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Abstract This paper presents a computational investigation of a range of morpho-
logical operations. These operations are first represented as morphological maps, or
functions that take a stem as input and return an output with the operation applied
(e.g., the ing-suffixation map takes the input ‘dôINk’ and returns ‘dôINk+IN’). Given
such representations, each operation can be classified in terms of the computational
complexity needed to map a given input to its correct output. The set of operations
analyzed includes various types of affixation, reduplication, and non-concatenative
morphology. The results indicate that many of these operations require less than the
power of regular relations (i.e., they are subregular functions), the exception being to-
tal reduplication. A comparison of the maps that fall into different complexity classes
raises important questions for our overall understanding of the computational nature
of phonology, morphology, and the morpho-phonological interface.

Keywords Morphological maps · Computational locality · Subregularity ·
Morpho-phonological interface

1 Introduction

Classifying natural language patterns in terms of their computational complexity—
defined in this paper as the amount of computational power needed to recognize
and/or generate the pattern—is one approach to understanding what kinds of pat-
terns can and cannot exist in natural language. In addition, computational analyses of
patterns in different linguistic domains offer one perspective on how these domains
fundamentally differ (e.g., Bromberger and Halle 1989). In particular, previous work
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has shown that syntactic patterns exist which are context-free (Chomsky 1956) and
context-sensitive (Shieber 1985; Kobele 2006), while virtually all phonological pat-
terns are known to be regular relations (i.e., finite state) (Johnson 1972; Koskenniemi
1983; Kaplan and Kay 1994) with substantial evidence indicating that they are in
fact properly subregular (Heinz 2009, 2010; Heinz et al. 2011; Chandlee et al. 2012;
Gainor et al. 2012; Chandlee and Heinz 2012; Heinz and Lai 2013; Chandlee 2014;
Luo 2013; Payne 2017), meaning they can be represented with proper subclasses of
the regular relations. Collectively these findings suggest that syntax has the potential
to be more computationally complex than phonology.

Perhaps not surprisingly, morphology falls somewhere in between, with varying
claims that it is regular like phonology (Langendoen 1981) and context-free (Carden
1983) or even context-sensitive (Culy 1985) like syntax. Heinz and Idsardi (2013)
conjecture that patterns classified as morpho-phonological will have similar compu-
tational properties as phonological patterns (i.e., be regular or subregular), and like-
wise morpho-syntactic patterns will be more computationally complex (i.e., be non-
regular). The extent to which this hypothesis holds is unknown, and testing it fully is
a large undertaking. The primary goal of this paper is to establish what is currently
known about the computational nature of morphological operations and identify the
significant open questions.

The previous work on natural language complexity (reviewed in detail below) has
followed two approaches. One is to treat a pattern as a formal language, or a set of
strings that obey a particular restriction or constraint. For example, a phonotactic con-
straint like *NK (i.e., nasal-stop sequences must be homorganic) can be represented
as the set of strings that do not contain a violating NK sequence. The complexity of
different formal languages can be compared in terms of the needed computational
power of the grammar that generates them. A second approach is to analyze a pattern
as a map, or a relation/function from one set of strings to another. As with formal lan-
guages, maps can also be categorized in terms of the complexity of the computation
needed to correctly map an input string to its output string. The previous work on the
complexity of morphology followed the first approach and analyzed the set of strings
that the word formation component must be able to generate. This paper will take the
second approach and define morphological maps, with the goal of characterizing the
various kinds of operations that actually generate those strings.

As an example of what is meant by a morphological map, a suffixation map is
shown in (1). This map takes an input string and returns it with the string IN appended
to the end.

(1) fprog (spik) = spik+IN

The goal is to identify the computational properties of such maps, properties that hold
regardless of the theoretical formalism used to describe the map. As will be reviewed
below, the same approach for studying phonological maps has led to significant re-
sults for the computational nature of the transformation from underlying to surface
forms. Following Tesar (2008, 2014) and Baković (2013), the use of the term map
here reflects the fact that such investigations aim to reveal properties of the trans-
formation from underlying representation (UR) to surface representation (SR), prop-
erties that are independent of any particular grammatical formalism. In other words,
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both rule-based formalisms like SPE (Chomsky and Halle 1968) and constraint-based
formalisms like Optimality Theory (Prince and Smolensky 2004), Harmonic Gram-
mar (Legendre et al. 1990), or Harmonic Serialism (McCarthy 2000; Pater 2012)
assume the existence of a map from a UR to an SR, though they of course differ
greatly in how that map is achieved.

The concept of a map like in (1) may be more consistent with some morpho-
logical theories than others. In particular (in the terms of Hockett 1954), the con-
cept of a morphological map may be more in line with Item-and-Process or Word
and Paradigm theories (Anderson 1992; Aronoff 1994; Stump 2001) than with Item-
and-Arrangement theories (Halle and Marantz 1993). The objective here is not to
provide evidence in favor of one theory over the other—indeed, Roark and Sproat
(2007, Chap. 3) argue that computationally-speaking there is no difference between
these approaches. Rather, the goal is to identify the computational properties of mor-
phological operations under the assumption that they can be represented as maps.
A comparable computational investigation under different assumptions may require
a different methodology than the one employed here.

The key result of the analyses to follow is that morphological maps predominantly
belong to well-defined and restricted subregular classes of functions. The operations
to be analyzed include the following:

– (non-reduplicative) affixation
– partial reduplication
– total reduplication
– featural affixation
– truncation

A few comments about compounding and templatic morphology will also be offered,
with more thorough analyses being left for future work.

It has already been established (see e.g., Roark and Sproat 2007; Beesley and Kart-
tunen 2003; Hulden 2009a,b) that these operations are regular relations—meaning
they can be modeled with finite state transducers, a formalism that will be introduced
in Sect. 2—with the exception of total reduplication.1 But it will be shown that—
again with the exception of total reduplication—all of these operations can in fact
be modeled with properly subregular classes of transducers. Thus morphology may
in fact be less complex than has been previously assumed. The subregular nature of
morphology is also significant from the perspective of learning, since—unlike the
regular relations—the subregular functions used in the analyses to follow are prov-
ably and efficiently learnable from positive data (Oncina et al. 1993; Chandlee et al.
2014, 2015; Jardine et al. 2014).

Another note on how the results that will be presented in this paper compare to
the previous work on computational complexity and natural language. The majority
of that work (which will be reviewed in Sect. 3 below) applied the following type of
argument: language domain X does not belong to complexity class Y because there
exists at least one example of a X pattern that cannot be classified in Y. For exam-
ple, syntax is not context-free because serial verb case-marking in Swiss German is

1Though finite-state approximations of total reduplication have been proposed and implemented by several
of these authors.
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Fig. 1 Finite state acceptor
for L1

context-sensitive (Shieber 1985).2 In contrast, the primary objective of the current pa-
per is not to propose a new upper bound on the complexity of morphology as a whole.
Rather, a catalog of various morphological operations will be analyzed individually,
as a means of getting a more nuanced view of the nature of the computations involved
in word formation.

The paper is structured as follows. Section 2 presents the requisite background for
understanding the computational results presented in the paper (i.e., what it means
for a pattern to be regular, subregular, etc.). Section 3 surveys the key previous re-
sults on the computational complexity of syntactic, morphological, and phonological
patterns. Section 4 presents the computational analyses of a set of morphological
operations, including (non-reduplicative) affixation (Sect. 4.1), partial and total redu-
plication (Sects. 4.2–4.4), featural affixation (Sect. 4.5), and truncation (Sect. 4.6).
Section 5 discusses the significance of these results and addresses important remain-
ing questions. Section 6 concludes.

2 Computational background

The complexity classes used to classify language patterns in the previous and current
work come from theoretical computer science, in particular from formal language
theory. A formal language begins with a finite set of symbols called an alphabet;
this set is typically designated with Σ . A string or word is formed by concatenat-
ing symbols from Σ together, and Σ∗ designates the infinite set of all such strings.
A language is then a subset of Σ∗. For example, if Σ is the set {a, b}, then Σ∗ is the
infinite set of strings of a’s and b’s of any length, and we can define a language L1 in
which all words have at least one ‘a’: L1 = {a, aa, ba, ab, . . . , bbbbbbbbba, . . .}.

The types of symbols included in Σ depends on the type of language pattern be-
ing analyzed. Σ may include words or syntactic categories for an analysis of syntax,
morphemes for morphology, or phonemes and allophones for phonology. The strings
of the formal language in these cases would be permissible sentences, words, or un-
derlying/surface forms, respectively.

A formal language is classified as regular if it can be represented with a finite state
acceptor (FSA).3 For example, the FSA in Fig. 1 is a representation of the language
L1 defined above.

A FSA is a set of states (in Fig. 1 the states are labeled 0 and 1) and a set of
labeled transitions between states. Starting in a designated start state (marked with an

2These terms will be explained in the sections to follow.
3There are other definitions of regular languages based in other formalisms (e.g., regular expressions,
monadic second order logic, etc.), but this paper will use only automata-theoretic characterizations
throughout.
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Fig. 2 FSA that recognizes the string ‘aaabbb’

unlabeled incoming arrow, as in state 0 in Fig. 1), a given string is read one symbol at
a time and transitions are followed according to the current symbol being read. If at
the end of the string the FSA is in an accepting state (marked with an outgoing arrow
with no destination state, as in state 1), then the string is in the language that the FSA
represents. If the FSA ends in a non-accepting state, the string is not in the language.
It is easy to see in the figure that as soon as an ‘a’ is read, the FSA proceeds to the
accepting state 1, where it remains until the end of the string is reached. If no ‘a’ is
ever read (i.e., the string contains only b’s), then the FSA never leaves state 0. Since
0 is not an accepting state, the string will be rejected. Thus the FSA will correctly
accept all and only those strings with at least one ‘a’.

A language that is non-regular cannot be represented with a FSA, because what-
ever information is needed to distinguish strings that are and are not in the language
requires an infinite number of states. As an example, consider again Σ = {a, b} and
the language Ln that includes strings of the form anbn, where n is any integer (i.e.,
strings starting with any number n of a’s followed by the same number of b’s, so ‘ab’,
‘aabb’, ‘aaabbb’, ‘aaaabbbb’, etc.). What would a FSA that recognizes this language
look like? It would have to first identify how many a’s the string begins with and then
verify that an identical number of b’s follows. So if n = 3, the FSA in Fig. 2 would
recognize that ‘aaabbb’ is in the language.

