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Abstract. The MBI (maximum block improvement) method is a greedy approach to solve
optimization problems where the decision variables can be grouped into a finite number of blocks.
Assuming that optimizing over one block of variables while fixing all others is relatively easy, the
MBI method updates the block of variables corresponding to the maximally improving block at each
iteration, which is arguably a most natural and simple process to tackle block-structured problems
with great potentials for engineering applications. In this paper we establish global and local linear
convergence results for this method. The global convergence is established under the  Lojasiewicz
inequality assumption, while the local analysis invokes second-order assumptions. We study in
particular the tensor optimization model with spherical constraints. Conditions for linear convergence
of the famous power method for computing the maximum eigenvalue of a matrix follow in this
framework as a special case. The condition is interpreted in various other forms for the rank-one
tensor optimization model under spherical constraints. Numerical experiments are shown to support
the convergence property of the MBI method.
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1. Introduction. Updating the values of certain variables sequentially and iter-
atively is a common practice in scientific computation. For instance, the Gauss-Seidel
method or the Jacobi method are such schemes for solving linear equations. In the
domain of optimization, the example extends to the coordinate descent method [33].
Further, a substantial extension of coordinate descent is the block coordinate descent
to solve problems where one variable is replaced by a block of variables.

If multiple blocks of variables are present, then the issue of selecting which order of
blocks to update becomes imperative. A natural choice is to predetermine an ordering
and then adhere to it. In the context of rank-one approximation of tensors, which
is an application we also consider in this paper, such a cyclic coordinate descent is
known as the alternating least squares (ALS) method. The difficult choice of orderings
notwithstanding, the ALS method may fail to converge at all. However, if the ALS
method converges under certain non-degeneracy assumption, then it actually has a
local linear convergence rate [50]. This is also true for higher rank approximations,
see Uschmajew [45].

For the general block optimization model, Chen et al. [9] proposed an ordering-free
approach to select an appropriate block for updates. The main idea is to implement
a block update which is the best possible among all the block updates. Hence the
method was termed maximum block improvement (MBI). A global convergence result
was proven in [9] under fairly loose conditions. However, the rate of convergence
remained unknown. In this paper, we prove that the local rate of convergence of the
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MBI method for solving the general block optimization model is actually linear under
a non-degeneracy condition, even if the overall objective is nonconvex.

The organization of the paper is as follows. In Section 2 we recall the MBI method,
and provide a global convergence result (here and in the following understood as critical
point convergence) for block strongly multi-convex functions assuming a  Lojasiewicz
inequality at a cluster point (Section 2.3). Global convergence results for this kind
of functions have been recently obtained for the cyclic (Gauss-Seidel) BCD approach
even in a non-smooth setting [49] based on the more involved Kurdyka- Lojasiewicz
inequality [23], which itself recently attracted considerable attention in nonlinear
optimization, see e.g. [5, 2]. Thanks to the greedy nature of the MBI method, the
analysis is much simpler than that for Gauss-Seidel.

In Section 3, we present the local linear convergence analysis for the MBI method
using second order information. The key assumption for linear convergence is a sort
of non-degeneracy of the limiting KKT point. For the unconstrained minimization
model, this boils down to the strict positivity of the Hessian at the KKT solution. By
a local diffeomorphism, we study the non-degeneracy condition in the case of spherical
constraints.

In the literature, global convergence results of block coordinate descent (BCD)
methods are often obtained for functions which separate into sums of functions of single
block variables. Instead, a particular situation we have in mind is the optimization of
smooth (e.g. quadratic) functions in low-rank tensor formats, which usually indeed
leads to block multi-convex and real-analytic problems (for which the  Lojasiewicz
inequality holds), but separate into (sums of) products of lower-variate functions.
This typically makes it difficult to guarantee lower bounds of the moduli of strong
block convexity. A modified abstract global convergence statement for this situation is
formulated in Section 2.4.

More concretely, as promoted in [9], a possible application of the MBI method is
the calculation of the best rank-one approximation to a (possibly super-symmetric)
d-th order tensor F ∈ Rn1×n2×···×nd in the Frobenius norm. This problem can be
both formulated as a block multi-convex unconstrained optimization problem, and
as spherically constrained multi-linear maximization problem which is also known as
the tensor maximum eigenvalue problem. In Section 4, we apply our global and local
convergence results on this problem, and the corresponding numerical results will be
presented in Section 5. To the best of our knowledge, Theorem 4.2 is the first global
convergence result for best rank-one approximation by a block coordinate descent
method. The key is that it is possible to bound from below the mentioned convexity
moduli of the block functions when using a BCD method on this problem, which is
stated in Lemma 4.1.1

Generally speaking, block coordinate techniques are among the most popular
and effective methods in tensor optimization, which has become a vast field [15].
Admittedly, rank-one tensors are the simplest objects in tensor approximation, but
serve here as a perfect illustration of our abstract results, without involving too heavy
tensor tools. Generalizations to optimization using other stable tensor formats, e.g. the
tensor train format [37, 35], which can for instance be used for solving high-dimensional

1It seems to us that Lemma 4.1 in combination with the recent result of Xu and Yin [49] can
be used to prove the global convergence of the cyclic BCD method for the rank-one approximation
method, which is commonly known as the alternating least squares or high-order power method.
During the revision, also the manuscript [47] came to our attention in which the global convergence
of the high-order power method is considered as well. As in our paper, the  Lojasiewicz inequality
plays a key role in both [49] and [47].
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linear equations [21, 11], could be an interesting future research topic to be reported
elsewhere. Namely, what tensor formats have in common is that they use a multi-linear
representation of tensors by low-dimensional quantities, so that a BCD approach is
always almost immediately applicable. One will have to check in which applications
the MBI block choice pays off compared to the usual cyclic BCD. From the theoretical
side, it would be interesting to investigate whether a global convergence result like
Theorem 4.2 can be established for, say, block multi-convex problems in other tensor
formats.

Notation. We denote by 〈x,y〉 the Euclidean inner product of two vectors x,y ∈
Rn, and by ‖x‖ =

√
〈x,x〉 the Euclidean norm. For tensors X ,Y ∈ Rn1×n2×···×nd we

will add an additional subscript F to emphasize that we deal with the Frobenius norm
and inner product.

2. The MBI method and its global convergence property. In this section
we formally define the MBI method and provide a generic convergence result for
block-wise strongly multi-convex real-analytic functions based on the  Lojasiewicz
inequality.

2.1. Definition of MBI. Given finite-dimensional spaces X1, X2, . . . , Xd and
subsets Si ⊆ Xi a generic problem one wants to solve is

min f(x1, x2, . . . , xd)
s.t. xi ∈ Si, i = 1, 2, . . . , d,

(2.1)

where f : S1 × S2 × · · · × Sd → R is a function of d block variables xi ∈ Xi. In [9] the
MBI method was proposed to solve (2.1) for certain problem classes. We first recall
its definition. For every x ∈ S1 × S2 × · · · × Sd define the block search sets

Eix = {(x1, . . . , xi−1)} × Si × {(xi+1, . . . , xd)}, i = 1, 2, . . . , d,

and the shifted block coordinate cross

Ex =
⋃
i

Eix.

Furthermore, let

S(x) = argmin
y∈Ex

f(y),

which is a set-valued function. Given a current iterate xn ∈ S1 × S2 × · · · × Sd, the
MBI method chooses

xn+1 ∈ S(xn) (2.2)

by some rule. In practice, this amounts in calculating all restricted block solutions

ξin+1 = argmin
y∈Ei

xn

f(y),

and then choosing xn+1 to be the ξin+1 which gives the best improvement. For reference
the procedure is reproduced in Algorithm 1.
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Algorithm 1 MBI method

Require: x0 ∈ S1 × S2 × · · · × Sd
1: for n = 0, 1, 2, . . . do
2: for i = 1, 2, . . . , d do
3: Find some ξin+1 ∈ argmin y∈Ei

xn
f(y).

