180 research outputs found

    Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms

    Full text link
    We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, along which the next iterate is found. Complemented with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove (subsequential) convergence to a stationary point under weak assumptions on the growth of the model function error. Special instances of the algorithm with a Euclidean distance function are, for example, Gradient Descent, Forward--Backward Splitting, ProxDescent, without the common requirement of a "Lipschitz continuous gradient". In addition, we consider a broad class of Bregman distance functions (generated by Legendre functions) replacing the Euclidean distance. The algorithm has a wide range of applications including many linear and non-linear inverse problems in signal/image processing and machine learning

    Strict Locality and Phonological Maps

    Get PDF

    Learning Repairs for Marked Structures

    Get PDF
    [Abstract not available

    Computational Locality in Morphological Maps

    Get PDF

    On convergence of the maximum block improvement method

    Get PDF
    Abstract. The MBI (maximum block improvement) method is a greedy approach to solving optimization problems where the decision variables can be grouped into a finite number of blocks. Assuming that optimizing over one block of variables while fixing all others is relatively easy, the MBI method updates the block of variables corresponding to the maximally improving block at each iteration, which is arguably a most natural and simple process to tackle block-structured problems with great potentials for engineering applications. In this paper we establish global and local linear convergence results for this method. The global convergence is established under the Lojasiewicz inequality assumption, while the local analysis invokes second-order assumptions. We study in particular the tensor optimization model with spherical constraints. Conditions for linear convergence of the famous power method for computing the maximum eigenvalue of a matrix follow in this framework as a special case. The condition is interpreted in various other forms for the rank-one tensor optimization model under spherical constraints. Numerical experiments are shown to support the convergence property of the MBI method
    • …
    corecore