The problem is that since n can be any of the infinite set of integers, the complete
FSA would need an infinite number of branches like Fig. 2, one for each possible
integer. By definition a FSA can only have a finite number of states; therefore this
language cannot be represented with a FSA and is therefore not a regular language.4

In this way the finite state formalism serves as a classification tool. The statements
‘language X is regular’ and ‘language X can be described/represented/modeled with
a FSA’ are equivalent. Likewise, the statements ‘language X is not regular’ and ‘lan-
guage X cannot be described/represented/modeled with any FSA’ are also equivalent.

The finite state formalism can also be used to analyze string-to-string maps. Just as
a FSA can represent a formal language, a finite state transducer (FST) can represent
a function/relation/map. The difference between FSAs and FSTs is that the transition
labels of FSTs include both an input symbol and an output string. As an input string
is read by a FST, it produces an output string by concatenating the output strings of
all the transitions it follows through the states. An example FST is shown in Fig. 3.
Like the FSA in Fig. 1, the FST reads strings of a’s and b’s. The first time it reads
an ‘a’, it outputs a ‘b’. All other a’s are outputted as a’s and all b’s are outputted as
b’s. This FST represents an infinite map that includes string pairs like (‘aaa’, ‘baa’),
(‘bba’, ‘bbb’), (‘aba’, ‘bba’), etc.

4This is not a proof that the language is non-regular, just an intuitive explanation. To see how an actual
proof can be constructed, readers are referred to Hopcroft et al. (2000).
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Fig. 3 FST that maps strings
from {a, b}∗ to {a, b}∗

This paper will make extensive use of the FST formalism as a means of classifying
various types of morphological maps in terms of their computational complexity.5 It
is important to note, however, that this is certainly not the first or only application
of finite state representations of morphology. The primary application thus far has
been morphological analysis, in which a FST representation of a language’s morpho-
phonological system is constructed to be used for both generation and recognition
(Beesley and Karttunen 2003; Hulden 2009a,b).

As an example, we can build such a system by starting with a set of lexical items
augmented with tags for part of speech, tense, number, person, etc. For English this
includes items like run+V+3P+Sg, run+N+Pl, etc. These tagged lexical items are
used as input to a FST that replaces each tag with its corresponding affix (or deletes
the tag if no affix is used to express it):6

(2) a. run+V+3P+Sg �→ runs
b. run+N+Pl �→ runs
c. stretch+V+3P+Sg �→ stretchs

Additional FSTs take care of any phonological processes that are triggered by the
affixation. For example, in English e-insertion is triggered when /s/ is appended to a
sibilant-final word:

(3) stretchs �→ stretches

The affixation map and the e-insertion map have a string in common: the output of
the first is the input to the second. This allows the two maps to be combined by
composition, a means of cutting out the intermediate step and representing the entire
map with a single FST:

(4) a. Before composition: stretch+V+3P+Sg �→ stretchs, stretchs �→ stretches
b. After composition: stretch+V+3P+Sg �→ stretches

By extension, any series of ordered FSTs can be composed into a single FST that
maps tagged lexical items to their surface pronounced forms. This is possible because
the regular relations have the property of being closed under composition.7

In addition, the inverse of this same FST (i.e., the FST in which the input and
output of each transition is flipped) can be used to decompose a surface form into its
component morphemes/tags:

5For a more comprehensive introduction to the finite state formalism and its application to phonology and
morphology, readers are directed to Beesley and Karttunen (2003) and Roark and Sproat (2007).
6Note that the strings in this example are orthographic instead of phonemic, which is the norm for a system
designed to analyze text.
7Formally, this means that if R1 and R2 are regular relations and (x, y) ∈ R1 and (y, z) ∈ R2, then there
exists another regular relation R3 such that (x, z) ∈ R3.
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(5) stretches �→ stretch+V+3P+Sg, stretch+N+Pl

Such systems have wide application in various areas of natural language process-
ing. The fact that they can be implemented with FSTs is due to the theoretical foun-
dations of the results presented in this paper. First, as will be explained in more detail
in Sect. 3.3 below, phonological rules can be modeled with regular relations. Second,
regular relations are closed under composition, meaning the composition operation
that combines the component FSTs is guaranteed to produce a well-defined and cor-
rect FST for the complete map. Thus the classification of phonological processes and
morphological operations like affixation as regular has the practical advantage that
morpho-phonological systems can be efficiently implemented as finite state.

The interests of the current paper lie more in pushing the boundaries of these
influential previous findings. Many unattested and implausible maps are also regular
(and therefore can also be implemented as finite state). The theoretical question of
interest is then how far ‘below’ regular can we go while still accommodating the
range of attested maps. The results presented below indicate that both phonological
and morphological maps belong to subregular classes of functions, which not only
provide a better fit to the observed typology but also (as mentioned above) enable
efficient learning results.

Before turning to the analyses, however, the next section will briefly review the
previous theoretical results on the computational nature of syntactic (Sect. 3.1), mor-
phological (Sect. 3.2), and phonological (Sect. 3.3) patterns.

3 Computational analyses of natural language patterns

3.1 Syntax

The distinction between regular and non-regular was first applied to natural language
patterns by Chomsky (1956), who situated several English syntactic patterns on the
hierarchy of complexity classes shown in (6).

(6) Chomsky Hierarchy
finite ⊂ regular ⊂ context-free ⊂ context-sensitive ⊂ recursively enumerable

In particular, Chomsky identified English syntactic patterns with the same type of
dependency needed to recognize the non-regular anbn language mentioned above. As
an example, consider the sentence frame ‘If S1, then S2’, where S1 and S2 are sen-
tences of English. A dependency exists between ‘if’ and ‘then’ in that a sentence that
begins with ‘if’ must at some point also contain a ‘then’. If S1 is itself a sentence of
the form ‘If S3, then S4’ (i.e., ‘If [If S3, then S4], then S2’), we have two ‘if’s’ that
must be followed at some point by two ‘then’s’. And so on, such that to determine
whether the sentence is well-formed requires keeping track of the same kind of in-
formation needed to determine whether ‘aaabbb’ is in the language Ln. And for the
same reasons, the ‘if. . . then’ structure describes a non-regular language. This was
taken as evidence that English itself is a non-regular language.

This argument was later recognized as fallacious, since a regular language can
contain a context-free language as a subset (see Daly 1974; Mohri and Sproat 2006).
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But additional evidence that syntax is non-regular came from Shieber (1985) and
Kobele (2006). Shieber’s argument comes from case-marking dependencies in Swiss
German’s cross-serial construction:

(7) Swiss German (Shieber 1985)
Jan säit das mer em Hans es huus hälfed aastriiche
Jan says that we Hans-DAT the house-ACC helped paint
‘Jan says that we helped Hans paint the house.’

In (7), two verbs and their respective objects appear in the order ‘object1 object2 verb1

verb2’. The semantic dependencies are encoded syntactically with case-marking, as
verb1 (hälfed) marks object1 (Hans) with dative case and verb2 (aastriiche) marks
object2 (huus) with accusative case. More abstractly, this means that a dative-marked
NP (let’s call it a) must precede an accusative-marked NP (let’s call it b), which in turn
must precede a dative-marking verb (c), which in turn must precede an accusative-
marking verb (d). More generally, these precedence relations still hold if the sentence
contains additional NPs and verbs of these categories, such that the sentences of the
language can be represented as ambncmdn, where m and n are integers. Crucially,
the number of a’s must match the number of c’s and likewise the number of b’s
must match the number of d’s. Such a language is known to be non-context-free (i.e.,
cannot be generated by a context-free grammar) (Hopcroft et al. 2000).

Likewise, Kobele (2006) discusses serial verb constructions in Yoruba relativized
predicates:

(8) Yoruba (Kobele 2006)

a. Rira
buying

ti
TI

Jimo.
Jimo.

o.
HTS

ra
buy

adie.
chicken

‘the fact/way that Jimo. bought a chicken’
b. Rira

buying
adie.
chicken

se
cook

ti
TI

Jimo.
Jimo.

o.
HTS

ra
buy

adie.
chicken

se
cook

‘the fact/way that Jimo. bought the chicken to cook’

These constructions are analyzed as involving copying, and Kobele (2006) argues
that the fact that relative predicates can themselves contain relative predicates means
the copying is iterative (i.e., copying of copies can occur). Furthermore, there is no
principled upper bound on the number of relative clause embeddings, and therefore
by extension on the amount of material copied. The exact same mechanism Kobele
(2006) proposes to account for this could generate the context-sensitive language
wwr (i.e., all strings are anagrams).

Thus there is evidence that—at least when it comes to syntax—natural language
patterns are not only non-regular, but can be as complex as context-sensitive. But
what about non-syntactic patterns? Analyzing patterns computationally in different
domains is one avenue to understanding more about how these domains differ. The
next subsection reviews the results when similar analyses were applied to morpho-
logical patterns.
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3.2 Morphology

Focusing on well-formed words instead of sentences, Langendoen (1981) hypothe-
sized that no language’s word formation component requires more power than regu-
lar. But Culy (1985) provided evidence from two constructions in Bambara to suggest
otherwise: the Noun o Noun construction (shown in (9)), which is only acceptable
with two identical nouns, and an agentive construction (Noun+Verb+la, as in (10a))
that can be used recursively (as in (10b)).

(9) Bambara (Culy 1985)

a. wulu ‘dog’
b. wulu o wulu ‘whichever dog’

(10) a. wulu+nyini+la ‘dog searcher’
b. wulunyinila+nyini+la ‘one who searches for dog searchers’

In addition, nouns derived via the agentive construction can themselves be used in
the Noun o Noun construction:

(11) wulunyinila o wulunyinila ‘whichever dog searcher’

Culy shows that the potential for recursion in the agentive construction and the re-
quirement that the nouns be identical in the Noun o Noun construction make the
pattern equivalent to ambnambn, which is more powerful than context-free (and by
extension more powerful than regular).8

Gazdar and Pullum (1985) point out that all known cases of non-regular word
formation (like Culy’s Bambara example) involve reduplication. Though the presence
of reduplication in a language means the entire word formation component is non-
context-free (as shown by Culy 1985), they note that recognizing whether the first
part of the string is equal to the second can be achieved with the same kind of parsing
algorithms that are used for context-free languages (e.g., CKY). This suggests that
the right characterization of word formation is ‘regular with reduplication’, though
this class lacks a formal characterization.

Carden (1983) argues against the focus on weak generative capacity, as the
output of the word formation component must include the relevant structure (i.e.,
trees/bracketings) to be of use to the phonological and semantic components. When
instead focusing on this strong generative capacity (complexity of the structures as-
signed to strings), he argues morphology is indeed more powerful than regular. He
points to Bar-Hillel and Shamir (1960)’s examples of the recursive nature of English
shown below:

(12) a. missile
b. anti-missile missile
c. anti-anti-missile missile missile
d. etc.