4: end for
5: Choose xn+1 ∈ argmin i∈{1,2,...,d} f(ξin+1).
6: end for

2.2. MBI in the context of coordinate descent methods. The MBI method
is a greedy-type block coordinate descent or relaxation method. As such it is to be
distinguished from the following well-known relaxation methods.

1. The cyclic relaxation (or nonlinear block Gauss-Seidel method), where the
optimization is looped over the spaces Eix in some specified order without
a greedy comparison. Variants include the forward, the backward, and the
symmetric Gauss-Seidel iteration [42]. An extreme case is the almost’cyclic
iteration [29] where one only ensures one update per block coordinate within
one fixed iteration length.

2. The Gauss-Southwell rule [43], where the block coordinate with the directional
derivative of largest modulus is chosen as the next update direction. Defined
in this way the Gauss-Southwell method is meaningful for optimization in
open sets of linear spaces, although the required modifications to constrained
optimization are obvious. Since the gradient provides only local information,
the Gauss-Southwell procedure differs from MBI in general. Even for quadratic
functions, more precisely, for minimizing

1

2
〈x, Ax〉 − 〈b,x〉

with positive definite matrix A they can be different unless, e.g. A = aI. In the
context of quadratic functions, Griebel and Oswald call the Gauss-Southwell
method the greedy multiplicative Schwarz method [16].

3. The random relaxation, where the block coordinate to be optimized is chosen
randomly. A detailed investigation of this method started rather recently [32,
41], in particular for linear equations; see [24, 16].

In comparison with the mentioned methods, MBI can be considered as the most
expensive, since all block improvements have to be calculated per iteration, and much
of information is discarded. This problem might be resolved in a straight-forward
parallel approach.

However, the additional cost lead to improved theoretical convergence properties
compared to the other methods. Powell [38] gave examples of even smooth functions
with a bounded sublevel set in which the cyclic relaxation can produce non-trivial
loops, i.e., with the gradient remaining bounded from below. Typically some sort of
convexity assumptions are required to prove global sub-sequential convergence to critical
points [17, 44]. This is also the case for the nonlinear Gauss-Southwell method [29].
In contrast, for the MBI method a compact sublevel set {x : f(x) ≤ f(x0)} for the
starting value is sufficient. This is a major theoretical advantage. In [9, Theorem 3.1]
the following theorem has been proved.

Theorem 2.1. Assume that the Si (i = 1, 2, . . . , d) are closed, and the MBI
sequence (xn) is bounded. Then every cluster point x∗ of the MBI method will be a
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stationary point for (2.2), i.e.,

x∗ ∈ S(x∗).

2.3. Global convergence based on multi-convexity and  Lojasiewicz in-
equality. We consider the case that S1×S2× · · · ×Sd is open and f is differentiable.
Then the statement of Theorem 2.1 means that ∇f(x∗) = 0; i.e., x∗ is a critical point
of (2.1). Hence in the unconstrained case it suffices to prove that a sequence generated
by the MBI method converges at all to conclude that the limit point is a critical point.

To establish such a global convergence result, we would like to make use of
a powerful principle from analytical dynamical systems, the  Lojasiewicz gradient
inequality, which states that

‖∇f(x)‖ ≥ c|f(x)− f(x∗)|1−θ (2.3)

for all x in some neighborhood of x∗. Here c > 0 and θ ∈ (0, 1). We will not go
into detail, but as  Lojasiewicz showed, this inequality holds for instance at any point
x∗ (with the c and θ, as well as the valid neighborhood depending on x∗) in whose
neighborhood f is real-analytic [28, p. 92]. One can prove the following result [1].

Theorem 2.2. Let S1 × S2 × · · · × Sd be open. Assume a sequence (xn) ⊂
S1 × S2 × · · · × Sd satisfies the strong descent condition

f(xn)− f(xn+1) ≥ σ‖∇f(xn)‖‖xn+1 − xn‖,

and the stationarity condition

[f(xn+1) = f(xn)]⇒ [xn+1 = xn]

for some σ > 0 and all sufficiently large n. Then, if a cluster point x∗ of the sequence
satisfies the  Lojasiewicz gradient inequality (2.3), it is its limit point. This is for
instance the case, if f is real-analytic and (xn) is bounded.

We next provide a problem class of interest – block strongly multi-convex functions
– for which MBI turns out to meet the strong descent and stationarity requirements of
Theorem 2.2. For simplicity, we restrict to the case that Si = Xi for i = 1, 2, . . . , d.
We say that f is block downwards strongly multi-convex at x, if its restrictions to Si,

f ix : Xi → R, xi 7→ f(x1, . . . , xi, . . . , xd),

are strongly convex on the current level-set, i.e.,

f ix(z) ≥ f ix(y) + 〈∇f ix(y), z − y〉+
`ix
2
‖z − y‖2 for all y, z with f i(y), f i(z) ≤ f i(xi),

(2.4)
where for every i = 1, 2, . . . , d the constant `ix > 0 can depend on all block-variables
except xi. Similarly, we say that ∇f is block downwards multi-Lipschitz at x, if

‖∇f i(z)−∇f i(y)‖ ≤ Lix‖z − y‖ for all y, z with f i(y), f i(z) ≤ f i(xi) (2.5)

with a constants Lix which can depend on all blocks except xi.
We now analyze one step of the MBI method from some xn for such functions.

For readability, we will use the subscript n instead of xn in the following. Clearly,
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every f in has a unique minimizer xi∗ with ∇f i(xi∗) = 0, and trivially f i(xi∗) ≤ f(xin).
Let i∗ be an index with maximum improvement, such that xn+1 ∈ Ei

∗

xn
is the response

of the MBI method. Further, let

`n = min
i=1,2,...,d

`in, Ln = max
i=1,2,...,d

Lin,

then we deduce from (2.4) and (2.5) that for any index j ∈ {1, 2, . . . , d} it holds

f(xn)− f(xn+1) = max
i=1,2,...,d

(f(xin)− f(xi∗))

≥ max
i=1,2,...,d

`in
2
‖xin − xi∗‖2

≥ `n
2
‖xjn − xj∗‖‖xi

∗

n − xi
∗

∗ ‖

≥ 1

2

`n
Ln
‖∇f j(xjn)‖‖xn − xn+1‖.

If we pick j as the index for which ‖∇f j(xjn)‖ is maximal (i.e., the index of the

Gauss-Southwell rule), then it follows from ‖∇f(xn)‖2 =
∑d
i=1 ‖∇f i(xin)‖2 that

f(xn)− f(xn+1) ≥ 1

2
√
d

`n
Ln
‖∇f(xn)‖‖xn+1 − xn‖.

Applying Theorem 2.2, we arrive at the following result.
Theorem 2.3. Let (xn) be a sequence generated by the MBI method (Algorithm 1)

for problem (2.1) with Si = Xi for i = 1, 2, . . . , d (the unconstrained case). Assume
that

(i) f is differentiable and block downwards strongly multi-convex at all xn, and
∇f is block downwards multi-Lipschitz at all xn with constants `in and Lin,
respectively,

(ii) there is a constant σ̄ such that

mini `
i
n

maxi Lin
≥ σ̄ > 0

for all n, and
(iii) the sequence (xn) has a cluster point x∗ which satisfies the  Lojasiewicz gradient

inequality (2.3).
Then x∗ is the limit point of the sequence and ∇f(x∗) = 0.

Note that the assumption implies that f is strictly convex on every Eixn
∩ {x :

f(x) ≤ f(xn)} so that the stationarity condition in Theorem 2.2 is indeed satisfied.
We also remark that the Gauss-Southwell rule allows for almost the same analysis.

