7 research outputs found

    ENGINES: exploring single nucleotide variation in entire human genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data.</p> <p>Description</p> <p>We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and F<sub>ST </sub>filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen.</p> <p>Conclusions</p> <p>ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or F<sub>ST </sub>values for genetic differentiation. Access to the data mart generating scripts and to the web interface is granted from <url>http://spsmart.cesga.es/engines.php</url></p

    Investigating the Role of Mitochondrial Haplogroups in Genetic Predisposition to Meningococcal Disease

    Get PDF
    BACKGROUND AND AIMS: Meningococcal disease remains one of the most important infectious causes of death in industrialized countries. The highly diverse clinical presentation and prognosis of Neisseria meningitidis infections are the result of complex host genetics and environmental interactions. We investigated whether mitochondrial genetic background contributes to meningococcal disease (MD) susceptibility. METHODOLOGY/PRINCIPAL FINDINGS: Prospective controlled study was performed through a national research network on MD that includes 41 Spanish hospitals. Cases were 307 paediatric patients with confirmed MD, representing the largest series of MD patients analysed to date. Two independent sets of ethnicity-matched control samples (CG1 [N = 917]), and CG2 [N = 616]) were used for comparison. Cases and controls underwent mtDNA haplotyping of a selected set of 25 mtDNA SNPs (mtSNPs), some of them defining major European branches of the mtDNA phylogeny. In addition, 34 ancestry informative markers (AIMs) were genotyped in cases and CG2 in order to monitor potential hidden population stratification. Samples of known African, Native American and European ancestry (N = 711) were used as classification sets for the determination of ancestral membership of our MD patients. A total of 39 individuals were eliminated from the main statistical analyses (including fourteen gypsies) on the basis of either non-Spanish self-reported ancestry or the results of AIMs indicating a European membership lower than 95%. Association analysis of the remaining 268 cases against CG1 suggested an overrepresentation of the synonym mtSNP G11719A variant (Pearson's chi-square test; adjusted P-value = 0.0188; OR [95% CI] = 1.63 [1.22-2.18]). When cases were compared with CG2, the positive association could not be replicated. No positive association has been observed between haplogroup (hg) status of cases and CG1/CG2 and hg status of cases and several clinical variants. CONCLUSIONS: We did not find evidence of association between mtSNPs and mtDNA hgs with MD after carefully monitoring the confounding effect of population sub-structure. MtDNA variability is particularly stratified in human populations owing to its low effective population size in comparison with autosomal markers and therefore, special care should be taken in the interpretation of seeming signals of positive associations in mtDNA case-control association studies

    Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage.

    Get PDF
    BACKGROUND: According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. METHODS/PRINCIPAL FINDINGS: A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities--and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy--probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. CONCLUSIONS/SIGNIFICANCE: Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times

    La bioinformática al servicio de la genómica

    Get PDF
    Este trabajo de tesis aborda distintos ámbitos de aplicación de técnicas bioinformáticas a la resolución de problemas surgidos del manejo, análisis, almacenamiento y consulta de grandes volúmenes de datos genómicos. Los principales retos a los que esta tesis ha tratado de dar respuesta han sido los siguientes: - Procesar la información más básica de las tecnologías de genotipado de alto rendimiento, a fin de permitir obtener de manera rápida y sencilla una serie de parámetros y estadísticas básicas características de un experimento independientemente de la tecnología elegida. - Facilitar la publicación y consulta de resultados de genotipado a baja y media escala, tanto de SNPs como de STRs, así como su interacción con los repositorios de variabilidad accesibles públicamente. - Estudiar la viabilidad de gestionar localmente un repositorio propio de variabilidad humana basado en los recursos disponibles, tanto de información externa como de infraestructura interna. - Transferir el conocimiento obtenido. Aportar herramientas existentes o soluciones ad hoc a los problemas que pueda presentar la investigación genética en el campo de la biología computacional

    Forensic Ancestry Analysis with Autosomal Polymorphisms

    Get PDF
    The inference of ancestry from biological material left at a crimescene has been a longstanding but specialised forensic technique, often lacking sufficient detail to make a reliable inference of ancestr y. This thesis describes the key steps in developing a forensic ancestry test that can be adopted by any laboratory using capillary electrophoresis equipment: optimisation of a PCR multiplex to detect DNA markers from contact traces; compilation of population data from which to infer the likely pop ulation of origin of the person; detection of coancestry patterns in an individual with admixed backgr ounds; and development of online statistical tools that calculate the probability of an individual’s an cestry from a submitted SNP profile. Additional types of autosomal markers were compiled from Ind el polymorphisms; short tandem repeats (STRs); multiple allele SNPs; and Microhaplotype markers

    Human mitochondrial DNA variability: multidisciplinary applications in the fields of forensic, medical and population genetics

    Get PDF
    The results of the present project indicate that the analysis of the mtDNA variation can be useful in medical, forensic, and population genetic studies. The particular features of the mtDNA, including high copy number, lack of recombination, and high average mutation rate; also determine its usefulness and limitations in genetic studies. For instance, the reconstruction of the phylogeny is straightforward because the lineages are passed through the matriline with the only changes generated by mutation. However, this is a single marker and only tells the history of female population, which not necessarily match the demography of the whole population. We have applied these principles to the analysis of several human populations, to the forensic field, and to some medical study. All of them have many aspects in common, indicating also the important interplay that should be always needed in all mtDNA studies. For instance, one cannot carry out a forensic or medical genetic study ignoring population variation patterns or the important heterogeneity that exists regarding site specific mutation rates. We have contributed to improve our knowledge of the variation in several African, European, and American populations. In this project we have also focussed our attention in several aspects of forensic interest, concerning the analysis of degraded and low DNA amount samples. And finally, we have tried to establish a necessary bridge between the different fields of research, indicating that proper quality standards can help to avoid false positives of instabilities in cancer studies, erroneous conclusions in forensic casework, or errors in datasets that could have consequences in population studies or indirectly in forensic or medical genetic ones
    corecore