8A reasonable follow-up question would be whether these patterns are in fact syntactic, where we expect
to find non-regular phenomena. Culy gives evidence based on the tone pattern of these nouns that suggests
it is in fact a morphological phenomenon.
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Based on the weak generative capacity of this construction—the non-regular set of
strings {(anti)nmissile (missile)n, n ≥ 1}—Bar-Hillel and Shamir (1960) argue that
English morphology is not limited to regular.9 Carden (1983) concurs with this con-
clusion, but for a different reason, arguing that assigning the correct structure to these
forms requires center-embedding. Center-embedding in turn requires both left- and
right-branching structures, whereas regular grammars can do either left- or right-
branching, but not both.

This distinction between weak and strong generative capacity has a significant im-
pact on our understanding of the computational nature of syntactic and morphological
patterns. The research in computational phonology reviewed in the next section intro-
duced another important distinction: classifying sets of strings versus the maps (i.e.,
relations or functions) that actually generated those strings.

3.3 Phonology

The foundational results of Johnson (1972), Koskenniemi (1983), and Kaplan and
Kay (1994) showed that phonological rules of the form A→B / C D are regular
relations, provided they do not re-apply to the locus of the structural change. The
regular relations parallel the regular languages: while a regular language is a set of
strings, a regular relation is a set of string pairs (i.e., {(w1,w2), (w3,w4), . . .}). The
first member of the string pair is related to the second member in some well-defined
way. For example, the string pair (abcd , ad) is a member of the relation in which
the first string is mapped to a string that contains only its first and last characters.
When it comes to a phonological regular relation, the string pair is often an under-
lying representation and the surface representation it is mapped to by a particular
generalization/process/rule (e.g., (UR, SR)). In automata-theoretic terms, the regu-
lar relations are those relations describable with FSTs. As noted above, because the
regular relations are closed under composition, a single relation can in fact describe
the direct UR-SR map of an entire set of ordered rewrite rules (see Kaplan and Kay
1994).

The result that phonological rules are regular relations was significant for at least
two reasons. One, it indicated that phonology is less computationally complex than
syntax (see Bromberger and Halle 1989; Heinz and Idsardi 2011, 2013). Two, it re-
vealed that the context-sensitive Sound Pattern of English (SPE)-style (Chomsky and
Halle 1968) rewrite rules being used at the time to describe phonological grammars
were more computationally expressive than necessary. To the extent that a theory of
phonology should predict the set of patterns that are actually possible, the computa-
tional analysis of phonological rules revealed that a significant property of phonology
was being missed.

This result for phonological rules might lead one to assume that phonotactic pat-
terns are also regular, given that the language that results from a regular relation (in
this case the language of surface forms) is itself regular. However, there is strong evi-
dence that in fact phonotactic patterns are best characterized as subregular languages

9See Langendoen (1981) for an argument against their conclusion.
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Fig. 4 Subregular hierarchy of
formal languages (Rogers and
Pullum 2011)

(Heinz 2007, 2009, 2010; Heinz et al. 2011). In other words, if regular was the up-
per bound on the computational complexity of phonotactics, then a greater variety of
patterns should be attested cross-linguistically.

To pursue the hypothesis that phonotactics are actually subregular required a more
articulated hierarchy than the one in (6), one with options between Regular and Fi-
nite.10 The subregular hierarchy of languages, shown in Fig. 4 (McNaughton and Pa-
pert 1971; Rogers and Pullum 2011; Rogers et al. 2013), provided exactly that. Unlike
(6), Fig. 4 includes several regions between Regular and Finite. Both the horizontal
and vertical orientations of these regions are meaningful. Vertical lines connecting
regions indicate that one region properly includes the other (e.g., all Locally Testable
languages are also Locally Threshold Testable, etc.). The two branches originating
at Regular are distinguished by the interpretation of the constraints that define the
language (i.e., immediate successor versus general precedence).

A comparison between the Strictly Local (hereafter SL) and Strictly Piecewise
(SP) languages will clarify this distinction between successor and precedence. Con-
sider a language with the alphabet Σ = {T, D, V, N} that prohibits the segment D
from being the last segment of a string. This infinite language can be represented with
a finite grammar, GSL, that lists the forbidden substrings. In this example, GSL =
{D�} (following Rogers and Pullum (2011), let � and � represent the start and end
of word boundaries, respectively). The language is the set of strings that do not con-
tain any of the substrings in GSL. Languages that can be defined in this way (i.e.,
with a grammar of contiguous substrings of bounded length) belong to the SL region.
A given SL language is actually k-SL, where k is the length of the longest substring
in the grammar. This example is then 2-SL.

10A finite language is simply a finite set of strings. The grammar for such a language would not have an
infinite generative capacity. For this reason finite formal languages (and by extension finite relations) have
little to no theoretical interest for natural languages, under the assumption that there is no upper bound on
the length of words in a human language (i.e., human languages are infinite).



610 J. Chandlee

The difference between SL and SP is that in the latter the grammar includes sub-
sequences instead of substrings. A subsequence of a string can be non-contiguous;
for example, T. . . V is a subsequence of the string DTDVD. Subsequences track the
precedence relations of the symbols in a string. As an example, consider a language
for which Σ = {s, V, S}, such that the symbol ‘s’ can never precede the symbol ‘S’ in
a string. In other words, the valid strings of this language are those that do not contain
the subsequence s. . . S. Such a language is 2-SP, since the forbidden subsequence is
of length 2.

These examples of SL and SP languages correspond intuitively to local and long-
distance phonotactic constraints, respectively (Heinz 2010). The SL example is a
language that enforces final devoicing (when we interpret the alphabet as D = voiced
obstruent, T = voiceless obstruent, V = vowel and N = nasal). And the SP example
is of course a language that enforces sibilant harmony, such as Navajo:11

(13) Navajo (Sapir and Hoijer 1967; Hansson 2001; Heinz 2010)

a. sì-tí ‘he is lying’
b. Sì-GìS ‘it is bent, curved’
c. *sì-GìS

Thus when it comes to phonotactics there is evidence that the observed patterns are
not only subregular, but fall into the most restrictive regions of the hierarchy in Fig. 4:
Local phonotactics are SL and long-distance phonotactics are SP. However, long-
distance patterns with blocking are exceptions to this generalization (Heinz 2010).
Such patterns still do not require the full power of the Regular class, provided they
can be defined over a tier (i.e., a subset of Σ that includes only those segments
participating in the phonotactic constraint). In that case the blocking pattern can be
described as a Tier-based Strictly Local (TSL) language (Heinz et al. 2011; McMullin
2016). As the name implies, a TSL language is defined with SL-type constraints over
only those segments on the tier (i.e., all other segments are ignored). The TSL region
is not represented in Fig. 4, but it is properly contained by Regular (Heinz et al. 2011).

Investigations of the computational nature of phonology have also examined
phonological UR-SR maps to determine the extent to which they too are subregu-
lar. Since the subregular hierarchy in Fig. 4 is a hierarchy of formal languages, it
cannot be used directly to study maps, which again are not sets of strings, but sets
of string pairs. For example, the final devoicing case above was described as the set
of strings without voiced obstruents in word-final position. The corresponding map
would be one that, given a string that does contain a voiced obstruent in word-final
position, maps that string to one with the respective voiceless obstruent in word-final
position. So the final devoicing map is D = {(TV, TV), (DV, DV), (DVN, DVN),
(DVD, DVT), . . . }.12 The subregular hierarchy of maps, shown in Fig. 5 (Mohri
1997; Chandlee 2014; Chandlee et al. 2015), is not as fully developed as the one for
languages, but it has lead to several key results for phonology.

11This is a simplification of the Navajo facts. More generally, [+anterior] sibilants cannot precede
[−anterior] sibilants, and vice versa.
12Note that strings that do not contain a voiced obstruent in word-final position are simply mapped to
themselves. In other words, D is a total function defined for all strings from Σ∗ , not just those that satisfy
the structural description for final devoicing.
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Fig. 5 Subregular hierarchy of maps

Comparing Figs. 4 and 5, we see both align with Regular at the top and Finite at
the bottom. Note that the SL languages have three counterparts in the maps hierarchy:
left Output Strictly Local (LOSL), right Output Strictly Local (ROSL), and Input
Strictly Local (ISL). These will be discussed in more detail below. The left and right
subsequential functions are not known to correspond to any region of the hierarchy of
languages. The map counterparts to the other regions of the language hierarchy (i.e.,
Non-counting, Locally Threshold Testable, Locally Testable, Piecewise Testable, and
Strictly Piecewise) remain to be discovered.

Chandlee (2014), Chandlee et al. (2015), and Chandlee and Heinz (2018) show
that phonological maps that correspond to local processes (i.e., processes for which
the target and triggering context form a contiguous substring of bounded length) can
all be classified in one of the SL regions of the maps hierarchy. In the finite state
formalism, this means these types of phonological generalizations can be described
with FSTs that have the characteristic properties of the LOSL, ROSL, and/or ISL
classes. We will continue with final devoicing as an example to demonstrate what
this means.

Final devoicing is a straightforward case of a ‘local’ process, in that the trigger of
the process (word-final boundary) and the target (voiced obstruent) form a contigu-
ous substring of bounded length (i.e., 2). In other words, whether or not the process
applies can be determined solely by examining whether an input string contains the
substring D�. This ‘bounded’ nature of the map, plus the fact that the needed infor-
mation is present in the input, means we can model it as a 2-ISL function. Again, this
in turn means it can be represented with a 2-ISL FST, which is shown in Fig. 6.

A few notes on the FSTs that will be presented in the remainder of the paper. The
start state is always λ, which represents the ‘empty string’ of zero symbols. Starting
in this state means no symbols have been read. All input strings are assumed to be
augmented with � and �, which are not included in Σ . Thus an input string w ∈ Σ∗
is treated as �w� by the FST. The start state always has a single outgoing transition
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Fig. 6 2-ISL FST for final
devoicing

Fig. 7 Path through FST in Fig. 6 for input datad

on the input symbol �—in most cases the output of this transition is λ, though we
will see cases in the survey of morphological maps in which it plays a more important
role.13 In addition, each state (except for λ) has an extra transition with � as the input
symbol. These final output transitions are only taken when the end of the input string
is reached; their output is then appended to the end of the output string.