2.4. Example: multi-convex functions in tensor optimization. Of course,
every strongly convex function on X1×X2× · · · ×Xd is trivially block strongly multi-
convex. Less trivial examples of such functions naturally arise in tensor optimization
by composition with multi-linear functions as follows. Let J : Rn1×n2×···×nd → R
be a convex function of tensors (multi-dimensional arrays) of size n1 × n2 × · · · × nd.
Let further τ : X1 × X2 × · · · × Xd → Rn1×n2×···×nd be multi-linear with respect
to the block variables xi ∈ Xi. The mapping τ parametrizes certain tensors of low-
rank. One then wishes to minimize f = J ◦ τ which is multi-convex. Examples are
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the problem of the best canonical low-rank tensor approximation (4.1) below, where
J(X ) = 1

2‖F −X‖
2
F and τ(x1, x2, . . . , xd) =

∑r
k=1 x

1
k ⊗ x2k ⊗ · · · ⊗xdk with xi ∈ Rni×r.

Another example is the approximate solution of linear equations in the tensor train
format [21].

We assume that J is differentiable and uniformly strongly convex with modulus λ,
i.e.,

J(Y) ≥ J(X ) + 〈∇J(X ),Y − X〉F +
λ

2
‖Y − X‖2F ,

and its gradient Lipschitz continuous with Lipschitz constant Λ:

‖∇J(Y)−∇J(X )‖F ≤ Λ‖Y − X‖F .

Further, we need bounds

mi
x‖yi‖ ≤ ‖τ ix(yi)‖F ≤M i

x‖yi‖, (2.6)

where we have denoted by τ ix the restrictions yi 7→ τ(x1, . . . , yi, . . . , xd) of τ on Xi.
Since these functions are linear, it holds 〈∇τ ix(xi), yi − xi〉 = τ ix(yi)− τ ix(xi). Now we
can estimate

f ix(yi) = J(τ ix(yi))

≥ J(τ ix(xi)) + 〈∇J(τ ix(xi)), τ ix(yi)− τ ix(xi)〉F +
λ

2
‖τ ix(yi)− τ ix(xi)‖2F

≥ f i(xi) + 〈∇f i(xi), yi − xi〉+
λ · (mi

x)2

2
‖yi − xi‖2,

and similarly,

‖∇f i(yi)−∇f i(xi)‖ ≤ ΛM i
x‖yi − xi‖.

Hence, in this special case Theorem 2.3 reads as follows.
Corollary 2.4. Let (xn) be a sequence generated by the MBI method (Algo-

rithm 1) for problem (2.1) with f = J ◦τ and Si = Xi for i = 1, 2, . . . , d (unconstrained
case). Assume that

(i) there is a constant σ̃ such that

mini(m
i
xn

)2

maxiM i
n

≥ σ̃ > 0

for all n, and
(ii) the sequence (xn) has a cluster point x∗ which satisfies the  Lojasiewicz in-

equality (2.3).
Then x∗ is the limit point of the sequence and ∇f(x∗) = 0.

Since τ is multi-linear, f will be real-analytic, if J is real-analytic. Hence condition
(ii) can be replaced by requiring the sequence to be bounded and J to be real-analytic.
We should however note that both conditions in the theorem are usual not trivial
to validate for most tensor formats. An exception are rank-one tensors for which we
present the result in Section 4.2.

3. Local convergence analysis. We return from multi-convex functions to
general ones. The local convergence analysis below is classical in the sense that it will
invoke second-order assumptions. Therefore we now assume f to be twice differentiable.
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3.1. The unconstrained case. The proof of Theorem 2.1 relies on compactness
and is nonconstructive. Nothing can be said about the rate of convergence or about
how many cluster points there can be. Ideally, a numerical method is also backed by a
local convergence theorem. Local convergence analysis is again the simplest in the
unconstrained case, i.e., Si = Xi for i = 1, 2, . . . , d. Being local in nature, the results
for the unconstrained case are obviously applicable to stationary points which lie in
the interior of S1 × S2 × · · · × Sd.

As a BCD method, we expect local linear convergence from the MBI method. As
a rule of thumb [33], one proves local linear convergence of a method by investigating
its linearization. For instance, it is well known [34] that the linearization of the
nonlinear Gauss-Seidel method around a stationary point x∗ (under some smoothness
assumptions) is just the linear Gauss-Seidel iteration for solving Ax = 0, where
A = ∇2f(x∗) is the Hessian at x∗. Therefore, it is locally linearly convergent if
∇2f(x∗) is positive definite [48] and this condition cannot be much improved in
general.

However, for the MBI method it is not clear whether its linearization is the MBI
method applied to solve Ax = 0 for the Hessian (which would coincide with the
Gauss-Southwell/greedy multiplicative Schwarz method). The simple reason is that
even if xn+1 = S(xn) defines a map, we cannot prove that it is differentiable. Still it
should hold (as a general principle, e.g, also for nonlinear Gauss-Southwell) that the
local contractivity of a nonlinear relaxation method is governed by its application to
the second order model of the function f . This is the statement of Lemma 3.2 below.
It then remains to prove the local convergence of MBI for quadratic functions under
definiteness assumptions on the Hessian. But such results are known.

Still, we have to enforce (or assume) that the MBI iteration stays local, since
otherwise the question of local convergence would not make much sense. Let x∗ be
a local minimum of (2.1) with Si = Xi for i = 1, 2, . . . , d. Let further A = ∇2f(x∗)
denote the Hessian. We assume that A is positive definite. Then

‖x‖A = 〈x, Ax〉1/2

defines the energy norm of A. By the implicit function theorem, there exists a
neighborhood V of x∗ and a possibly smaller neighborhood U such that for every
xn ∈ U the problems

∇if(x) = 0, x ∈ V ∩ Eixn
, (3.1)

have unique solutions. For V small enough, they are local minima of the coordinate-
restricted problems, since the second directional derivatives are, as the diagonal blocks
of A, positive definite. The least trouble we encounter if f is strictly convex and has
bounded level sets. Then we can choose V as the whole space.

The solutions of

min f(x)
s.t. x ∈ V ∩ Exn

(3.2)

are among the d possible solutions of (3.1). Let xloc
n+1 be one solution of (3.2), the

particular choice does not matter. We call xloc
n+1 the local response of the MBI method

on xn.
Theorem 3.1. Let x∗ be a local minimum of (2.1) with Si = Xi for i = 1, 2, . . . , d.

Assume A = ∇2f(x∗) is positive definite. For x0 close enough to x∗, a sequence (xloc
n )
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of local MBI responses exists. Any such sequence converges at least Q-linearly to x∗ in
the energy norm, i.e., there exists 0 ≤ q < 1 such that

‖xloc
n+1 − x∗‖A ≤ q‖xloc

n − x∗‖A.

To prove the theorem, we continue now, without losing generality, by assuming
x∗ = 0 and f(x∗) = 0. By Taylor expansion, we then have

f(x) =
1

2
‖x‖2A +

1

2
η(x)‖x‖2A,

where η is some function with η(x)→ 0 for x→ 0. The comparison of the local MBI
method with any other coordinate descent method for A is based on the following
lemma.

Lemma 3.2. Let A = ∇2f(x∗) be positive definite. For every ε > 0 there exists a
δ > 0, such that ‖x‖A, ‖y‖A ≤ δ and f(x) ≤ f(y) implies ‖x‖A ≤ (1 + ε)‖y‖A.

Proof. For any ε > 0, let ε0 := min{1/2, ε/2} > 0, and there exists δ > 0, such
that ‖x‖A ≤ δ implies |η(x)| ≤ ε0. When ‖x‖A, ‖y‖A ≤ δ and f(x) ≥ f(y), as
|η(x)|, |η(y)| ≤ ε0, we have that

1

2
(1− ε0)‖x‖2A ≤ f(x) ≤ f(y) ≤ 1

2
(1 + ε0)‖y‖2A,

implying

‖x‖2A
‖y‖2A

≤ 1 + ε0
1− ε0

= 1 +
2ε0

1− ε0
≤ 1 +

2 · ε/2
1− 1/2

= 1 + 2ε ≤ (1 + ε)2.

