107 research outputs found

    Comparison of Two Methods for Automatic Brain Morphometry Analysis

    Get PDF
    The methods of computational neuroanatomy are widely used; the data on their individual strengths and limitations from direct comparisons are, however, scarce. The aim of the present study was direct comparison of DBM based on high-resolution spatial transforms with widely used VBM analysis based on segmented high-resolution images. We performed DBM and VBM analyses on simulated volume changes in a set of 20 3-D MR images, compared to 30 MR images, where only random spatial transforms were introduced. The ability of the two methods to detect regions with the simulated volume changes was determined using overlay index together with the ground truth regions of the simulations; the precision of the detection in space was determined using the distance measures between the centers of detected and simulated regions. DBM was able to detect all the regions with simulated local volume changes with high spatial precision. On the other hand, VBM detected only changes in vicinity of the largest simulated change, with a poor overlap of the detected changes and the ground truth. Taken together we suggest that the analysis of high-resolution deformation fields is more convenient, sensitive, and precise than voxel-wise analysis of tissue-segmented images

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    Inherent Structure-Based Multiview Learning With Multitemplate Feature Representation for Alzheimer's Disease Diagnosis

    Get PDF
    Multi-template based brain morphometric pattern analysis using magnetic resonance imaging (MRI) has been recently proposed for automatic diagnosis of Alzheimer’s disease (AD) and its prodromal stage (i.e., mild cognitive impairment or MCI). In such methods, multi-view morphological patterns generated from multiple templates are used as feature representation for brain images. However, existing multi-template based methods often simply assume that each class is represented by a specific type of data distribution (i.e., a single cluster), while in reality the underlying data distribution is actually not pre-known. In this paper, we propose an inherent structure based multi-view leaning (ISML) method using multiple templates for AD/MCI classification. Specifically, we first extract multi-view feature representations for subjects using multiple selected templates, and then cluster subjects within a specific class into several sub-classes (i.e., clusters) in each view space. Then, we encode those sub-classes with unique codes by considering both their original class information and their own distribution information, followed by a multi-task feature selection model. Finally, we learn an ensemble of view-specific support vector machine (SVM) classifiers based on their respectively selected features in each view, and fuse their results to draw the final decision. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database demonstrate that our method achieves promising results for AD/MCI classification, compared to the state-of-the-art multi-template based methods

    TPS-HAMMER: Improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation

    Get PDF
    We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to: 1) the employment of soft correspondence matching, and 2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework, to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: 1) Unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; 2) The smoothness of deformation field is preserved due to the nice properties of TPS; 3) Possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario

    Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment

    Get PDF
    As shown in the literature, methods based on multiple templates usually achieve better performance, compared with those using only a single template for processing medical images. However, most existing multi-template based methods simply average or concatenate multiple sets of features extracted from different templates, which potentially ignores important structural information contained in the multi-template data. Accordingly, in this paper, we propose a novel relationship induced multi-template learning method for automatic diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI), by explicitly modeling structural information in the multi-template data. Specifically, we first nonlinearly register each brain’s magnetic resonance (MR) image separately onto multiple pre-selected templates, and then extract multiple sets of features for this MR image. Next, we develop a novel feature selection algorithm by introducing two regularization terms to model the relationships among templates and among individual subjects. Using these selected features corresponding to multiple templates, we then construct multiple support vector machine (SVM) classifiers. Finally, an ensemble classification is used to combine outputs of all SVM classifiers, for achieving the final result. We evaluate our proposed method on 459 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, including 97 AD patients, 128 normal controls (NC), 117 progressive MCI (pMCI) patients, and 117 stable MCI (sMCI) patients. The experimental results demonstrate promising classification performance, compared with several state-of-the-art methods for multi-template based AD/MCI classification

    Improved image registration by sparse patch-based deformation estimation

    Get PDF
    Despite of intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation towards the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) For each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) A small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients. (4) We employ thin-plate splines (TPS) to interpolate a dense initial deformation field by considering all key points as the control points. Thus, the conventional image registration problem becomes much easier in the sense that we only need to compute the remaining small deformation for completing the registration of the subject to the template. Experimental results on both simulated and real data show that the registration performance can be significantly improved after integrating our patch-based deformation prediction framework into the existing registration algorithms