For simplicity, the FST in Fig. 6 assumes the following segment inventory: Σ =
{d, t, a}.14 For the input string datad, this FST follows the path shown in Fig. 7. As
mentioned above, the fact that final devoicing can be modeled with any FST is suffi-
cient to classify it as a regular relation. Its further classification as ISL (and therefore
subregular) depends on a few special properties of the FST in Fig. 6. First, it is deter-
ministic, which means each state has at most one outgoing transition for each possible
input symbol. FSTs in general can be non-deterministic, meaning a state could have
multiple transitions for a given alphabet symbol. Some regular relations can only be
modeled with non-deterministic FSTs, but all ISL functions can be modeled deter-
ministically. Second, the ISL FST includes states for each possible input sequence of
length k − 1 (in this example again k = 2, so there are states for each sequence of
length 1). FSTs in general can have states that represent other types of information,

13Note that since � is not part of Σ and is therefore guaranteed to only appear once at the start of the
string, the λ state and the � state could also be collapsed with the � transition being a self-loop. Keeping
the two states distinct is motivated by greater transparency in how they represent the pattern in question.
See also Chandlee et al. (2015) for reasons why, at least in OSL FSTs, a distinct � state is necessary.
14The fact that the map is ISL does not depend on this reduced alphabet. It would still be ISL, for the same
value of k, if the alphabet included the complete segment inventory for a particular language. The FST in
that case would just have more states and therefore be less readable.
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Fig. 8 2-LOSL FST for progressive nasal spreading

but ISL FSTs can only keep track of the most recently read k − 1 symbols. No other
information can be used to determine what to output at any given time. This is the
essentially ‘local’ nature of an ISL map.

The Output SL maps are very similar to the ISL ones, except that the FST tracks
the recent output instead of the input. This is needed to model processes in which the
trigger is present in the output and not the input. An example is nasal spreading, like
in Johore Malay (Onn 1980).

(14) Johore Malay
f (p@Nawasan) = p@Nãw̃ãsan ‘supervision’

Under the assumption that the nasalization proceeds iteratively, such that the first a is
nasalized because of the preceding nasal, and then it in turn nasalizes the following
glide, etc., the triggers for the nasalization of the glide and the second a are only
present in the output, not the input. Therefore an ISL FST can’t model this process,
since, again, it can only pay attention to the recent input. An OSL FST can, however,
model this process. Since the process is progressive (i.e., proceeds left-to-right), it is
modeled with a left OSL FST, which reads the input from the left to the right. This
FST is shown in Fig. 8. Regressive iterative processes are likewise classified as right
OSL; a right OSL FST reads the input string from the right to the left.15

Again for readability, the FST in Fig. 8 is defined for the reduced alphabet of {n,
d, V}, where V is any [+vocalic] segment. Note that once in state n, if a V is read
the output is nasalized Ṽ, and that transition crucially leads to a state Ṽ. Were this an
ISL FST, that transition would go to state V. In that case, nasalizing any additional

15ISL FSTs are not designated as left or right because when paying attention to the input the same map
will result regardless of whether the string is read from the left or the right. For more on this distinction,
see Kaplan and Kay (1994), Hulden (2009a), Heinz and Lai (2013).
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V’s would require first seeing another n. But since the OSL FST follows the output,
additional V’s can be nasalized directly from state Ṽ.

Maps in which an unbounded number of segments intervenes between the target
and trigger are neither ISL nor OSL. An example of unbounded consonant agreement
in Kikongo is shown in (15).

(15) Kikongo (Meinhof 1932; Odden 1994; Rose and Walker 2004)

a. f (tunikidi) = tunikini ‘we ground’
b. f (kudumukisila) = kudumukisina ‘to cause to jump for’

While unbounded maps like long-distance consonant agreement, long-distance
consonant dissimilation, and vowel harmony are not ISL/OSL, they are subsequen-
tial and therefore still subregular (Payne 2017; Gainor et al. 2012; Heinz and Lai
2013).

In sum, previous investigations into the computational nature of phonological
maps have provided a set of categories for classifying patterns as well as substan-
tial evidence that phonological maps are subregular. The next section applies these
same categories toward a comparable investigation of morphological maps.

4 Computational analyses of morphological patterns

This section extends the computational analyses of phonological maps presented
above to morphological maps, which are functions that take an input string and pro-
duce an output string by applying some type of morphological operation. First vari-
ous types of concatenative morphology are discussed, including (non-reduplicative)
affixation, partial reduplication (both ‘local’ and ‘non-local’ varieties), and total redu-
plication. Then a couple of types of non-concatenative morphology are discussed,
including featural affixation, in which no segments are added to the word but rather
a floating feature is expressed on the existing segments of the word, and truncation.
Templatic morphology and compounding are not given a full analysis here, but some
comments will be offered in Sect. 5 on how these operations differ from those pre-
sented in this section.

4.1 Affixation

We begin with the straightforward case of English IN-suffixation, by which the string
IN is attached to the end of a verb to encode the present progressive tense. An example
of this map is shown in (16) (repeated from (1)).

(16) fprog(spik) = spik+IN

Before proceeding to the classification of this map, two important assumptions of
these analyses are stated. First, the output of the map encodes the morpheme bound-
aries (here with the symbol ‘+’), under the assumption that such information cru-
cially defines the context for at least some phonological maps. Second, the maps are
considered to be total functions, meaning they treat all input strings the same, regard-
less of whether the string corresponds to an actual input of an actual speaker. In other
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Fig. 9 1-ISL FST for English
IN-suffixation

Fig. 10 1-ISL FST for English
ôi-prefixation

words, out of the possible inputs W = {ô2n, dôINk, kOfi, AAAA}, only the first two are
‘valid’ inputs to IN-suffixation in the sense that they are strings of English phonemes
that correspond to verbs. However, the suffixation map does not make this distinction
and will apply equally to all four strings: f+IN(W) = {ô2n+IN, dôINk+IN, kOfi+IN,
AAAA+IN}. This allows us to analyze the computational properties of the map itself
independently of how it is actually used within the larger system. To put it a differ-
ent way: the analysis of computational complexity is focused on the morphological
operation itself (i.e., appending a string), not the determination of whether the input
actually corresponds to a verb of English.

The map exemplified in (16) is ISL for k = 1, and its FST is shown in Fig. 9.
Following Beesley and Karttunen (2003), the ‘?’ transition encompasses all seg-
ments not represented on other transitions (in this case that is all segments in Σ ).
The ?:? self-loop on state � then effectively outputs the entire input string un-
changed, up until it reads the end of word marker �, at which point the suffix is
appended.

Prefixation is also 1-ISL. Consider the example of the English prefix re-, which
again attaches to verbs:

(17) a. fre(ôid) = ôi+ôid

b. fre(wAtS) = ôi+wAtS

A 1-ISL FST for this function is shown in Fig. 10. The prefixation takes place on the
output side of the � transition, after which all additional input is outputted unchanged
by a ?:? transition.

Summarizing these two examples, we see that both suffixation and prefixation are
1-ISL maps: the former is achieved via the final output function (i.e., the transition
on �) and the latter is achieved with the first transition on �. If we combine these
two options in a single FST, we can model circumfixation. An example comes from
Chickasaw (Fromkin et al. 2014), in which negation is achieved by prefixing ik- and
suffixing -o:

(18) Chickasaw

a. fneg(chokma) = ik+chokm+o (He is good. → He isn’t good.)
b. fneg(lakna) = ik+lakn+o (It is yellow. → It isn’t yellow.)
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Fig. 11 1-ISL FST for
Chickasaw circumfixation

Fig. 12 2-ISL FST for
Chickasaw circumfixation and
vowel deletion

Putting aside for a moment the deletion that resolves vowel hiatus (i.e., ao �→ o), this
circumfixation map can be modeled with the 1-ISL FST in Fig. 11. Comparing this
FST with those in Figs. 9 and 10, we see that for circumfixation the transitions on
both � and � contribute non-empty strings to the output.

Again, as the current goal is to classify various categories of morphological maps
in terms of their computational properties, this example suffices to demonstrate that
circumfixation in isolation of the phonology is 1-ISL. But to cover the Chickasaw
data in full, we now briefly demonstrate how the classification is affected by the
vowel deletion triggered by the circumfixation. As discussed in the previous section,
deletion maps with local triggers (such as deletion to resolve vowel hiatus, as in the
case at hand), are ISL maps. Thus here we have a dataset that reflects two ISL maps,
one for the circumfixation and one for the vowel deletion. Though all of our examples
of ISL maps so far have dealt with a single process or operation, in fact a single ISL
map can describe multiple processes/operations. The ISL FST in Fig. 12, for example,
models both circumfixation and vowel deletion. Notice that the k-value has increased
to 2.

The FST in Fig. 12 achieves the prefixation of ik- in the same way as in Fig. 11.
After that, it moves to the appropriate state depending on the first segment of the
word: state V if that segment is a vowel and state ? otherwise. The output for the
V transition is λ, indicating that the vowel is deleted under the assumption that the
suffix -o will be appended. If that is not the case, meaning another non-vowel symbol
follows the vowel, then the vowel is ‘returned’ on the subsequent ? transition to state
? (along with ? itself). The FST proceeds in this way based on all additional V and
? segments, until it does reach the end, at which point the suffix is appended via the
� transition just as before. A example path for input lakna is given in Fig. 13. Thus
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Fig. 13 Path through FST in Fig. 12 for input lakna

Fig. 14 Fragment of ISL FST
for German circumfixation

in this case the interaction of circumfixation and vowel deletion does not change the
computational classification (i.e., it is still an ISL map).

Another example of circumfixation that also involves some allomorphy is the Ger-
man past participle, shown in (19). This map prefixes ge- and suffixes -t, unless the
stem ends in (1) an alveolar stop or (2) a nasal that is preceded by a non-liquid conso-
nant, in which case the suffix is -et. For readability, the portions of the FST responsi-
ble for these two generalizations will be shown separately (the complete FST for the
entire map, for which k = 3, is included in an Appendix).

(19) German

a. fpast(mach) = ge+mach+t (‘make’ → ‘made’)
b. fpast(koch) = ge+koch+t (‘cook’ → ‘cooked’)
c. fpast(miet) = ge+miet+et (‘rent’ → ‘rented’)

The first generalization—that the suffix -t is -et when the stem ends in an alveolar
stop—is modeled with the FST fragment in Fig. 14. In this FST the symbol T =
{t, d} and ? again abbreviates everything else. Note that the allomorphy is handled
straightforwardly with the final output function: in state T the appended suffix is -et.

