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Abstract

Despite of intensive efforts for decades, deformable image registration is still a challenging 

problem due to the potential large anatomical differences across individual images, which limits 

the registration performance. Fortunately, this issue could be alleviated if a good initial 

deformation can be provided for the two images under registration, which are often termed as the 

moving subject and the fixed template, respectively. In this work, we present a novel patch-based 

initial deformation prediction framework for improving the performance of existing registration 

algorithms. Our main idea is to estimate the initial deformation between subject and template in a 

patch-wise fashion by using the sparse representation technique. We argue that two image patches 

should follow the same deformation towards the template image if their patch-wise appearance 

patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and 

the application stage. In the training stage, we register all training images to the pre-selected 

template, such that the deformation of each training image with respect to the template is known. 

In the application stage, we apply the following four steps to efficiently calculate the initial 

deformation field for the new test subject: (1) We pick a small number of key points in the 

distinctive regions of the test subject; (2) For each key point, we extract a local patch and form a 

coupled appearance-deformation dictionary from training images where each dictionary atom 

consists of the image intensity patch as well as their respective local deformations; (3) A small set 

of training image patches in the coupled dictionary are selected to represent the image patch of 

each subject key point by sparse representation. Then, we can predict the initial deformation for 

each subject key point by propagating the pre-estimated deformations on the selected training 

patches with the same sparse representation coefficients. (4) We employ thin-plate splines (TPS) 

to interpolate a dense initial deformation field by considering all key points as the control points. 

Thus, the conventional image registration problem becomes much easier in the sense that we only 

need to compute the remaining small deformation for completing the registration of the subject to 

the template. Experimental results on both simulated and real data show that the registration 
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performance can be significantly improved after integrating our patch-based deformation 

prediction framework into the existing registration algorithms.
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Deformable image registration; sparse representation; initial deformation prediction

1. Introduction

Deformable image registration has been widely used in many neuroscience and clinical 

studies, such as quantitative measurement of inter-group structural difference and the 

identification of abnormalities in disease-affected brains. Specifically, by using deformable 

registration methods, extrinsic anatomical variations among a population of subjects can be 

minimized, while the remaining intrinsic structure differences are regarded as imaging-based 

biomarkers to quantitatively measure the anatomical differences between to clinic groups. 

Since the deformation field characterizes the local structure changes toward the reference 

space, many imaging-based approaches extract the morphometric patterns from deformation 

fields for group comparison or disease diagnosis (Freeborough and Fox 1998; Downhill, 

Buchsbaum et al. 2000; Thompson, Mega et al. 2001; Frisoni, Testa et al. 2002; Job, 

Whalley et al. 2003; Merschhemke, Mitchell et al. 2003).

Although numerous registration methods have been proposed in the last decades, it is still 

challenging to register two individual images with large anatomical differences. In general, 

most deformable registration methods, regardless of intensity-based (Thirion 1998; 

Rueckert, Sonoda et al. 1999; Johnson and Christensen 2002) or feature-based methods 

(Rohr 1999; Shen and Davatzikos 2002; Shen and Davatzikos 2003; Shen 2004; Ou, Sotiras 

et al. 2011), aim to optimize the deformation field by minimizing the intensity and structural 

differences between template and deformed subject images. As the image registration is a 

complex ill-posed problem, many regularization constraints upon the deformation field have 

also been proposed to cast image registration to the well-posed scenario, e.g., elastic energy 

(Bajcsy and Kovacic 1989; Davatzikos 1997), viscous fluid (Christensen, Rabbitt et al. 

1994; Christensen, Rabbitt et al. 1996), biomechanical model (Ferrant, Warfield et al. 2000), 

Laplacian term (Shen and Davatzikos 2002; Shen and Davatzikos 2003), or even statistical 

prior (Loeckx, Makes et al. 2003; Rueckert, Frangi et al. 2003; Xue, Shen et al. 2006; 

Albrecht, Luthi et al. 2008; Glocker, Komodakis et al. 2009). However, the optimization of 

the deformation field from scratch, as in many conventional methods, is often very 

complicated and challenging to solve, especially the deformation pathway between two 

images is large. Therefore, conventional image registration encounters the following issues: 

(1) long computation time needed for estimating possible large deformations, and (2) high 

vulnerability of being trapped in local minima. Recently, symmetric image registration 

methods (Avants, Epstein et al. 2008; Wu, Kim et al. 2012) were proposed to partially 

alleviate these challenges by estimating a deformation pathway from both ends of the two 

images (i.e., subject and template) simultaneously, such that the two images can be 

deformed to meet at the middle point of their deformation pathway. However, the estimation 
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of the half-way deformation for each image still suffers from the very large anatomical 

differences.