Proof of Theorem 3.1. Recall that x∗ = 0 and f(x∗) = 0. Given xn, let yn+1 be
the result of some coordinate descent method applied to xn for minimizing the convex
function x 7→ ‖x‖2A, i.e., solving Ax = 0, which is known to converge Q-linearly in the
energy norm, e.g. the Gauss-Southwell method [29, 16].

Let V and U ⊆ V be balls in the energy norm such that for xn ∈ U both xloc
n+1

and yn+1 are defined, belong to V ∩
(⋃

iE
i
xn

)
, and satisfy

‖yn+1‖A ≤ q̃‖xn‖A

for some 0 ≤ q̃ < 1 related to the chosen method. By definition of xloc
n+1 it holds

f(xloc
n+1) ≤ f(yn+1). Let ε > 0 be such small that q = (1 + ε)q̃ < 1. Then we can make

V smaller, so that Lemma 3.2 becomes applicable, i.e.,

‖xloc
n+1‖A ≤ (1 + ε)‖yn+1‖A ≤ q‖xn‖A.

The rest follows by induction.

3.2. Spherical constraints. The local convergence result obtained above is
easily applicable to constrained problems when the Si are smooth manifolds. The
idea is to consider a local diffeomorphism to the tangent space to get into the locally
unconstrained setting. We present the idea for the important class of spherically
constrained problems,

min f(x1, x2, . . . , xd)
s.t. xi ∈ Rni , ‖xi‖ = 1, i = 1, 2, . . . , d.

(3.3)
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Let now x∗ denote a stationary point of the MBI method for (3.3), i.e., a stationary
point of (2.2) with Si = {xi ∈ Xi : ‖xi‖ = 1}. If we set Y i = {xi∗}⊥ and

h(y1, y2, . . . , yd) =

(
x1∗ + y1

‖x1∗ + y1‖
,
x2∗ + y2

‖x2∗ + y2‖
, . . . ,

xd∗ + yd

‖xd∗ + yd‖

)
,

then all directional derivatives of h at 0 will be zero, i.e., 0 is a critical point of the
function

g : Y 1 × Y 2 × · · · × Y d → R, y 7→ f(h(y)),

and moreover, since y→ h(y) is a local diffeomorphism to a neighborhood of x∗ on
the spheres, a locally responding MBI method applied to (3.3) in the neighborhood
of x∗ is in one-to-one correspondence to a local MBI method applied to g in some
neighborhood of 0, in the sense that

xloc
n = h(yloc

n )

would be a feasible choice when x0 = h(y0).2 If we show local linear convergence of
yloc
n → 0, then also xloc

n → x∗ at least R-linearly. Consequently, Theorem 3.1 proves
the following statement.

Theorem 3.3. Assume

∇2g(0) is positive definite on Y 1 × Y 2 × · · · × Y d. (3.4)

Then a local MBI iteration (xloc
n ) for (3.3) exists and is R-linearly convergent to x∗.

Condition (3.4) is reasonable as a general assumption when 0 is a local minimum
of g. But it is typically difficult to verify for particular applications. Let us derive the
explicit formula for ∇2g(0). By the chain rule,

〈y,∇2g(0)y〉 = 〈∇h(0)y,∇2f(x∗) · ∇h(0)y〉+∇f(x∗) · ∇2h(0)[y,y].

Using the Taylor expansion (1 + t)−1/2 = 1 − t/2 + O(|t|2) we obtain for y ∈ Y 1 ×
Y 2 × · · · × Y d, by using orthogonality,

(xi∗ + yi)/‖xi∗ + yi‖ = (xi∗ + yi)(1 + ‖yi‖2)−1/2

= (xi∗ + yi)(1− ‖yi‖2/2 +O(‖yi‖4))

= xi∗ + yi − xi∗‖yi‖2/2 +O(‖yi‖3).

Hence,

∇h(0)y = y

and

∇2h(0)[y,y] = −(x1∗‖y1‖2, x2∗‖y2‖2, . . . , xd∗‖yd‖2)

= −diag(‖y1‖2, ‖y2‖2, . . . , ‖yd‖2)x∗.

Therefore,

〈y,∇2g(0)y〉 = 〈y,∇2f(x∗)y〉 − ∇f(x∗) · diag(‖y1‖2, ‖y2‖2, . . . , ‖yd‖2)x∗. (3.5)

It remains to mention that using different local diffeomorphisms h from the sphere
to its tangent plane, such as stereographic or orthogonal projection leads to slightly
different convergence criteria. However, we found (3.5) reasonably simple.

2As above, our assumption (3.4) on the Hessian will imply that this choice is locally unique when
using the same coordinate for each iteration of (xloc

n ) and (yloc
n ).
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3.3. Example: The interpretation of the power method as MBI. As a
model problem for the reasoning so far, consider the task

max 〈x1,Mx2〉 ⇔ min−〈x1,Mx2〉
s.t. ‖x1‖ = ‖x2‖ = 1

for calculating the largest eigenvalue λmax of a positive definite matrix M . The global
maximum is attained for x1∗ = x2∗ being a normed eigenvector for λmax. Denoting

f(x1, x2) = −〈x1,Mx2〉,

we have

∇f(x∗) · z = −〈z1,Mx2∗〉 − 〈x1∗,Mz2〉,

so in particular

∇f(x∗) · diag(‖y1‖2, . . . , ‖yd‖2)x∗ = −λmax(‖y1‖2 + ‖y2‖2) = −λmax‖y‖2. (3.6)

Further,

〈y,∇2f(x∗)y〉 = −2〈y1,My2〉.

Let λ′ ≤ λmax denote the second largest eigenvalue (counting multiplicity) of M . Then,
for y1, y2 ∈ {x1∗}⊥ it holds

−〈y,∇2f(x∗)y〉 = 2〈y1,My2〉 ≤ 2λ′‖y1‖ · ‖y2‖ ≤ λ′(‖y1‖2 + ‖y2‖2) = λ′‖y‖2. (3.7)

This estimate is sharp (consider y1 = y2 being the eigenvector for λ′). Inserting (3.6)
and (3.7) into (3.5) we obtain

〈y,∇2g(0)y〉 ≥ (λmax − λ′)‖y‖2.

In the case λ′ < λmax, i.e., the largest eigenvalue has multiplicity one, the Hessian
∇2g(0) is positive definite at the eigenvector for the largest eigenvalue. Otherwise
we could have some trouble which might be avoided by considering as Y i only the
eigenspaces of strictly smaller eigenvalues.

Let us see how the MBI method looks like for this problem. Starting from
x0 = (ξ, η) and assuming that ξTM2ξ > ηTM2η it is easy to see that the MBI method
produces the normalized version of the sequence

x1 = (ξ,Mξ), x2 = (M2ξ,Mξ), x3 = (M2ξ,M3ξ), . . .

This is the classical power method in each component! Under the assumption that
λmax has multiplicity one, both components tend to the corresponding eigenvector
x1∗ = x2∗, as long as x0 /∈ Y 1× · · · ×Y d, which is almost surely the case. If it is not the
case, we obtain convergence to some other eigenvector under the assumption that all
eigenvalues have multiplicity one. The analysis can then be restricted to the smallest
invariant subspace of M the starting point lies in. Hence, in this model application,
the subsequential global convergence of MBI is in fact global (if all eigenvalues are
distinct), and the convergence is asymptotically linear (which, of course, is known for
the power method). We also see that a limit point might only be a saddle point of the
initial problem, although here this scenario has probability zero.