The second generalization—that the -et allomorph is also used when the stem
ends in a consonant cluster of a non-liquid followed by a nasal—is described with
the portion of the FST in Fig. 15. In this FST the symbol N is used for any nasal and
L is used for any liquid. Again ‘?’ represents all other segments. The -et allomorph is
appended at state ‘?N’, which corresponds to any stem-final sequence of a non-liquid
and a nasal. Stems that end in a liquid-nasal cluster will end in state LN, were the
-t allomorph is appended instead. Thus the distribution of the two suffixes can be
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Fig. 15 Fragment of ISL FST for German circumfixation

achieved by keeping track of the last two segments of the input string, making it a
3-ISL map.

This leaves infixation. McCarthy and Prince (1993, 1996) identify two types of
infixation within their framework of prosodic circumscription: negative and positive
circumscription. In negative circumscription, a prosodic constituent is skipped over
or put aside while a morphological operation applies to the remainder of the string.
An example is um-infixation in Tagalog, shown in (20) (French 1988; McCarthy and
Prince 1993; Orgun and Sprouse 1999). The infinitive affix um appears as a prefix
before vowel-initial stems and after the initial onset of consonant-initial stems.

(20) Tagalog

a. finf (abot) = um+abot (‘reach for’ → ‘to reach for’)
b. finf (sulat) = s+um+ulat (‘write’ → ‘to write’)
c. finf (gradwet) = gr+um+adwet (‘graduate’ → ‘to graduate’)

Because the infixation map can determine the correct placement of the infix by ex-
amining at most the first three segments of the string, it is a 4-ISL map (the fourth
symbol is �). The FST in Fig. 16 models Tagalog um-infixation. Since once the infix
is placed the rest of the string is just outputted unchanged, all subsequent states have
been collapsed to a single ‘?’ state for readability.

In contrast, in positive circumscription the infix attaches to a prosodic constituent.
For example, in Ulwa (Bromberger and Halle 1988; Hale and Blanco 1989; Sproat
1992; McCarthy and Prince 1993; Roark and Sproat 2007) the possessive is formed
by infixing a pronoun after the first syllable if it is heavy, otherwise after the second
syllable.

(21) Ulwa

a. fpos(bas) = bas+ka (‘hair’ �→ ‘his hair’)
b. fpos(ki:) = ki:+ka (‘stone’ �→ ‘his stone’)
c. fpos(sana) = sana+ka (‘deer’ �→ ‘his deer’)
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Fig. 16 4-ISL FST for Tagalog um-infixation

More generally, the possessive affix is attached after the first iambic foot. The options
for the form of this foot are disyllables in which the first vowel is short and monosyl-
lables with either a long vowel or a coda. These options are shown in template form
in (22):

(22) a. (C)VCV(V)
b. (C)VV
c. (C)VC

This operation requires examining at most the first 6 segments of the string (the first
segment being �).16 If the first vowel is followed by another vowel, then we know
we have a heavy monosyllabic foot (22b) and so the infix can be attached at this point
(�CVV �→ �CVV+ka). Otherwise, we have to keep going to determine whether
we have a closed monosyllabic foot (22c) or a disyllabic foot (22a). After CVC, if
what follows is another C then the infix can be attached between the two consonants:
�CVCC �→ �CVC+ka+C. If what follows is a V, then one additional segment after
that must also be examined; if it’s the second half of a long vowel, the infix is attached
after the long vowel (�CVCV1V1 �→ �CVCV1V1+ka), but if it’s a different vowel
or a consonant, the infix is attached prior to it (�CVCV1V2 �→ �CVCV1+ka+V2,
�CVCVC �→ �CVCV+ka+C). These last two cases represent the upper bound on
the number of segments that must be read, 6, to model the operation as ISL.

One might object to this analysis of Ulwa because it just examines the segments
directly and does not actually make use of the metrical structure. But again the goal
here is to simply answer the question of whether or not the map can be modeled
with the restrictions of an ISL function, and the answer to that question in this case
is yes. There do, however, exist cases of affixation conditioned by metrical and/or
prosodic structure that cannot be modeled as ISL based on segments alone (or even at

16This is assuming long vowels are represented as VV; if the alphabet instead includes a V: symbol then
only the first 5 segments need to be examined.
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Fig. 17 Left subsequential FST
for Sami Illative Plural

all). Three cases will be reviewed here, from Sami, Yidiñ, and Tagalog, all of which
require some mechanism for counting the number of syllables in the word.17

In Sami, the illative plural has two allomorphs that are selected based on whether
the noun has an even or odd number of syllables.

(23) Sami Illative Plural (Bergsland 1976; Hargus 1993)

a. filpl(čiega) = čiega+ide ‘corner’
b. filpl(mállási) = mállási+ida ‘feed’

This is suffixation, which was analyzed above as being 1-ISL. But tracking
whether a string has an even or odd number of syllables is beyond the ability of
any ISL FST. It is however, subsequential and therefore still subregular. Figure 17
presents a left subsequential FST for the Sami Illative Plural operation. This 2-state
FST keeps track of the even/odd parity of the number of syllables by counting the
vowels modulo 2 (V abbreviates the set of vowels and diphthongs). The FST will
always be in state 0 when the vowel count is a multiple of 2; otherwise it will be in
state 1. The final output function from each state appends the appropriate suffix.

Similarly, in Yidiñ, a final syllable deletion process targets words with an odd
number of syllables, with the added restriction that the post-deletion form must end
in one of {l, r, ó, y, m, n, ñ, N}. Examples are given below; the vowel lengthening in
(24a) is due to a penultimate lengthening process that also targets words with an odd
number of syllables.18

(24) Yidinñ Final Syllable Deletion (Dixon 1977; Hayes 1999)

a. buña+Ngu �→ buña:N ‘woman (ergative)’
b. gindanu+Ngu �→ gindanuNgu ‘moon (ergative)’

The result is two allomorphs that are selected based on the even/odd parity of the
number of syllables in the stem. For the ergative these are -N and -Ngu, though the
same pattern is observed with a number of other suffixes. Though the suffixation op-
eration itself is still a simple 1-ISL function, the subsequent phonological changes of
vowel lengthening and syllable deletion still need to be addressed, as their condition-
ing on syllable number reflects global information about the string that falls beyond
the capability of ISL.

As with the Sami data above, the map that achieves the suffixation as well as the
lengthening and deletion processes can be modeled with a left subsequential FST,
which has the ability to determine whether an input string contains an even or odd

17Thanks to an anonymous reviewer for bringing these cases to my attention.
18See Hayes (1982, 1999) for additional examples of processes in this language that depend on the number
of syllables in the word.
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number of syllables. The analysis of Hayes (1982), however, provides an alternative
approach in which the map is still ISL. He argues that the environment for lengthening
and deletion is assessed by whether or not the word ends with an unparsed syllable.
For example, lengthening applies in (24a) but not (24b) because the former has a
final unparsed syllable (which in turn means the whole word has an odd number of
syllables):

(25) a. [buñaN]gu �→ [buña:N]gu

b. [ginda][nuNgu] �→ [ginda][nuNgu]

Such a map is ISL, provided the input is already parsed for foot structure. Because
the substring of interest includes both segmental material and foot structure (here
represented with bracketing), the k-value of this map is 7:

(26) V(C)]CV(C)� �→ V:(C)]CV(C)

The consequences of allowing such non-segmental markup in the input (and alterna-
tively, the extension of this framework to non-linear representations), raises important
questions that are being left for future work.

Lastly, in addition to the um-infixation case analyzed above, Tagalog also has per-
fective in-infixation that follows the two patterns described in (27) (examples are
given in (28) and (29)).

(27) Tagalog perfective infixation (Avery and Lamontagne 1995; Yu 2007)

a. Pattern A: If the stressed syllable is an odd number of syllables from
-in-, the affix appears after C1 and before an epenthetic vowel.

b. Pattern B: If the stressed syllable is an even number of syllables from
-in-, the affix appears after either C1 or C2.

(28) Tagalog perfective infixation Pattern A

a. fperf (plahiyó) = p-in-alahiyó ‘plagiarized’
b. fperf (premyuhán) = p-in-iremyuhán ‘rewarded’
c. fperf (plántsa) = p-in-alántsa ‘ironed’

(29) Tagalog perfective infixation Pattern B19

a. fperf (prenúhan) = pr-in-enúhan ‘braked’
b. fperf (klipán) = kl-in-ipán ‘cremated’
c. fperf (promót) = pr-in-omót ‘promoted’

The description in (27) of which pattern applies to which word refers to -in- itself,
which in the context of morphological maps as defined in this paper will only be
present in the output form. To recast the distribution in terms of the input, we could
revise (27) as follows:

19All of these examples have the infix appear after C2, though the description and data from Avery and
Lamontagne (1995), Yu (2007) suggest there is some free variation that has it placed between the two
consonants. Free variation cannot be modeled with the deterministic FSTs used throughout this paper,
though it may be possible to adapt them to handle variation by making them p-subsequential (Mohri
1997) or semi-deterministic (Beros and de la Higuera 2016).
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(30) Tagalog perfective infixation

a. Pattern A: If the stressed syllable is an even number of syllables from
the beginning of the word (�), then -in- appears after C1 and before an
epenthetic vowel.

b. Pattern B: If the stressed syllable is an odd number of syllables from
the beginning of the word, then -in- appears after either C1 or C2.

Though again not ISL because of the need to track the even/odd parity of the number
of syllables before the stressed syllable, this map is subsequential. More specifically,
it is right subsequential, meaning the input must be read from right-to-left. Once the
stressed syllable is found (starting from the right), the FST can keep track at all times
of whether it has seen an even or odd number of additional syllables. When it reaches
the end of the string (which in a right subsequential FST would correspond to the
start of the word), it will know whether to apply Pattern A (epenthesizing and placing
the infix) or Pattern B (placing the infix without epenthesis). The FST will be a bit
more complicated than the one in Fig. 17, because the placement of the infix means
the consonants can’t be ignored in the same way (i.e., those transitions can’t just
be loops). Instead, there needs to be multiple paths from the ‘even’ to the ‘odd’ state
(and vice versa), one for each possible syllable type (e.g., CVC, CCVC, CVCC, etc.).
Nonetheless, this FST will still be subsequential.

A note of clarification on right subsequential functions. Since string reversal is
itself a non-regular operation, then under the assumption that reading the input from
right-to-left requires string reversal, the classification of a pattern as right subsequen-
tial (and therefore subregular) might appear to be negated by this non-regular pre-
processing of the input string. However, right subsequential functions do not literally
reverse the input, they simply begin reading it starting from the end instead of the
beginning.