    Multi-atlas based representations for Alzheimer's disease diagnosis: Multi-Atlas Based Alzheimer's Disease Diagnosis

    Get PDF
    Brain morphometry based classification from magnetic resonance (MR) acquisitions has been widely investigated in the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). In the literature, a morphometric representation of brain structures is obtained by spatial normalization of each image into a common space (i.e., a pre-defined atlas) via non-linear registration, thus the corresponding regions in different brains can be compared. However, representations generated from one single atlas may not be sufficient to reveal the underlying anatomical differences between the groups of disease-affected patients and normal controls (NC). In this article, we propose a different methodology, namely the multi-atlas based morphometry, which measures morphometric representations of the same image in different spaces of multiple atlases. Representations generated from different atlases can thus provide the complementary information to discriminate different groups, and also reduce the negative impacts from registration errors. Specifically, each studied subject is registered to multiple atlases, where adaptive regional features are extracted. Then, all features from different atlases are jointly selected by a correlation and relevance based scheme, followed by final classification with the support vector machine (SVM). We have evaluated the proposed method on 459 subjects (97 AD, 117 progressive-MCI (p-MCI), 117 stable-MCI (s-MCI), and 128 NC) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and achieved 91.64% for AD/NC classification and 72.41% for p-MCI/s-MCI classification. Our results clearly demonstrate that the proposed multi-atlas based method can significantly outperform the previous single-atlas based methods

    Fast image registration by hierarchical soft correspondence detection

    Get PDF
    A new approach, based on the hierarchical soft correspondence detection, has been presented for significantly improving the speed of our previous HAMMER image registration algorithm. Currently, HAMMER takes a relative long time, e.g., up to 80 minutes, to register two regular sized images using Linux machine (with 2.40GHz CPU and 2-Gbyte memory). This is because the results of correspondence detection, used to guide the image warping, can be ambiguous in complex structures and thus the image warping has to be conservative and accordingly takes long time to complete. In this paper, a hierarchical soft correspondence detection technique has been employed to detect correspondences more robustly, thereby allowing the image warping to be completed straightforwardly and fast. By incorporating this hierarchical soft correspondence detection technique into the HAMMER registration framework, the robustness and the accuracy of registration (in terms of low average registration error) can be both achieved. Experimental results on real and simulated data show that the new registration algorithm, based the hierarchical soft correspondence detection, can run nine times faster than HAMMER while keeping the similar registration accuracy

    An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automati c Prognosis of MCI Patients

    Get PDF
    Alzheimer's disease (AD) and mild cognitive impairment (MCI), continue to be widely studied. While there is no consensus on whether MCIs actually "convert" to AD, the more important question is not whether MCIs convert, but what is the best such definition. We focus on automatic prognostication, nominally using only a baseline image brain scan, of whether an MCI individual will convert to AD within a multi-year period following the initial clinical visit. This is in fact not a traditional supervised learning problem since, in ADNI, there are no definitive labeled examples of MCI conversion. Prior works have defined MCI subclasses based on whether or not clinical/cognitive scores such as CDR significantly change from baseline. There are concerns with these definitions, however, since e.g. most MCIs (and ADs) do not change from a baseline CDR=0.5, even while physiological changes may be occurring. These works ignore rich phenotypical information in an MCI patient's brain scan and labeled AD and Control examples, in defining conversion. We propose an innovative conversion definition, wherein an MCI patient is declared to be a converter if any of the patient's brain scans (at follow-up visits) are classified "AD" by an (accurately-designed) Control-AD classifier. This novel definition bootstraps the design of a second classifier, specifically trained to predict whether or not MCIs will convert. This second classifier thus predicts whether an AD-Control classifier will predict that a patient has AD. Our results demonstrate this new definition leads not only to much higher prognostic accuracy than by-CDR conversion, but also to subpopulations much more consistent with known AD brain region biomarkers. We also identify key prognostic region biomarkers, essential for accurately discriminating the converter and nonconverter groups

    Is the Social Brain Theory Applicable to Human Individual Differences? Relationship between Sociability Personality Dimension and Brain Size

    Get PDF
    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.
    corecore