In summary, for the matrix eigenvalue model, MBI is no new method, but it is
interesting to see that the power method is a particular instance of it. In any case, it
is a very illustrative, convincing example for our general reasoning and gives hope for
“similar” applications such as the calculation of the maximum eigenvalue of tensors,
which is the topic of Section 4.



12 ZHENING LI, ANDRÉ USCHMAJEW, SHUZHONG ZHANG

4. Convergence results for best rank-one approximation of tensors. The
rank-r decomposition/approximation

min 1
2

∥∥F −∑r
k=1 x

1
k ⊗ x2k ⊗ · · · ⊗ xdk

∥∥2
F

s.t. xik ∈ Rni , k = 1, 2, . . . , r, i = 1, 2, . . . , d
(4.1)

of a tensor F (in the Frobenius norm) is an important task in some branches of statistics
such as psychometrics or chemometrics, and also in signal processing, where it serves
as a model known as PARAFAC or CANDECOMP to analyze multi-dimensional data;
see [22] and the references therein. The task also naturally occurs in high-dimensional
tensor calculus [18].

A popular method to solve (4.1) is the cyclic coordinate descent method with
respect to the block variables xi = (xi1, x

i
2, . . . , x

i
r) ∈ Rni×r, which in this context

is called ALS algorithm. It was originally proposed by Carroll and Chang [8] and
Harshman [19]. However, as already mentioned above, the ALS method is not even
guaranteed to globally converge to a stationary point, only to a solution where the
objective function ceases to decrease; see e.g. numerically observed cases in [14]. Local
convergence of the ALS method has been proved in [50] for rank r = 1 and in [45] for
the general case under natural, yet controversial, assumptions on the Hessian of (4.2),
which never is positive definite due to scaling indeterminacy of the tensor product.

4.1. Best rank-one approximation. What makes (4.1) a very difficult task
besides its high nonlinearity is its possible ill-posedness for ranks r larger than one [10].
Global minima might not exist, and minimizing sequences might not stay bounded.
These problems do not occur for the well behaved rank-one approximation problem

min
x∈Rn1×Rn2×···×Rnd

1
2

∥∥F − x1 ⊗ x2 ⊗ · · · ⊗ xd∥∥2
F
. (4.2)

We note that if x∗ is a critical point of (4.2) and x1∗ ⊗ x2∗ ⊗ · · · ⊗ xd∗ 6= 0, then
x1∗ ⊗ x2∗ ⊗ · · · ⊗ xd∗ indeed is a critical point of X 7→ 1

2‖F − X‖
2
F on the smooth

submanifold of rank-one tensors. See, e.g. [46, p. 155] for further explanation.
One point we want to focus on is the equivalence of (4.2) to the maximization of

homogenous polynomials. Specifically, given F ∈ Rn1×n2×···×nd , we associate with it
a multi-linear form F defined as

F (x1, x2, . . . , xd) :=

n1∑
i1=1

n2∑
i1=1

· · ·
nd∑
id=1

Fi1i2...idx1i1x
2
i2 . . . x

d
id
. (4.3)

Note that F (x1, x2, . . . , xd) is the Frobenius inner product of F and the rank-one
tensor x1⊗ x2⊗ · · · ⊗ xd. It is therefore clear that, up to scaling, (4.2) is equivalent to

max F (x1, x2, . . . , xd)
s.t. xi ∈ Rni , ‖xi‖ = 1, i = 1, 2, . . . , d,

(4.4)

which is an instance of (3.3). The possibility to reformulate (4.2) into (4.4) distinguishes
the rank-one approximation from the higher rank case in many respects.

The equivalence (up to scaling) between (4.2) and (4.4) also holds on the level
of a single block update. Given xn such that x̂n = (x1n/‖x1n‖, x2n/‖x2n‖, . . . , xdn/‖xdn‖)
is defined, x̂in+1 is a possible MBI response for (4.4) starting from x̂n if and only
if xin+1 = F (x1n, . . . , x̂

i
n+1, . . . , x

d
n)x̂in+1 is a valid MBI response for (4.2) from xn.

Conversely, if (xn) is an MBI sequence for (4.2) with τ1(xn) 6= 0 for all n, then
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(x1n/‖x1n‖, x2n/‖x2n‖, . . . , xdn/‖xdn‖) is an MBI sequence for (4.4) when using the starting
point (x10/‖x10‖, x20/‖x20‖, . . . , xd0/‖xd0‖).

Multi-linear form optimization over spheres (4.4) is a fundamental model in
polynomial optimization. Recently, this model is frequently used as a relaxation
for homogeneous polynomial optimizations; see e.g. [20, 26]. Problem (4.4) is also
known as the largest singular value of a high order tensor [25, 27]. Variants of
problem (4.2) are for instance also important because it is the key step in some greedy
tensor approximation strategies; see [7, 12] and the references therein. It might be
worth mentioning that also in the case of a super-symmetric tensor the best rank-one
approximation is symmetric [9, 51] (i.e., x1 = x2 = · · · = xd in (4.4)), so there is no
need to impose this; unfortunately the symmetry does not hold for local minima.

4.2. Global convergence. We prove the convergence of the MBI method
for (4.2). As previously remarked this implies an analogous result for the MBI
method applied to (4.4). The advantage of (4.2) is that it is of the form described in
Section 2.4 with J(X ) = 1

2‖F − X‖
2
F and

τ = τ1 : Rn1 × Rn2 × · · · × Rnd → R, τ1(x1, x2, . . . , xd) = x1 ⊗ x2 ⊗ · · · ⊗ xd.

We hence aim to apply Corollary 2.4.
The following lemma basically shows that the representation of the rank-one

tensors in an MBI method does not become arbitrarily degenerate, and essentially
allows to bound the constants in (2.6). Its proof applies to any BCD method for
solving (4.2), e.g. Gauss-Seidel (ALS). For concreteness it is stated for MBI.

Lemma 4.1. Let (xn) be an MBI sequence for problem (4.2) with initial guess x0

and τ1(x1) 6= 0.3 Then it holds for all n ≥ 1 that

d∏
i=1

‖xin‖ = ‖τ1(xn)‖F ≤ ‖F‖F , (4.5)

and

‖xin+1‖ ≥ ‖xin‖, i = 1, 2, . . . , d. (4.6)

As a consequence,

0 < ‖xi1‖ ≤ ‖xin‖ ≤ ‖F‖F
∏
j 6=i

‖xj1‖−1, i = 1, 2, . . . , d.

Proof. By homogeneity of the tensor product, it is clear that, for n ≥ 1, τ1(xn)
is the Euclidean (Frobenius) best approximation to F on span τ1(xn), and therefore
satisfies

‖τ1(xn)‖2F + ‖F − τ1(xn)‖2F = ‖F‖2F .

This immediately proves (4.5), but moreover, since ‖F − τ1(xn)‖F does not increase
with n, it inductively also shows

0 <

d∏
i=1

‖xin‖ = ‖τ1(xn)‖F ≤ ‖τ1(xn+1)‖F =

d∏
i=1

‖xin+1‖

3Note that τ1(x0) can be orthogonal to F in the Frobenius inner product as long as there exists
one block i for which span(x10)⊗ · · · ⊗ Rni ⊗ · · · ⊗ span(xd0) is not an orthogonal subspace to F .
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for all n ≥ 1. Since except for possibly one index all the blocks xin and xin+1 are
equal, (4.6) follows.

Lemma 4.1 not only tells us that (xn) is bounded in Rn1 × Rn2 × · · · × Rnd , but
also that there exist constants 0 < m < M independent of i and n such that

m‖xin‖ ≤ ‖τ1(xn)‖F =

d∏
j=1

‖xjn‖ ≤M‖xin‖

for all i and n. The convergence of the sequence to a critical point now follows from
Corollary 2.4.

Theorem 4.2. If τ(x1) 6= 0, the sequence of iterates of an MBI method applied
to the rank-one approximation problem (either (4.2) or (4.4)) converges to a critical
point of the problem.