This review of affixation maps has already shown some variation, though the na-
ture of this variation is significant in two respects. One, all of the maps surveyed
are either ISL for some k or subsequential, meaning they are all subregular. Two,
those maps that are properly subsequential all involve conditioning based on metri-
cal and/or prosodic structure. The case of Yidiñ in particular provides an example of
a map whose classification differs depending on whether or not the input is already
parsed into feet. A more thorough analysis of the computational nature of metri-
cal parsing and prosodic marking themselves, as well as how these domains interact
with phonological and morphological maps, is being left for future work. But these
examples suggest that such an investigation may reveal important insights into the
morpho-phonological interface.

4.2 Local partial reduplication

Partial reduplication in general involves copying a portion of the base and then affix-
ing that copied material. ‘Local’ varieties are those in which the location of the affix
is adjacent to the material that it was copied from. Two examples are given below.
In (31) (again from Tagalog), a CV-prefix is copied from the beginning of the base
to derive the future tense of a verb. And in (32) (from Marshallese) a CVC-suffix is
copied from the end of the base to derive an adjective from a verb.
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Fig. 18 4-ISL FST for Tagalog reduplicative prefixation

Fig. 19 4-ISL FST for
Marshallese reduplicative
suffixation

(31) Tagalog (Blake 1917)
ffut(sulat) = su+sulat (‘write’ → ‘will write’)

(32) Marshallese (Byrd 1993)
fadj(ebbok) = ebbok+bok (‘to make full’ → ‘puffy’)

In (31), the initial CV is copied and prefixed to the base. The FST that models this
map needs to retain the initial CV sequence up to the point when it needs to be
affixed; a 4-ISL FST can do this easily. Figure 18 is a schematized FST for this map;
the complete FST would have states for all possible initial CV sequences. Only the
initial portion is shown (up to state �CV, at which point the reduplication has taken
place) for ease of reading. All additional states are collapsed to the ‘?’ state.

The Marshallese pattern is also 4-ISL. Recall that in a 4-ISL FST, the only way
to be in a given state, such as state bok, is if the last three segments of the input are
bok. Ending in the state, as would be the case for the input ebbok, therefore means
those are the last three segments of the string. The reduplication can then be achieved
straightforwardly using the final output function: the output on the � transition for
all CVC states is that same CVC. This is schematized in the FST in Fig. 19. Again
the complete FST would have states for all possible CVC sequences. But no matter
what path leads to a state CVC (as indicated by the . . . ), strings that end in that state
will have the final CVC appended as a suffix.

An example of reduplicative infixation comes from Pima (Riggle 2006). The plural
of a noun is derived from the singular by copying either (1) the initial C or (2) the
initial CV. These options are shown in (33) and (34) below. The copied material is
infixed after the first vowel.

(33) Pima
fpl(mavit) = ma+m+vit (‘lion’ → ‘lions’)

Considering first just the C-copying variant, the map can be modeled with the
schematized FST in Fig. 20.

Riggle (2006) argues that C-infixation is the default pattern and the CV variant
occurs to avoid certain consonants in coda position. For example, CV is copied in
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Fig. 20 4-ISL FST for Pima reduplicative infixation (C-copying variant only)

Fig. 21 4-ISL FST for Pima reduplicative infixation

(34) because laryngeals (34a) and palatal nasals (34b) are not preferred as codas.20

Copying CV instead of C puts these consonants in onset position instead. CV is also
copied when copying C would result in a coda cluster with a sonority plateau (34c).21

(34) a. fpl(hod”ai) = ho+ho+d”ai (‘rock’ → ‘rocks’) (*hoh.d”ai)
b. fpl(ñumatS) = ñu+ñu+matS (‘liver’ → ‘livers’) (*ñuñ.matS)
c. fpl(gogs) = go+go+gs (‘dog’→ ‘dogs’) (*goggs)

Factoring in these conditions governing the CV-variant we get the FST in Fig. 21. In
this FST, C4 represents consonants that are not permitted in coda position (laryngeals
and palatal nasals). When the input string starts with a C4, the vowel is also copied
and infixed: the output of the subsequent V transition is V+C4V+. All other con-
sonants are represented with C1. On this branch of the FST, the output that includes
the copied material is delayed one segment past the first vowel; this is necessary to
handle the restriction on sonority plateaus. The FST uses the next segment after the
vowel to determine whether to copy CV or just C. Let C2 be a consonant that is not
less sonorous than C1 and C3 be a consonant that is less sonorous than C1. If the next

20Riggle (2006) notes that palatal nasal codas are not banned generally in Pima, just in the context of
reduplication.
21Riggle (2006) also gives examples of forms with complex onsets, in which the second consonant of
the onset copies (along with the vowel according to the generalizations already discussed): kÕavo �→
kÕa+Õ+vo, ‘nails’. He notes that only a few such forms exist in the language, but the fact that they follow
the general pattern suggests that the infixation map should include them. The FST given in the text could
easily be modified to handle complex onsets; this would increase the k-value by 1.
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Fig. 22 Path through FST in Fig. 21 for input mavit. Note: the bold ? state was reached via the C3
transition

Fig. 23 Path through FST in Fig. 21 for input hod”ai

Fig. 24 Path through FST in Fig. 21 for input ñumatS

Fig. 25 Path through FST in Fig. 21 for input gogs. Note the bold ? state was reached via the C2 transition

segment after the vowel is a C2, both C1 and the vowel are copied. Otherwise (if the
next segment is a C3 or a vowel), just C1 is copied.

The paths through this FST for the examples in (33) and (34) are shown in Figs. 22,
23, 24, 25.

4.3 Non-local partial reduplication

A non-local reduplication map is one in which the affix is copied from one end of the
string and then attached to the opposite edge.22 An example from Chukchee (Bogoras
1969) is shown in (35). The absolute form23 of a noun is derived by suffixing a copy
of the initial CVC sequence.

22This type of reduplication has also been called ‘wrong side reduplication’, and its status is controversial.
Nelson (2003) argues that all purported cases are epiphenomenal, while Riggle (2003) and more recently
Kusmer and Hauser (2016) argue for genuine examples in Creek/Muskogean and Koasati, respectively. The
analysis presented in this paper is not an argument for or against the existence of non-local reduplicative
copying; it only reveals the computational properties of such a map.
23This is the form used when the noun is an intransitive subject or a transitive object (Bogoras 1969).
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Fig. 26 Fragment of left subsequential FST for Chukchee partial reduplication

(35) Chukchee

a. fabs(nute) = nute+nut ‘land’
b. fabs(tala) = tala+tal ‘meat’

Non-local reduplication maps are not ISL (or OSL). The reason is because once the
end of the string is reached the FST needs to recall how the string began in order
to suffix that material onto the end. This is not possible in an ISL/OSL FST. For
example, if we set k = 3, then for the input nute a 3-ISL FST would end in state te.
From this state, it could not distinguish the input nute (for which it would have to
suffix nut) from a hypothetical input sute (for which it would have to instead suffix
sut). Increasing k to 5 would help, since then nute would end in state nute and sute
would end in state sute, and each state would have its own final output transition that
would append the correct suffixes. But of course this 5-ISL FST would again fail on
inputs longer than 4 segments long. As an unprincipled and arbitrary upper bound
on the length of words in a given language is an undesirable fix, we conclude that
non-local reduplicative suffixation is not ISL for any k.

This map is, however, still subregular, because it can be modeled with a left sub-
sequential FST, a fragment of which is shown in Fig. 26. The complete FST would
include ‘branches’ for all possible CVC sequences; each branch ends in a CVC state
where all additional segments are outputted unchanged (via the ?:? self-loop).24 Once
the end of the input is reached, the final output function appends the correct CVC suf-
fix according to the state it is in. The fragment shown in Fig. 26 is the branch of the
FST that covers tala and all other input strings that begin with tal. State 3 is essen-
tially a record of the first three segments that the string began with.

This example shows how the states of a subsequential FST are more flexible than
ISL/OSL FSTs in the kind of information they can keep track of. Each CVC state in
the Chukchee FST records a distinct initial sequence of the input string. An ISL/OSL
FST is more restricted, in that the states can only keep track of the most recent in-
put/output. This is again what makes the ISL/OSL computational property more re-
strictive, and what limits the kinds of maps that can be represented with ISL/OSL
FSTs.

24It is important to understand the difference between the ?:? self-loop in Fig. 26 and those in the ISL
FSTs in Figs. 16, 18, 20, and 21. In the ISL FSTs, state ? and its self-loop are an abbreviation for the states
and transitions for all other k − 1 sequences not pictured in the figure. These FSTs proceed through these
states depending on the input. In Fig. 26, however, the FST remains in state tal and consumes all additional
input with the ?:? loop. It must stay in this state to retain the knowledge that the input began with tal.
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Fig. 27 Fragment of right
subsequential FST for Madurese
partial reduplication

Fig. 28 Path through FST in Fig. 27 for input mõw̃ã

The other option for non-local reduplication is prefixing material copied from the
end, as in the Madurese pluralization example in (36) (McCarthy and Prince 1995;
Inkelas and Zoll 2005).

(36) Madurese
fpl(mõw̃ã) = w̃ã+mõw̃ã (‘face’ → ‘faces’)

This map is right subsequential. The FST in Fig. 27 is the fragment responsible for the
map when the input is mõw̃ã. In form this FST looks identical to the Chukchee FST,
but the crucial difference is how it is applied to an input to generate an output. The
string mõw̃ã would be read starting from the right, which is equivalent to treating the
input as the reversed string ãw̃õm. The FST would follow the path shown in Fig. 28.
The output, ãw̃õm+ãw̃, is then reversed to the correct surface form: w̃ã+mõw̃ã.25

In sum, non-local partial reduplication maps are neither ISL nor OSL, but they are
still subregular. Non-local suffixation is left subsequential and non-local prefixation
is right subsequential. The next subsection will turn to the analysis of total redupli-
cation, which is quite computationally distinct from all of the morphological maps
analyzed thus far.

4.4 Total reduplication

In contrast to partial reduplication, total reduplication—in which the entire string is
copied—is not even regular (let alone subregular). An example from Indonesian is
given in (37).

(37) Indonesian (Sneddon 1996)
fpl(buku) = buku+buku (‘book’ → ‘books’)

Based on the examples of partial reduplication above, at first glance it might seem
straightforward to model the map in (37) with an FST. For example, the input string
buku could be handled easily enough with the FST fragment in Fig. 29.

25Again, this does not mean string reversal is required to model the pattern as subsequential. This is just
a way to represent the pattern with an FST that reads left-to-right, to be consistent with the other FSTs
presented in the paper. In every such case, there is an equivalent FST that reads from the right and also
builds the output string starting from the right, such that no string reversal operation is needed.
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Fig. 29 Fragment of total reduplication FST

Each state in this FST is an exact record of the input that has been read so far.
The total reduplication is achieved by simply having the final output function append
that same record of input to the end of the string. For example, the input buku would
end in state �buku, at which point the output is also buku. The final transition on
� appends the string +buku, so the complete output of the map is buku+buku. The
k-value of this function is one more than the longest state required; in this example
k =6.

