
 
 

 

  

Abstract— In this paper we address the problem of vibration 
reduction of buildings with delayed measurements, where the 
delays are time-varying and bounded. We focus on a convex 
optimization approach to the problem of state-feedback ∞H  
control design. An appropriate Lyapunov-Krasovskii 
functional and some free weighting matrices are used to 
establish some delay-range-dependent sufficient conditions for 
the design of desired controllers in terms of linear matrix 
inequalities (LMIs). The controller, which guarantees 
asymptotic stability and an ∞H  performance, simultaneously, 
for the closed-loop system of the structure, is then developed. 
The performance of the controller is evaluated through the 
simulation of an n-story base-isolated building. 

I. INTRODUCTION 
Vibration control has emerged as an important area of 
scientific and technological development in recent years. 
Developments in vibration control have allowed successful 
application of the concept in numerous areas. A variety of 
control techniques, such as LQR control, sliding mode 
control, backstepping control, 2H  control, ∞H  control, 
guaranteed-cost control and multi-objective control have 
been used in vibration systems (see [1]-[13]). In the field of 
dynamic systems and control, delays appear either in the 
state, in the control input, or in the measurements (see for 
instance the references [14]-[24] and the references therein). 
The presence of a delay in a system may be the result of 
some essential simplification of the corresponding process 
model. Generally, time delay exists inevitably in control 
systems, which mainly results from the following: (1) the 
time taken in the online data acquisition from sensors at 
different locations of the system; (2) the time taken in the 
filtering and processing of the sensory data for the required 
control force to the actuator; (3) the time taken by the 
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actuator to produce the required control force. Therefore, 
how to analyze and synthesize dynamic systems with 
delayed arguments is a problem of recurring interest, as the 
delay may induce complex behaviors (oscillation, instability, 
bad performances) for the systems concerned (see [24]-[26] 
and the references therein). It is also worth citing that some 
appreciable pieces of work have been performed to design 
different control strategies such as LQR control, sliding 
mode control, backstepping control, QFT control, 2H  
control, ∞H  control for vibration control of a building 
structure (see [1]-[5], [27]-[31]). However, the system 
performance and stability, simultaneously, are not 
investigated for a building structure with time-varying 
delayed measurements in these works. Up to now, to the best 
of the authors’ knowledge, no results about a convex 
optimization method for the delay-range-dependent state-
feedback ∞H control problem of building structures with 
time-varying delayed measurements are available in the 
literature, which remains to be important and challenging. 
This motivates the present study.    

      

 
 
Fig. 1. Schematic of a base Isolated Structure. 
   

In this paper, we further contribute to the development of 
delay-range-dependent state-feedback aspect of ∞H  control 
for vibration reduction in a building with delayed 
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measurements. The feedback loop is subject to a time-
varying bounded delay within the sensors and the structure. 
Then we will present the application of the controller to the 
vibration control of a base-isolated building. The main merit 
of the proposed method lies in the fact that it provides a 
convex problem via introduction of additional decision 
variables such that the control gain can be found from the 
LMI formulations. By using an appropriate Lyapunov-
Krasovskii method and some free weighting matrices, new 
sufficient conditions are established in terms of delay-range-
dependent LMIs for the existence of desired controllers such 
that the resulting closed-loop system is asymptotically stable 
and satisfies a prescribed −γ level −2L gain. Finally, 
simulation results are given to illustrate the usefulness of the 
proposed control methodology. 

II. SYSTEM DESCRIPTION 

Consider an uncertain n-story building whose base is 
isolated, as shown in Figure 1. The base is isolated by means 
of a frictional (passive) damper, Φ, and a control device with 
semi-active control input )(tf . Assume that the system is 
perturbed by an incoming earthquake. The structure 
dynamics can be divided into two subsystems, namely, the 
main structure ( rS ) and the base ( cS ) [27]. 
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where [ ] nT
nxxx ℜ∈= ,...,, 21x  is the horizontal absolute floor 

displacement vector, ℜ∈y  is the horizontal absolute base 

displacement, )(td and )(td  are the seismic excitation 
displacement and velocity, )(tf  is the active control force 
applied to the base level and )(th  is an unknown time-
varying delay in the measurement. Equation (1c) accounts 
for the dynamic coupling between the base and the main 
structure. Equation (1d) describes the forces introduced by 
the seismic excitation and the base isolation. Equation (1e) 
describes the dynamics of a frictional base isolator, where 
μmax is the friction coefficient for high sliding velocity, μΔ  is 
the difference between μmax and the friction coefficient for 
low sliding velocity, ν is a constant and Q is the force 
normal to the friction surface. Parameters m, c and k are the 
mass, damping coefficient and stiffness of the base, while 
matrices M, C and K are those of the main structure as 
follows:  
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Assumption 1. The measurement time-varying delay )(th  

satisfies 21 )( hthh ≤≤  and 3)( hth ≤ , where 1h  and 2h  are 
the minimum and maximum of )(th , respectively, and 3h  

is also the maximum of )(th . 