4.3. Local linear convergence for perturbed rank-one tensors. We con-
tinue to use the notation τ1 for the rank-one map, but focus the analysis on the
equivalent maximization problem (4.4) in order to apply Theorem 3.3.4 It is easy to
see (and known) that the MBI method will find the optimal solution after d steps if

F = F∗ = λ∗τ1(x∗) 6= 0, ‖xi∗‖ = 1, λ∗ > 0,

itself is a rank-one tensor, and if the starting point x0 satisfies F∗(x0) = 〈F∗, τ1(x0)〉F 6=
0, which is almost surely the case when choosing it randomly. In fact, in that case

F∗(x
1, x2, . . . , xd) = λ∗〈τ1(x∗), τ1(x)〉F = λ∗

d∏
i=1

〈xi∗, xi〉, (4.7)

and the unique solution of a subproblem

max
xj∈Rnj , ‖xj‖=1

λ∗

d∏
i=1

〈xi∗, xi〉

is xj = ±xj∗ as long as
∏
i6=j〈xi∗, xi〉 6= 0.

In other words, x∗ = (x1∗, x
2
∗, . . . , x

d
∗) and some of its sign-flipped variants are the

only stationary points of the MBI method for (4.4) satisfying F∗(x∗) > 0. Furthermore,
using multi-linearity and (4.7),

〈y,∇2F∗(x∗)y〉 = λ∗
∑
i 6=j

〈xi∗, yi〉〈xj∗, yj〉 = 0 (4.8)

for y ∈ {x1∗}⊥ × {x2∗}⊥ × · · · × {xd∗}⊥, and

∇F∗(x∗) · diag(‖y1‖2, ‖y2‖2, . . . , ‖yd‖2)x∗ = F∗(x∗)‖y‖2 = λ∗‖y‖2. (4.9)

Hence we see from (3.5) that the assumption (3.4) of Theorem 3.3 is formally fulfilled
(we now need ∇2g(0) to be negative definite as we want to maximize F ). This of
course holds for all sign flipped solutions.

4Due to the scaling indeterminacy of the rank-one representation, Theorem 3.1 is not directly
applicable to the unconstrained version (4.2), cf. the discussion in [45].
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By continuity, we expect the same behavior if F does not lie too far away from the
set of rank-one decomposable tensors. However, this statement will be rather weak. We
first note that also in the case of general F the corresponding restricted subsolutions
for the blocks are unique, if F (xn) 6= 0, since they are solutions of maximization
problems of some non-vanishing linear functionals over spheres.

Theorem 4.3. For every δ > 0 there exists an ε > 0 such that if the distance
of F/‖F‖F to the set of rank-one tensors is smaller than ε, and if the initial guess
satisfies |〈F , x10 ⊗ x20 ⊗ · · · ⊗ xd0〉| ≥ δ‖τ1(x0)‖F , the sequence of iterates of an MBI
method applied to the rank-one approximation problem (either (4.2) or (4.4)) converges
R-linearly to a critical point of the problem.

In fact, it would be possible to prove Q-linear convergence using the results
from [45] instead of Theorem 3.3.

Proof. By the discussion in Section 4.1, we can focus on (4.4). Then ‖τ1(xn)‖F = 1
for all n by construction. Assume the claim is wrong. Then there exist δ > 0 and a
sequence (Fn) of tensors with norm ‖Fn‖ = 1 and associated multi-linear forms Fn,
converging to a rank-one tensor F∗ = τ1(x∗) with ‖(x∗)i‖ = 1 and associated form F ∗

(the set of normalized rank-one tensors is closed), such that for all n there exists a
starting point xn0 (consisting of normalized blocks) with Fn(xn0 ) ≥ δ, for which the
MBI method applied to (4.4) with Fn converges to some xn∗ , but not R-linearly (the
convergence follows from Theorem 4.2).

We can assume that the sequence (xn∗ ) of limit points converges to some x̂∗. It
is clear from (4.3) that the function (F ,x) 7→ F (x) is continuous in both F and x.
Hence x̂∗ has to be a stationary point of MBI for (4.4) with F = F ∗. To see this, fix
for instance any x1 with ‖x1‖ = 1 in the first block. Then, as the xn∗ are stationary
points of MBI for Fn,

F ∗(x1, x̂2∗, . . . , x̂
d
∗) = lim

n→∞
Fn(x1, (xn∗ )

2, . . . , (xn∗ )
d) ≤ lim

n→∞
Fn(xn∗ ) = F ∗(x̂∗).

The same holds for all blocks, hence no block in x̂∗ can be improved.
Additionally, by the monotonicity of MBI,

F ∗(x̂∗) = lim
n→∞

Fn(xn∗ ) ≥ lim
n→∞

Fn(xn0 ) ≥ δ > 0.

However as discussed just before the theorem, for rank-one tensor F∗ = τ1(x∗) the only
stationary points of MBI having this property are x∗ itself and its sign-flipped variants,
and they satisfy the main assumption (3.4) of Theorem 3.3 that the corresponding
quadratic forms∇2gF∗,x∗(0) built from F ∗ and x∗ according to (3.5) is negative definite
(this is a maximization problem) on W∗ = {(x∗)1}⊥ × {(x∗)2}⊥ × · · · × {(x∗)d}⊥. We
can hence assume that x∗ = x̂∗.

As the corresponding bilinear forms ∇2gFn,xn
∗
(0) then converge to ∇2gF∗,x∗(0)

(the continuity follows from the explicit representations (3.5), (4.8), and (4.9)), and the
subspaces Wn = {(xn∗ )1}⊥ × {(xn∗ )2}⊥ × · · · × {(xn∗ )d}⊥ converge to W∗, we conclude
from the semi-continuity of rank, that ∇2gFn,xn

∗
(0) will be negative definite on Wn

for large enough n. By Theorem 3.3, the convergence of MBI for Fn to xn∗ is R-linear,
in contradiction to our assumption.

In a way, Theorem 4.3 is an odd statement. Although it is not vacuous (unless
δ is not implausibly large), it gives no concrete information. Namely, it is not very
meaningful to guarantee the quality of a starting point (by choosing δ) before knowing
the actual function (whose “choice” is restricted by ε). The theorem merely gives an
idea that small perturbations of rank-one tensors lead to linear convergence rate if
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the starting point is not too bad. Indeed, it states that there is at least one pair (δ, ε)
with the desired property. Of course, ideally, one would like to see δ depend on ε, i.e.,
interchange the roles of both, and state a theorem like “for all ε > 0 (perhaps smaller
than some constant) there exists δ > 0 such that . . . ”. This can be achieved when we
only consider global minima, as we show next.

4.4. A precise bound for optimal solutions. Let F∗ = λ∗τ1(x∗) with ‖xi∗‖ =
1 for i = 1, 2, . . . , d, be a best rank-one approximation to F , such that

F = F∗ + E ,

where ‖E‖F is the (Frobenius) distance of F to the set of rank-one tensors. At the
possible solution x∗ of (4.4), (3.5) reads

〈y,∇2g(0)y〉 = 2
∑
i<j

F (x1∗, . . . , y
i, . . . , yj , . . . , xd∗)− F (x∗)‖y‖2.

Again, to apply Theorem 3.3, we have to show that this expression is negative for
nonzero y ∈ {x1∗}⊥ × {x2∗}⊥ × · · · × {xd∗}⊥. One can do so by imposing an explicit
bound on the perturbation ‖E‖F , and using a similar chain of estimates like in [45],
where the local convergence of alternating least squares has been investigated. We
only give a short sketch tailored to the condition (3.4) used in the present paper.