The problem with this approach by now should be evident. In all previous exam-
ples of ISL functions, the value of k was inherent to the nature of the map itself. In
Pima reduplicative infixation (Fig. 21), for example, k = 4 because the factors that
condition the shape of the reduplicant are all found in a contiguous substring bounded
by length 4 (e.g., �CV(C)). In Fig. 29, however, k is set to 6 because that happens
to be the length of the longest input it needs to deal with (i.e., �buku�). So while
it’s true that an ISL FST can be constructed to correctly apply the total reduplication
map to all current Indonesian words, such a FST does not truly represent the map in
a fundamental way. Presumably, given a nonsense word that exceeds the length of all
current words, an Indonesian speaker would still apply total reduplication correctly.
This would suggest that the computations involved in the map are independent of the
length of the input. So the needed assumption for modeling total reduplication in the
way suggested by Fig. 29—that it is a finite map—is incorrect.

Once we treat the map as infinite—meaning it has to handle inputs of any length—
there is no way to represent it with a finite number of states. As indicated with the
buku example, the required number of states is based on the number of words. If the
number of words is infinite, so must be the number of states. Again one of the charac-
terizations of regular relations is that they are describable with finite state automata.
It follows that a map that is not finite state is not regular.26

If, however, the assumption that the reduplication map is infinite is relaxed—
meaning it is only defined for a finite set of strings—then there are ways to model it as
finite state. Figure 29 points to one approach. Another comes from Roark and Sproat
(2007), who build an FST that takes an input string of up to n symbols and generates
all possible output strings of 2n indexed symbols. For example, the input buku would
be mapped to a set of strings of the form X1X2X3X4-b1u2k3u4, where X ranges over
all symbols in the alphabet. This set is then filtered down to the one string in which all
indexed positions match. Since the set includes all possible strings, the correct output
bukubuku is guaranteed to be in it. Along the same lines, Hulden (2009a) starts with

26Engelfriet and Hoogeboom (2001) show that total reduplication can be modeled using graph transduc-
tions defined with Monadic Second Order (MSO) logic formulae. This is an interesting result because in
terms of formal languages MSO formulae correspond exactly to the regular languages. The total reduplica-
tion example, however, proves that the same is not true for maps: MSO formulae can describe both regular
and non-regular relations.
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a lexicon for which total reduplication applies (e.g., singular nouns) and maps each
string x to a set of output strings xy, where y is any singular noun. A regular expres-
sion operator is then applied to filter out those strings for which x and y are different
nouns (with the result that the only remaining string will be xx).

These treatments of total reduplication as finite state highlight the distinction be-
tween just getting the model to ‘work’ and representing it in a way that has some
connection to the way it is represented in the mind of an actual speaker. Though ef-
fective, such ‘generate and filter’ models seem—in an intuitive sense—to do more
work than necessary when one envisions how a speaker achieves the map of total
reduplication.27 To reiterate the goals of the current paper, classifying maps in terms
of their computational complexity is for the purpose of achieving a greater under-
standing of why natural language maps are restricted in the ways that they are.28 To
that end, the working assumption has been that these maps are infinite, in which case
we are forced to the conclusion that total reduplication is non-regular.

The results presented in this section have followed from the assumption that a
reduplication map involves copying, as in theories that posit a morpheme whose
phonological content is derived by copying from the base it attaches to (e.g., Marantz
1982; McCarthy and Prince 1995). An alternative is Morphological Doubling Theory
(Inkelas and Zoll 2005, implemented by Roark and Sproat 2007) in which redupli-
cation is instead the result of two distinct lexical insertion operations. From this per-
spective, the exceptional nature of total reduplication in being non-regular may in fact
support the claim of Heinz and Idsardi (2013) noted above that in terms of computa-
tional properties, morpho-phonology patterns with phonology while morpho-syntax
patterns with syntax.

4.5 Featural affixation

The examples of affixation surveyed so far have all involved appending segmental
material to a string. In featural affixation, one or more features associate to some
number of existing segments in the stem. An example is imperfective palatalization
in Mafa (Barreteau and Bleis 1990; Ettlinger 2004):

(38) Mafa

a. fimp(tsap) = tSep ‘is spackling with clay’
b. fimp(lubat) = lybet ‘is twisting’
c. fimp(s@ban) = Siben ‘is working’
d. fimp(gum) = gum ‘is carving wood’

27This is not a criticism of the works just cited, as they were clearly motivated by different research
questions and objectives.
28An anonymous reviewer questions this goal, given that computational complexity does not necessarily
correspond to the level of processing difficulty (see, e.g., Bach et al. 1986). But there are other areas of
interest that the study of computational properties can inform aside from processing, such as evaluating the
generative capacity of a particular theory. In addition, computational properties—particularly subregular
ones—provide an inroad to understanding how the grammars used in processing are learned in the first
place (for arguments in favor of this approach see Heinz 2007, 2009, 2010).
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Fig. 30 2-ISL FST for Mafa imperfective palatalization

The segment inventory of Mafa includes five alveolar obstruents that are targeted
by palatalization in the imperfective map: ndz �→ ndZ, s �→ S, z �→ Z, ts �→ tS, and
dz �→ dZ.29 Palatalization also targets the language’s four [−palatal] vowels, which
then surface as their [+palatal] counterparts: u �→ y, o �→ œ, @ �→ i, and a �→ e. The
generalization for the imperfective is simply that the map palatalizes all segments that
have a palatal counterpart, with one exception. As shown in (38d), palatalization of
/u/ is blocked after velars, due to a phonotactic constraint against velar+u sequences.

Mafa imperfective palatalization is 2-ISL, as demonstrated with the 2-ISL FST
in Fig. 30. Again to keep the FST readable, the following abbreviated alphabet is
used: C is any consonant except velars and alveolars, K is any velar, S is any alveolar
(with Sj being its palatal counterpart), V is any vowel except u (with again Vj being
its palatal counterpart), and u is itself. The λ and � states are also not shown for
readability; it can be assumed that (as in the previous FSTs), there is a transition from
λ to � and then transitions from � to all other states. The paths for the inputs /s@ban/
and /gum/ are shown in Figs. 31 and 32, respectively.

29Mafa distinguishes dental and alveolar: the obstruents /t/, /d/, and /nd/ are classified as dental and there-
fore not subject to palatalization (Ettlinger 2004).
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Fig. 31 Path through FST in Fig. 30 for input s@ban

Fig. 32 Path through FST in
Fig. 30 for input gum

Based on this, featural affixation alone appears to be ISL, but the Mafa case
presents an additional complication. For stems that end in a vowel, the imperfective
morpheme is a segmental suffix, -j:

(39) Mafa
fimp(gudza) = gudza+j ‘is trembling’

There are two ways to address this additional fact. One approach is to posit two
distinct imperfective maps, one for stems ending in vowels and one for stems ending
in consonants. Stems ending in consonants would be input to the 2-ISL map presented
in this section, and stems ending in vowels would be input to a 1-ISL suffixation map
like the IN-suffixation example in Fig. 9. Under this approach, it would be a mere
coincidence that both the featural and segmental versions of the imperfective affix
are palatal. The alternative is to generate both types of the imperfective by a single
map, in the spirit of the OT-based analysis of Ettlinger (2004).

In this latter approach, however, the map is no longer ISL. The map has to palatal-
ize all palatalizable segments unless the input ends in a vowel, in which case it just
appends -j. The need to retain information about the end of the string while process-
ing the rest of the string violates the essential notion of Strict Locality that defines
ISL/OSL maps.The map is, however, still subregular: it is right subsequential, as ev-
idenced by the right subsequential FST in Fig. 33.

After reading the first segment, this FST determines whether it should perform
suffixation (in which case it proceeds to state 3) or palatalization (in which case it
proceeds to state 1). Suffixation is performed on the transition to state 3, where all
additional segments are then outputted unchanged.30 From state 1, however, palatal-
ization proceeds much as it did in Fig. 30; the blocking of u �→ y after velars is
handled by an additional state, 2.

The Mafa case thus provides an example of featural affixation (which is ISL), but
also shows how certain types of allomorphy—in this case the combination of featural
and segmental affixation—can increase the computational complexity of a map. More
will be said about combining maps in Sect. 5. The next section will turn to another
type of non-concatenative morphology, truncation.

30Recall that in a right subsequential FST, the input is read from the right and the resulting output string is
reversed. Thus the input /gudza/ would be read as /azdug/, and the resulting output, [j+azdug], would be
reversed to [gudza+j].
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Fig. 33 Right subsequential FST for Mafa imperfective palatalization and suffixation

4.6 Truncation

A simple case of morphological truncation is English nickname formation, a map that
deletes all but the first (C)(C)VC of a name (Inkelas and Zoll 2005). Examples of this
map are given in (40).

(40) English

a. fnn(dZEfôi) = dZEf

b. fnn(deIvId) = deIv

c. fnn(ælEn) = æl

d. fnn(stivIn) = stiv

This map is left OSL, as evidenced by the 3-LOSL FST in Fig. 34. This FST outputs
the initial sequence of the input up to and including the first VC sequence, at which
point it remains in state VC and deletes all additional input with self-loops that have
λ as the output. These self-loops are why the FST is necessarily OSL instead of ISL.
Recall that an OSL FST at any given point is in the state that represents the most
recent output. If a transition outputs λ, then the recent output has not changed and
therefore the FST must remain in the state it was already in (i.e., the transition must
be a loop). In the case of truncation, this is exactly what is needed: all additional input
after the first VC is deleted.