Remark 1. The condition 3)( hth ≤  on time-varying delay 
)(th  means that our method has no restriction on its 

derivative and can deal with any fast time-varying 
measurement delay.  

Due to the base isolation, the movement of the main 
structure ( rS ) is very close to the one of a rigid body. Then 
it is reasonable to assume that the inter-story motion of the 
main structure will be much smaller than the absolute 
motion of the base. Consequently, the following simplified 
equation of motion of the first floor is obtained: 

)()()()()( 1111111 tyktyctkxtxctxm +=++            (1i) 
In this work, it is assumed that only state variables of the 
base and the first floor system are measurable and the 
unknown seismic excitation )(td and )(td are bounded and 
thus the unknown force )(tfbg  in (1d) is bounded. 

The following propositions about the intrinsic stability of the 
structure will be used in formulating the control law [27]. 

Proposition 1. The unforced main structure subsystem, i.e. 
(1a) with the null coupling term: 

[ ] [ ] 0  ,00,...,0,0,...,0, 11 ≥≡+ tykyc TT                (1j) 

is globally exponentially stable for any bounded initial 
conditions. 

Proposition 2. If the coordinates ( )yy,  of the base and the 
coupling term [ ] [ ] ykyc TT 0,...,0,0,...,0, 11 +  are uniformly 
bounded, then the main structure subsystem is stable and the 
coordinates ( )xx,  of the main structure are uniformly 
bounded for all 0≥t and any bounded initial conditions. 

III. FORMULATION OF THE PROBLEM 

The main objective of the controller design is to generate 
an active control force )(tf  that reduces the absolute base 
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displacement such that the base isolator can work safely in 
its elastic region. In order to design an ∞H  controller, we 
express the dynamics of the base (1b) and the first floor 
(1i) by the equations of the form 
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stZ ℜ∈)( is the controlled output and }{diag  represents a 
block diagonal matrix. The matrices 21,CC  and 1D  have 
compatible dimensions and are defined in Section 5. 

In the system (2), taking ))(),((:)( tXtXcolt augaug=ξ  yields 
an augmented system model, i.e., a first-order linear system: 
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and }{col  represents a column vector. 
 
Definition 1. The ∞H  performance measure of the system 
(3) is defined as 

∫
∞

∞ −=
0

2 )]()()()([ dttftftZtZJ bg
T

bg
T γ  

where γ  is a positive scalar. 
 
The objective of this paper is to solve the following 
problem: For system (3) subject to the time-varying 
measurement delay, if all the states )(tX  and their 
derivatives are measurable, design a delayed state-feedback 
controller )()( tKtf f ξ= , where the matrix fK  is the 
controller gain to be determined such that  
1) the resulting closed-loop system (3) is asymptotically 

stable; 
2) under zero initial conditions and for all non-zero 

),0[)( 2 ∞∈ Ltfbg , satisfies 0<∞J ; 

in this case, the system (3) is said to be asymptotically stable 
with an ∞H  performance measure.  

IV. MAIN RESULTS 

In this section, sufficient conditions for the solvability of the 
∞H  control design problem are proposed using the 

Lyapunov method and an LMI approach ([12], [19], [21]).  

Theorem 1. Consider the building vibration structure (3). 
For a given scalar γ  under Assumption 1, there exists an 

∞H  state-feedback control in the form of )()( tKtf f ξ=  
such that the resulting closed-loop system is robustly 
asymptotically stable and satisfies the constraint 0<∞J , if 

there exist matrices 132
ˆ,, XXX , 4
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where the operator )(Asym  represents TAA + . Then, the 
desired control gain is given by 

1
11

ˆ −= XXK f  from LMI (4).                     (5) 
Proof. Firstly, we represent (3a) in an equivalent descriptor 
model form as 
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Differentiating )(1 tV  in t  we obtain 
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Differentiating other Lyapunov terms in (7) give 
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Moreover, from the Leibniz-Newton formula, i.e., 
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Now, to establish the ∞H  performance measure for the 
system (1), assume zero initial condition, then we have 
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where ),(),()),((),(),({:)( 21 hthtthtttcolt −−−= ξξξηξϑ

)}(tfbg  is an augmented state vector and the matrix Σ  is 
given by 
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Now, if 0<Σ , then 0<∞J  which means that the 2L –gain 
from the disturbance )(tfbg  to the controlled output )(tZ  is 
less than γ . By applying Schur complement on the matrix 
Σ , one obtains 0<Σ  is equivalent to 
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It is also easy to see that the inequality above implies 
0)( 2 <TPsym . Hence, the matrices P  and 2P  are nonsingular. 

