 Hz, which is 3 times higher than the bandwidth that can be achieved using independent PID controllers (16 Hz). The performance of the proposed control scheme has been verified in step disturbance (i.e., rope snap) tests, as well as tracking and contouring experiments

    Wave-based control of under-actuated flexible structures with strong external disturbing forces

    Get PDF
    Wave-based control of under-actuated, flexible systems has many advantages over other methods. It considers actuator motion as launching a mechanical wave into the flexible system which it absorbs on its return to the actuator. The launching and absorbing proceed simultaneously. This simple, intuitive idea leads to robust, generic, highly efficient, precise, adaptable controllers, allowing rapid and almost vibrationless re-positioning of the system, using only sensors collocated at the actuator-system interface. It has been very successfully applied to simple systems such as mass-spring strings, systems of Euler-Bernoulli beams, planar mass-spring arrays, and flexible three-dimensional space structures undergoing slewing motion. In common with most other approaches, this work also assumed that, during a change of position, the forces from the environment were negligible in comparison with internal forces and torques. This assumption is not always valid. Strong external forces considerably complicate the flexible control problem, especially when unknown, unexpected or unmodelled. The current work extends the wave-based strategy to systems experiencing significant external disturbing forces, whether enduring or transient. The work also provides further robustness to sensor errors. The strategy has the controller learn about the disturbances and compensate for them, yet without needing new sensors, measurements or models beyond those of standard wave-based control

    Transducer applications, a compilation

    Get PDF
    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods
    corecore