4.7 Summary

Table 1 summarizes the computational classifications of the morphological maps re-
viewed in this section. The next section will discuss the implications of these results
and offer some comments on two notable omissions from this table: templatic mor-
phology and compounding.
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Fig. 34 3-LOSL FST for English nickname formation

Table 1 Summary of morphological maps and their computational classification

Map Language Classification

Suffixation English 1-ISL

Suffixation Sammi left subsequential

Suffixation Yidiñ left subsequential

Suffixation Yidiñ 7-ISL (with foot structure)

Prefixation English 1-ISL

Circumfixation Chickasaw 1-ISL

Circumfixation Chickasaw 2-ISL (with deletion)

Circumfixation German 3-ISL

Infixation Tagalog (um) 4-ISL

Infixation Ulwa 6-ISL

Infixation Tagalog (in) right subsequential

Reduplicative prefixation (local) Tagalog 4-ISL

Reduplicative suffixation (local) Marshallese 4-ISL

Reduplicative infixation Pima 4-ISL

Reduplicative prefixation (non-local) Madurese right subsequential

Reduplicative suffixation (non-local) Chukchee left subsequential

Total reduplication Indonesian non-regular

Featural affixation Mafa (palatalization) 2-ISL

Featural affixation Mafa (imperfective) right subsequential

Truncation English 4-LOSL

5 Discussion

This paper has presented a substantial—but not complete—catalog of the computa-
tional nature of morphological maps. This section discusses (1) a couple of remaining
operations that await a thorough analysis and (2) the implications of these results.
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The most prominent type of morphological map for which the computational prop-
erties are as yet unknown is templatic morphology, in which a particular morphologi-
cal form is represented with a template of C and V slots that are filled in by particular
consonants and vowels depending on the lexical item. A classic example from Arabic
(McCarthy 1981) is shown in (41).

(41) Arabic

a. kataba ‘he wrote’
b. kattaba ‘he caused to write’
c. kutiba ‘it was written’

The main question for treating templatic morphology as a map is to determine what
the input to the map would be. There are typically assumed to be three components
to these derivations (McCarthy 1981): the consonant root (ktb), the vowel melody (a,
ui), and the prosodic template (CVCVCV, CVCCVCV, etc.). The most direct transla-
tion of these facts to the concept of a map would be a function that takes three inputs
and produces an output, as in (42).

(42) f (ktb, a, CVCVCV) = kataba

However, the framework employed in this paper does not provide any such class of
functions. Another option would be for two functions to represent the consonant root
and the vowel melody, with the template being the input to both in turn. Each function
fills in its respective slots on the template. This is shown in (43). These two functions
can be combined into a single function via composition, as in (43c).

(43) a. fktb(CVCVCV) = kVtVbV
b. fa(kVtVbV) = kataba
c. fa ◦ fktb(CVCVCV) = kataba

The problem with this approach is that we lose the association of a map to a mor-
phological operation, since the function now represents a lexical item and the input
represents the operation (i.e., ‘past tense’ is input to the function ‘write’). Really what
we want is something like (44), in which the template is the map.

(44) a. fpast1(ktb) = kVtVbV
b. fpast2(a) = CaCaCa

But these two maps cannot be combined via composition, since the input to the sec-
ond one is not the output of the first. Previous approaches to modeling templatic mor-
phology as finite state have therefore had to modify the general approach that worked
for other types of operations. Beesley and Karttunen (2003) define a new operation
for combining maps called ‘compile and replace’ and use it instead of composition.31

Roark and Sproat (2007) start with the assumption that the template includes the
vowel melody (e.g., CaCaC), along the lines of Harris (1941). And Hulden (2009b)

31They also use this operation in their treatment of reduplication, see Beesley and Karttunen (2003) for
details.
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employs a multi-tape automaton with 8 tapes instead of the standard 2.32 More work
is needed, then, to identify the right method of representing templatic morphology as
a map with the goal of understanding its computational properties.

Two additional morphological operations to consider are suppletion and ablaut.
Suppletion is not really a map at all, since a form like went is not derived from
an input like go by any operation. However, suppletion could be viewed as a finite
map, under the assumption that suppletive forms in a language are fixed (i.e., non-
productive). Lastly, ablaut is a simple substitution operation (like many phonological
maps). Depending on the language, it may again be a finite map (if it is not a produc-
tive pattern). Alternatively, if the context in which ablaut occurs can be generalized
and represented as a contiguous substring of bounded length, it is ISL. A systematic
survey of both suppletion and ablaut would be needed to fully test these assumptions,
though a reasonable conjecture is that both operations are subregular.

Lastly, an anonymous reviewer asks how the operation of compounding fits into
this picture. Again the question is how to construe the operation as a map. In an ex-
ample like ‘desk chair’, this would involve mapping two strings to a single string via
concatenation. As with templatic morphology above, it is unclear how to classify such
a function using the methods employed in this paper, and so the right way to think
of compounding as a map merits further consideration. This complication in how to
conceive of compounding as a map does draw attention to the ways in which it differs
from other operations. For example, Carden (1983) notes that perhaps compounding
is achieved in the syntactic component rather than the word formation component.

Turning now to the second question: what do we do with these results? The mo-
tivation for undertaking such analyses in the first place is the same as that argued
for phonology in previous work (Heinz 2007, 2009, 2010; Chandlee 2014; Jardine
2016): understanding the computational nature of a set of patterns is a significant
inroad to understanding what that set is, and—equally importantly—what it is not.
Human languages have shown both variability and creativity in how to encode mor-
phological distinctions. But that variability is not endless and, as with phonology, we
can entertain logically possible morphological maps that no known language takes
advantage of. For example, a language could represent the plural form of a noun with
the operation of string reversal, as in (45).

(45) “English”, singular → plural

a. /kæt/ → [tæk]

Such a map is computable and relatively simple (one could imagine a language game
that follows such a principle), but from a linguistic perspective it is an odd morpho-
logical operation and indeed appears to be unattested. The computational approach
advocated in this paper provides an answer in terms of computational restriction:
there is strong evidence that morphological maps, like phonological ones, are re-
stricted to being subregular. String reversal is not.33

32The ‘tapes’ of an automaton refer to the number of strings being read or written. In all of the FSTs in
this paper one tape corresponds to the input and one to the output.
33An anonymous reviewer points out that this operation would be regular if the reversal were bounded.
But, as with total reduplication, the assumption is that the domain of the function is any possible noun (i.e.,
it’s unbounded).
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These analyses have also raised interesting questions about what constitutes a mor-
phological generalization and how generalizations can interact. The analysis of total
reduplication in Sect. 4.4 highlighted how certain assumptions about the nature of
a given map—whether it is finite or infinite and whether it involves copying—have
real implications for its computational classification. And the Mafa case in Sect. 4.5
demonstrated the consequences for computational properties when a set of facts is
analyzed as one map or two distinct maps. This case was not one of ordering as is
common for map interactions in phonology, but rather a type of disjunction based on
a partition of the domain (words that end in consonants and words that end in vowels).
How such an interaction fits into our larger understanding of how individual gener-
alizations can interact in the grammar is an intriguing and ongoing line of inquiry
(see Baković 2013). In this way the analytical framework employed here can bring to
light questions of larger theoretical interest regarding morphological operations and
the morpho-phonological interface.

6 Conclusion

This paper has contributed to the foundation for computational investigations into nat-
ural language morphology. It was shown that a variety of morphological operations—
analyzed as morphological maps from an input to an output—share computational
properties with phonological maps in being subregular and therefore less computa-
tionally complex than syntax. This does not, however, amount to a claim that mor-
phology in its entirety is subregular. As was discussed—and as was already known—
the non-regular status of total reduplication bars such a conclusion. Rather, the results
collectively show that in this regard total reduplication is something of an outlier, as
all of the other operations analyzed were not only regular, but subregular.

In addition, the classifications summarized in Table 1 also provide a more detailed
and nuanced view of the notion of computational locality that formed the backbone
of previous analyses in phonology (Heinz 2009, 2010; Chandlee 2014; Jardine 2016).
The designation of what phonological maps are ISL/OSL is stated in terms of the tar-
get and triggering context, but it is not always clear how this extends to morphological
maps. For example, what is the triggering context of prefixation? The more general
statement is that maps—be they phonological or morphological—are Strictly Local
provided the crucial information needed at any given time to determine the output is a
bounded number of segments away. While this notion of locality appears to be promi-
nent among morphological maps, there were also several exceptions that raised sig-
nificant questions for our understanding of what various domains (phonology, mor-
phology, syntax) are responsible for and what happens computationally when these
domains interact.

The hope is that these results pave the way for further investigation, not only to fill
in the gaps in the typology (e.g., templatic morphology), but also to examine the as-
sumptions that some of the analyses relied on. Such assumptions are meant to reflect
the nature of the morphological operation itself, but there were several cases where
alternative assumptions led to a different computational classification. In this way the
identification of computational properties can highlight what’s at stake for competing
analyses and interpretations of natural language patterns in various domains.
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Appendix

For ease of exposition the analysis of German circumfixation in Sect. 4.1 treated
separately the two generalizations for the distribution of the suffix allomorph -et. This
appendix presents the complete 3-ISL FST that models the allomorphy as a single
map. The FST is presented in table form for readability. Each row q1 of the table
corresponds to a state in the FST, and each column a corresponds to one of the input
segments that can be read from that state. The table cells contain pairs (b, q2) where
b is the output produced for input a and q2 is the destination state of the transition
from q1 for input a. To further illustrate how this table representation corresponds to
the graphical representations used throughout the paper, those transitions represented
graphically in Fig. 15 are shaded in the table. The alphabet is Σ = {L, N, T, ?},
where ‘?’ represents all segments in the German inventory except for liquids, nasals,
and alveolar stops.

� T ? L N �

λ (ge+, �) – – – – –

� – (T, T) (?, ?) (L, L) (N, N) +t

L – (T, LT) (?, L?) (L, LL) (N, LN) +t

N – (T, NT) (?, N?) (L, NL) (N, NN) +et

T – (T, TT) (?, T?) (L, TL) (N, TN) +et

? – (T, ?T) (?, ??) (L, ?L) (N, ?N) +t

LL – (T, LT) (?, L?) (L, LL) (N, LN) +t

LN – (T, NT) (?, N?) (L, NL) (N, NN) +t

LT – (T, TT) (?, T?) (L, TL) (N, TN) +et

L? – (T, ?T) (?, ??) (L, ?L) (N, ?N) +t

NL – (T, LT) (?, L?) (L, LL) (N, LN) +t

NN – (T, NT) (?, N?) (L, NL) (N, NN) +et

NT – (T, TT) (?, T?) (L, TL) (N, TN) +et

N? – (T, ?T) (?, ??) (L, ?L) (N, ?N) +t

TL – (T, LT) (?, L?) (L, LL) (N, LN) +t

TN – (T, NT) (?, N?) (L, NL) (N, NN) +et

TT – (T, TT) (?, T?) (L, TL) (N, TN) +et

T? – (T, ?T) (?, ??) (L, ?L) (N, ?N) +t

?L – (T, LT) (?, L?) (L, LL) (N, LN) +t

?N – (T, NT) (?, N?) (L, NL) (N, NN) +et

?T – (T, TT) (?, T?) (L, TL) (N, TN) +et

?? – (T, ?T) (?, ??) (L, ?L) (N, ?N) +t
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