Good initialization of deformation field is effective to tackle the above-mentioned issues, 

especially when two images have large appearance discrepancies. To this end, learning-

based methods have been proposed in the past years to help detect corresponding landmarks 

or predict an initial shape of the object. For example, an automatic landmark detection 

method (Neu and Toga 2008) was proposed to learn the statistical relation between the local 

appearance and landmarks to guide the identification of the landmarks in the new subjects. 

The other method, called shape regression machine (Zhou and Comaniciu 2007), was 

designed to provide the good initialization of the target object detection by the nonlinear 

regressors learned upon the correlation between image appearance and their respective 

shapes. However, the complexity of such applications regarding the initialization of either 

landmarks or shapes is relatively low, compared to the prediction of dense deformation field 

in our application.

In last decade, several deformation prediction methods have been developed for providing 

the initial deformation prior to deformable brain image registration. Thus the registration 

method only need to estimate a small segment of deformation. Since the estimated initial 

deformation makes the template image and the deformed subject image very close to each 

other, the remaining (small) deformation can be effectively estimated by many of the 

existing registration algorithms. Specifically, several learning- based registration methods 

for predicting the initial deformation field have been proposed by investigating the 

correlation between image appearances and deformation statistics (Tang, Fan et al. 2009; 

Kim, Wu et al. 2012). Although promising improvements on registration results have been 

achieved, these learning-based methods intended to capture the very high-dimensional 

image appearances and deformation fields by only using simple statistical models, such as 

principal component analysis (PCA). Thus, these learned-based models have limitations in 

prediction accuracy. For example, RABBIT (Tang, Fan et al. 2009) computed image 

similarity based on the entire images to automatically determine the most similar 

intermediate template with respect to a certain subject. Then, the registration of the subject 

with the template was reduced to a simple problem of registering the subject to the estimated 

intermediate template, since the registration between the intermediate template and the 

template has been pre-computed already. On the other hand, more advanced method (Kim, 

Wu et al. 2012) has been proposed to learn the relationship between image appearances and 

deformation fields from the training images by support vector regression (SVR) model 

(Smola and Scholköpf 2004). Specifically, given a new subject image, the learned SVR 

model will automatically predict the initial deformation field based on the appearance of this 

subject image. Then, the estimated initial deformation field can be used to warp the template 

for generating a subject-specific intermediate template. In this way, the subject image only 

needs to be registered with this intermediate template, thus significantly reducing the 

complexity of original registration problem. However, in this method, the regression model 

was used to learn the relationship between the whole image appearance and the entire 

deformation field, which is limited to completely capture the complex local deformation 

characteristics in the training stage. Moreover, most previous learning-based methods often 
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lack the ability of incremental learning, thus the training dataset has to be fixed and the 

inclusion of new training samples requires re-training of the model.

Recently, sparse patch-based approaches have been widely applied to image analysis 

studies, including multi-atlas segmentation, inpainting, denoising, and super-resolution 

problems (Zongben and Jian 2010; Coupé, Manjón et al. 2011; Rousseau, Habas et al. 2011; 

Chatterjee and Milanfar 2012; Zhang, Wu et al. 2012). Given a sufficient number of patches 

from the training images, each patch in the subject image can be well represented by a 

sparse linear combination of similar patches from the training images. If two image patches 

are similar in appearances, they could be coming from the same anatomical structures of 

different images and thus can be regarded as correspondences to each other. The success of 

these sparse patch-based approaches motivates us to apply this technique to correlate image 

appearances with deformations at the scale of local patch, in order to provide more accurate 

initial deformation field for image registration.

In this paper, we propose a novel patch-based deformation prediction framework to provide 

a good initial deformation field between template and subject images for augmenting the 

performance of registering two images. That is, our method is able to provide a good 

deformation field for initializing the image registration, which can be further refined by 

many of the existing registration methods. Specifically, we argue that (1) if a patch in the 

subject image is similar (in appearances) to a certain patch in a training image, the 

corresponding points for these two patches toward the same template should be highly 

related; and (2) given a sufficient number of training images, each patch in the subject image 

can identify several similar instances from the properly selected training images via the 

sparse learning technique.

Specifically, there are two stages in our proposed framework, i.e., the training stage and the 

application stage. In the training stage, a large number of training images are carefully 

registered to a selected template. Thus, we obtain the dense deformation field for each 

training image. In the application stage, for registering a new subject image with the same 

selected template, we first select a small number of key points at the distinctive regions of 

this subject image. Then, for each key point in the subject image, we extract the image 

patch, centered at the underlying key point. Then, we adaptively construct the coupled 

dictionary for the underlying point where each atom in the dictionary consists of image 

intensity patches and the respective deformations obtained from training images. Next, the 

subject image patch can be sparsely represented by a linear combination of training image 

patches in the dictionary, where we apply the same sparse coefficients to the respective 

deformations in the dictionary to predict the deformation for the subject image patch. After 

we repeat the same procedure for each subject key point, we use thin-plate splines (TPS) 

(Bookstein 1989) to interpolate a dense deformation field, which is used as the initialization 

to allow the registration algorithm estimating the remaining small segment of deformations 

toward the template image. Experimental results on both simulated and real data show that 

our patch-based deformation prediction framework can improve the registration accuracy for 

several mainstream registration methods, including HAMMER (Shen and Davatzikos 2002; 

Shen and Davatzikos 2003), diffeomorphic Demons (Vercauteren, Pennec et al. 2009), 
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FNIRT (Andersson, Smith et al. 2008), ART (Ardekani, Guckemus et al. 2005), and SyN 

(Avants, Epstein et al. 2008).