First note that (4.8) is again valid. Next, by optimality, E and τ1(x∗) = λ−1∗ F∗ have
to be orthogonal in Rn1×n2×···×nd , i.e., E(x∗) = 0, where E denotes the multi-linear
form associated to E . Therefore, with (4.9),

〈y,∇2g(0)y〉 = 2
∑
i<j

E(x1∗, . . . , y
i, . . . , yj , . . . , xd∗)− λ∗‖y‖2. (4.10)

By (4.7), the rank-one tensors xi∗⊗· · ·⊗yi⊗· · ·⊗yj⊗· · ·⊗xd∗ are pairwise orthogonal
for all i < j in the Frobenius inner product. Using this pairwise orthogonality in
combination with Cauchy-Schwarz inequality one can obtain the estimate∑

i<j

E(x1∗, . . . , y
i, . . . , yj , . . . , xd∗)

2

≤ ‖E‖2F
∑
i<j

‖yi‖2‖yj‖2.

For a fixed value of ‖y‖2 =
∑d
i=1 ‖yi‖2 the sum

∑
i<j ‖yi‖2‖yj‖2 would attain the

maximal possible value when all yi had the same norm ‖y‖/
√
d. Using this information

in (4.10) gives the estimate

〈y,∇2g(0)y〉 ≤

(√
2d− 2

d
‖E‖F − λ∗

)
‖y‖2.

Thus, we end up with the condition
√

2d−2
d ‖E‖F < λ∗ for (3.5) to hold, which, using

the optimality condition λ2∗ = ‖F‖2F − ‖E‖2F , is equivalent to

‖E‖F <
√

d

3d− 2
‖F‖F . (4.11)

Theorem 3.3 can now be reformulated into the following result.
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Fig. 5.1. Three instances of (4.4) for d = 3 and ni = 50 (i = 1, 2, 3) by MBI

Theorem 4.4 (cf. [45]). Let F∗ = λ∗x
1
∗ ⊗ x2∗ ⊗ · · · ⊗ xd∗ be a best rank-one

approximation of F = F∗ + E. Then, if (4.11) holds, also (3.4) holds at x∗, and the
MBI method is linearly convergent in a neighborhood of x∗.

We emphasize that this is actually a condition on the distance of a tensor F
to the set of rank-one tensors. Although it looks surprisingly soft, and essentially
independent of the order d, one should be aware that its restrictiveness lies in the
sizes n1, n2, . . . , nd of the tensors under consideration. The larger they are, the more
structured tensors satisfying (4.11) have to be.5

5. Numerical experiments. In the final section, let us present some numerical
experiments for the MBI method, to get a feel for the linear convergence. We focus on
the problem of finding the largest singular value of a high-order tensor, that is, given a
tensor F ∈ Rn1×n2×···×nd with its associated multi-linear form F , on the optimization
model (4.4), which is equivalent to the best rank-one approximation of the tensor F ,
i.e., (4.2).

All the computations are conducted in an Intel Core2 Quad CPU 2.70GHz computer
with 4GB RAM. The supporting software is MATLAB 7.12.0 (R2011a) as a platform.
We use MATLAB Tensor Toolbox Version 2.5 [3] whenever tensor operations are
called. We test instances of (4.4) with d = 3 or d = 4, and the data are randomly
generated if not otherwise specified. For the random data, the components of F follow
i.i.d. standard Gaussian. The initial solution x0 = (x10, x

2
0, . . . , x

d
0) are also randomly

generated, with each block being drawn from uniform distribution on the unit sphere.
We follow the standard MBI procedure (Algorithm 1) to solve (4.4) and output a

sequence (xn) of approximate solutions, which itself always converges to a stationary
point x∗. Here the stopping criterion is both ‖xn − xn−1‖ ≤ 10−8 and F (xn) −
F (xn−1) ≤ 10−12. In the following, we regard x∗ as a solution to (4.4). This approach
is common since it lacks alternatives: only for trivially structured tensors a best
rank-one approximation can be exactly determined.

The sequence (− log10 ‖xn−x∗‖) is plotted in Figures 5.1 and 5.2. Three randomly
generated instances (random F and x0) are presented in each figure, which clearly
show the linear convergence of the MBI method. In fact, these curves appear to be
convex when the iterations are near the stationary points, suggesting that the local
rate of convergence may even be super-linear, at least for very small perturbations.
Clearly, since F is locally Lipschitz, the plots for the logarithm of F (x∗) − F (xn)
would look almost the same and are not of importance here.

5Consider hyper-diagonal tensors of size nd with entries λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 on the diagonal.
The distance to the set of rank-one tensors in the Frobenius norm is ‖E‖ = (|λ2|2 + · · ·+ |λn|2)1/2,
while the norm is ‖F‖ = (|λ1|2 + ‖E‖2)1/2.
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Fig. 5.2. Three instances of (4.4) for d = 4 and ni = 10 (i = 1, 2, 3, 4) by MBI

‖E‖/‖F‖ ≤ 0.1 0.2 0.3 0.4 0.5 0.6
√

d
3d−2

≈ 0.632 0.7 0.8 0.9

Recovery (%) 100 99 99 99 94 90 84 72 40 16

Table 5.1
Recovery of perturbed rank-one tensors using random starting points by MBI

5.1. Rank-one approximation of perturbed rank-one tensors. As dis-
cussed in Section 4.3, if the tensor F does not lie too far away from the set of rank-one

decomposable tensors (within
√

d
3d−2 multiple of the Frobenius norm of the perturbed

tensor), then the MBI method is linearly convergent in a neighborhood of a best
rank-one approximation tensor of F . In this set of tests, we set out to check the
performance of the MBI method in recovering perturbed rank-one tensors, which gives
an idea of how large that neighborhood can be expected to be.

Let d = 4 and ni = 10 for i = 1, 2, 3, 4 in (4.4). We randomly generate a normalized
rank-one tensor F0 (from randomly generated vectors), then put F = F0 + E0 where
E0 is a random orthogonal perturbation satisfying ‖E0‖F /‖F‖F = ε. For F we first
obtain a “best” normalized rank-one approximation F∗ using MBI. Note that it holds
for E∗ = F − F∗, √

1 + ‖E0‖2F − 1 ≤ ‖E∗‖F ≤ ‖E0‖F

(the first term is the distance of F to the unit sphere), that is, ‖E∗‖F /‖F‖F is also of
order ε.

We then apply the MBI method to solve (4.4) using random initial solution 100
more times, and check if they all return to the same stationary point, indicating the
exact recovery or not. For different level of perturbation (‖E‖F /‖F‖F ), the chance of
exact recover by the MBI method is listed in Table 5.1 (according to 100 random test
instances). It clearly shows that for a large allowed distance to the set of rank-one
tensors (e.g. 50%), the MBI method is able to recover the original rank-one tensor.
This somewhat confirms Theorem 4.3 that for small perturbations the convergence
result is almost global.

In the same context we expect that the local convergence region for the stationary
point F∗ = x1∗ ⊗ x2∗ ⊗ x3∗ ⊗ x4∗ should be larger, if the perturbation is smaller (i.e., the
distance of F to the set of rank-one tensors is smaller). Next we try to confirm this.
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‖yi‖
‖xi

∗+yi‖

‖E‖/‖F‖
≤ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

≤ 0.5 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 100 99
0.7 100 100 100 100 100 100 100 99 94
0.8 100 100 100 100 100 100 100 98 86
0.9 100 100 100 100 100 100 98 89 56
1.0 100 99 96 93 84 64 40 18 1

Table 5.2
Convergence regions of perturbed rank-one tensors by MBI

We let the algorithm start from initial points

x0 = (x10, x
2
0, x

3
0, x

4
0) =

(
x1∗ + y1

‖x1∗ + y1‖
,
x2∗ + y2

‖x2∗ + y2‖
,
x3∗ + y3

‖x3∗ + y3‖
,
x4∗ + y4

‖x4∗ + y4‖

)
, (5.1)

where yi⊥xi∗ and ‖yi‖
‖xi

∗+y
i‖ = δ for i = 1, 2, 3, 4 are randomly generated for fixed δ. We

generate the initial points 100 times and check if they all return to F∗, indicating
the exact recovery or not. The percentage of exact recovery for different perturbation
‖E‖F /‖F‖F of F and radius δ for starting points is listed in Table 5.2. It clearly
confirms the expectation. Indeed, the local convergence region is quite large even for
largely perturbed tensors.