Then, according to the structure of the matrix P , the matrix 
1: −= PX  has the form 

⎥
⎦

⎤
⎢
⎣

⎡
=

23

1 0
XX
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where 1−= ii PX  ( 2,1=i ) and 1323 XPXX −= . Let 
},,,,,,{ 1111 XXIIXXXdiag T=ζ . Premultiplying ζ  and 

postmultiplying Tζ to the inequality (19), we obtain  
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with 11
ˆ XNXN ii = , 11

ˆ XRXR ii =  and }
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1
+++ ∑

=
. Now, by 

considering 11 X̂XK f = , 1
14
−= XR , 1

15
−= XR  (to remove 

the present nonlinearities in the optimization technique) and 
applying Schur complement on the third term of the matrix 

11Π̂ , the matrix inequality (21) is converted into a convex 
programming problem written in terms of LMI (4). 

Remark 2. It was shown that the Lyapunov terms, i.e., 
)(2 tV , )(4 tV  and )(5 tV , result in delay-range-dependent 

criterions for the problem of ∞H  delayed control design.  
 

V. NUMERICAL RESULTS 

The controller is implemented with the following numerical 
values: the mass and stiffness of the base are 5106×=m  kg, 

710184.1 ×=k N/m, and the base damping ratio is 0.1, 
respectively; the main structure stiffness varies linearly from 
the first floor ( 8

1 109×=k N/m) to the top floor 
( 8

10 105.4 ×=k  N/m); and the damping ratio is 0.05. The 

frictional damper has the following values: ∑ == 10
1i imQ , μmax 

= 0.185, Δμ = 0.09, and ν = 2.0.  
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Fig. 2. The Taft earthquake records. 
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Fig. 3. Relative base displacement under three different 
earthquakes. 

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

v 
(m

/s
2)

Taft earhtquake

0 5 10 15 20 25 30 35 40 45 50-1

0

1

v 
(m

/s
2)

El Centro earthquake

0 5 10 15 20 25 30 35 40
-1

0

1

time (s)

v 
(m

/s
2)

Loma Prieta earthquake

 

 

unc. cont.

 
Fig. 4. Relative base velocity under three different earthquakes. 
 
The simulation is run by exciting the structure with the 
records of the Taft, El Centro and Loma Prieta earthquakes, 
as shown in Figure 2. A time-varying delay 

)50sin(01.003.0)( tth π+=  is used.  
To design an ∞H  state-feedback control law, LMI (4) is 
solved using Matlab LMI Control Toolbox [31] in the case 
of }0,{. 411 IdiagC ε= , TD ]0,0[. 4121 ×= ε  with 1.021 == εε  and 
obtained the minimum value of the parameter γ  in optimal 

∞H  performance measure as 30.0=γ  with the control gain  

]0.0560-0.03849.25399.1876-[108=fK . 
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The minimum and maximum allowable bounds of )(th  and 
)(th  for guaranteeing the stability of the structure are 

obtained as msh 201 = , msh 402 =  and 15.03 >= πh . Figures 
3 and 4 show the results of the structure response (base 
relative displacement and velocity) in the cases there is no 
control (“unc.”) and with the controller (“cont.”). In both 
cases, a reduction is achieved when the active control device 
is integrated. 

 
VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have addresed the problem of vibration 
reduction in a base-isolated building with delayed 
measurements, where the delays are time-varying and 
bounded. The controller was formulated following state-
feedback ∞H  techniques. Some delay-range-dependent 
sufficient conditions for the design of a desired control were 
given in terms of linear matrix inequalities (LMIs). The 
controller, which guarantees asymptotic stability and an ∞H  
performance, simultaneously, for the closed-loop system of 
the structure, was developed based on an appropriate 
Lyapunov-Krasovskii functional. The performance of the 
controller was evaluated by means of simulations in 
MATLAB/Simulink. Future work will investigate control 
designs for the structure under consideration by involving 
dynamics of semiactive actuators (MR dampers) which 
insert some nonlinear terms into the model. 
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