5.2. Comparison with ALS and random block improvement. In this set
of tests, we compare different block search procedures to solve (4.4). Apart from
the greedy-type search method (MBI), we apply the workhorse algorithm ALS for
low-rank approximations of tensors, which is a cyclic search method. Besides, we also
try random block search procedure, to be named by RAN, where the next block to be
updated is uniformly (with probability 1

d−1 ) chosen among all the blocks except the
last updated block. Our interest here is to show that the MBI choice of the block to
be updated is a benefit. We frankly note that finding this block requires additional
work as all blocks (except the last one updated) have to be checked. This problem
could likely be resolved by an obvious coarse-grain parallelization. Besides, when all
block updates are available, it might be advisable to use information from all of them,
i.e., updating several blocks at once by some rule, as it is the basic idea in many recent
publications on parallelization of BCD methods based on random block selection,
e.g. [4, 6, 30, 31, 39, 40]. This however is not within the scope of the current paper.

5.2.1. Random data. In order to compare the local convergence properties of
these three methods (MBI, ALS and RAN), we first apply the MBI method to get a
stationary solution x∗. Then we add x∗ with a small perturbation over its null space

like in (5.1), and take the result as the initial solution. Specifically, xi0 =
xi
∗+y

i

‖xi
∗+y

i‖ with

random yi⊥xi∗ and ‖yi‖
‖xi

∗+y
i‖ = 0.05 for i = 1, 2, 3, 4 (hence ‖x0−x∗‖ = 0.1). Apply the

three methods independently with the same initial solution x0, and report the results
only when all the three methods converge to the original stationary solution x∗.

Three randomly generated instances are plotted in Figure 5.3. Each column of
plots are for the same instance, representing curves of the three methods according to
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Fig. 5.3. Three instances of (4.4) by MBI, ALS, and RAN.

number of iterations vs. the gap to the stationary solution (− log10 ‖xn − x∗‖), and
vs. the loss of function value (− log10 |F (x∗)− F (xn)|).

The linear convergence of all three methods are validated by the plots. In most
cases (observation based on much more runs), the convergence rate of MBI is slightly
better than that of ALS, and both of them are better than RAN. Moreover, MBI is
a more stable and reliable method to use, as almost all the plots look the same. In
comparison, the prediction of ALS and RAN convergence is quite uncertain, especially
for RAN.

5.2.2. Random data with artificial structure. In our next set of experiments
we incorporate some artificial structures. We adopt exactly the same test procedures
for comparing the three methods as Section 5.2.1, the only slight difference is the choice
of the starting point. After having applied the MBI method to get the stationary
point x∗, the initial solution is chosen as

x0 = (x10, x
2
0, x

3
0, x

4
0) =

(
x1∗ + y1

‖x1∗ + y1‖
,
x2∗ + y2

‖x2∗ + y2‖
,
x1∗ + y3

‖x1∗ + y3‖
,
x2∗ + y4

‖x2∗ + y4‖

)
where the yi’s are random. Essentially, both the first two blocks and the last two
blocks of the initial solution, are small perturbations of the first two blocks of the
stationary point.

Again, we apply the three methods using the same initial solution x0, and report
the results only when all the three methods output the original stationary solution
x∗. Three randomly generated instances are plotted in Figure 5.4. In contrast to the
previous observations in Figure 5.3, a clearer advantage of the MBI method for the
structured initial data can be seen in this set of tests: the convergence rate of MBI
outperforms that of ALS and RAN significantly, MBI is much more robust than ALS
and RAN. In same cases, the convergence rates of ALS and RAN can be very slow.

5.2.3. Function-generated tensor approximation. We now switch to non-
random data. Consider the rank-one approximation problem (4.4) for the tensor



CONVERGENCE OF THE MBI METHOD 21

Fig. 5.4. Three instances of (4.4) using structured starting points by MBI, ASL and RAN.

Fig. 5.5. Three instances of (4.4) with function-generated tensor (5.2).

F = R10×10×10×10 with entries

Fijk` =
1

i+ j + k + `
∀ 1 ≤ i, j, k, ` ≤ 10, (5.2)

an example taken from [36]. It can be regarded as discretization of the function ξ 7→
1/|ξ|1 on the hypercube [1, 10]4. As the function ξ 7→ 1/ξ can be well-approximated
by exponential sums on the interval [1,∞), we expect ξ 7→ 1/(ξ1 + ξ2 + ξ3 + ξ4) to be
well approximable by products of exponentials on [1,∞)4, i.e., by low-rank functions
(see [18, Section 9.7.2] and references therein). Starting from the same initial solution
generated randomly, all three methods always (by observation) converge to the same
stationary solution. In fact, we can observe in Figure 5.5 a large final fit (bigger than
0.9) of the rank-one approximation, where fit is defined as

fit := 1− ‖F − F∗‖F
‖F‖F

.

All three methods perform well and need few steps, but MBI has an advantage.

5.2.4. Magnetic resonance imaging (MRI) data. Finally, we consider the
same real data of MRI diffusion problem as in [9, Section 5.2.2] which is based on a
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Fig. 5.6. Three stationary solutions of (4.4) for the MRI problem [9].

homogenous polynomial maximization model with the spherical constraint developed
in [13]. This problem can be equivalently transferred to the model (4.4) or (4.2) with
d = 4 and n = 3. Essentially, the best rank-one approximation of a super-symmetric
tensor can be made symmetric; for details one is refereed to [9]. This particular data
problem has exactly three stationary solutions, with each one showing in the plots of
Figure 5.6. The representative plot for the three methods is chosen from the same
initial point as well as the same converged stationary solution. Again they show an
advantage for MBI, although, as in the previous example, all methods converge rather
fast.

To conclude the whole section, in terms of the number of iterations, the search for
a better block in each iteration is important, and makes a difference not only in every
step, but in the complete convergence history. The MBI method usually converges
faster than other block coordinate search type methods. Though this greedy type
search method may increase the overall computational cost, a parallel implementation
for the block search in each MBI iteration is easily imaginable. Besides, applying the
MBI method in the beginning and then switching to other searching methods might
also be a plausible approach.
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[41] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function, Math. Program., 144 (2014), pp. 1–38.

[42] S. Schechter, Iteration methods for nonlinear problems, Trans. Amer. Math. Soc., 104 (1962),
pp. 179–189.

[43] R. V. Southwell, Relaxation Methods in Engineering Science. A treatise on approximate
computation, Oxford Engineering Science Series, Oxford University Press, New York, 1940.

[44] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,
J. Optim. Theory Appl., 109 (2001), pp. 475–494.

[45] A. Uschmajew, Local convergence of the alternating least squares algorithm for canonical
tensor approximation, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 639–652.

[46] A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical tensors,
Linear Algebra Appl., 439 (2013), pp. 133–166.

[47] L. Wang and M. T. Chu, On the global convergence of the alternating least squares method
for rank-one approximation to generic tensors, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 1058–1072.

[48] J. Weissinger, Verallgemeinerungen des Seidelschen Iterationsverfahrens, Z. Angew. Math.
Mech., 33 (1953), pp. 155–163.

[49] Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization
with applications to nonnegative tensor factorization and completion, SIAM J. Imaging
Sci., 6 (2013), pp. 1758–1789.

[50] T. Zhang and G. H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 534–550.

[51] X. Zhang, C. Ling, and L. Qi, The best rank-1 approximation of a symmetric tensor and related
spherical optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 806–821.