This paper is organized as follows. In Section 2, we first overview our proposed sparse 

patch-based deformation estimation framework, followed by the details on the construction 

of the coupled patch- based appearance-deformation dictionary (Section 2.2) and the 

prediction of local deformations of subject patches via sparse learning (Section 2.3). We 

show the experimental results on both real and simulated data in Section 3. Finally, in 

Section 4, we conclude our novel patch-based deformation prediction framework, along with 

some extensive discussions.

2. Methods

In this section, we present a general framework to improve the performances of the existing 

registration algorithm by predicting a good initial deformation field. The overview of our 

sparse patch- based deformation estimation framework is provided in Section 2.1. For 

predicting the initial deformation, we construct the coupled dictionary (consisting of both 

patch-based image appearances and their respective deformations) in Section 2.2, and then 

predict the deformation field via sparse learning in Section 2.3. Finally, we summarize our 

learning-based registration framework in Section 2.4.

2.1. Overview of Sparse Patch-based Deformation Estimation Framework

The goal of deformable registration is to estimate a dense deformation field fS for registering 

the subject image IS to the template IT, where fs(x) denotes the deformation of the point x in 

the template image domain ΩT. In our learning-based registration framework, the overall 

deformation field is fs decomposed into two parts, i.e., , where  is 

the predicted initial deformation field and  is the remaining deformation field. It is worth 

noting that most existing registration methods start without any initial prediction, i.e., 

. Although  can be predicted by some previous learning-based 

methods (Tang, Fan et al. 2009; Kim, Wu et al. 2012), the details of local deformations 

could be missed due to the use of global models to represent the entire deformation field in 

those methods.

We hereby propose a novel patch-based approach to adaptively predict the initial 

deformation  as illustrated in Fig. 1. Specifically, in the training stage, a number of 

training images {Im|m = 1,...,N} are first registered with a selected template IT by the state-

of-the-art registration algorithms, such as HAMMER (Shen and Davatzikos 2002; Shen and 

Davatzikos 2003), diffeomorphic Demons (Vercauteren, Pennec et al. 2009), FNIRT 

(Andersson, Smith et al. 2008), ART (Ardekani, Guckemus et al. 2005), and SyN (Avants, 

Epstein et al. 2008). Note that the training is conducted offline. Hence, it allows us to utilize 

additional sources of information to achieve more accurate image registration. For example, 

we can use optimal registration parameters for each pairwise image registration in the 

training stage. Moreover, we can also manually annotate a number of landmarks in each 

training image and use these established correspondences to improve the image registration.
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Then, the deformation field fm from the template IT to each subject Im can be acquired, 

therefore obtaining a set of deformation fields F = {fm|m = 1,...,N}. Accordingly, we know 

the deformation field of each training image with respect to the template (as shown as the 

red solid box in the left-bottom corner of Fig. 1). Then, for any given subject image, its 

registration to the template image can be completed by the following five steps:

1) A set of key points are first selected automatically in the subject image IS, and 

denoted as X = {xk | k = 1,...,K}. It is worth noting that we refer xk to the k-th key point 

in subject IS in the following text.

2) We adaptively construct a coupled dictionary for each subject key point xk, where 

each coupled atom in the dictionary consists of a pair of patch-based image appearance 

and its associated deformation to the template image.

3) The initial deformation on each key point of a new testing subject can be predicted 

via the sparse representation technique, as detailed in Section 2.3.

4) Given the estimation of the initial deformations on the key points of the subject 

image, we apply TPS to interpolate the initial dense deformation field  for the whole 

subject image.

5) We deform the template image IT by following the predicted initial deformation field 

to  generate an intermediate template for the subject image. It is worth noting that the 

shape difference between the generated intermediate template and the subject image can 

be small, as illustrated by the two brain images in the top-right of Fig. 1, thus making 

the refinement of registration by the existing registration algorithms much easier.

Many existing registration algorithms can be employed to estimate the remaining 

deformation  for completing the refinement of the overall registration. It is worth noting 

that the use of the generated intermediate template reduces the complexity of the 

conventional image registration (which often register the subject image directly to the 

template image), since only small remaining deformation field needs to be estimated.

2.2. Key Point Selection and Coupled Dictionary Construction

To construct the locally-adaptive coupled dictionary for each subject key point, we first 

register N training images to the template IT, for obtaining a set of deformation fields from 

all training images. It is worth noting that most mainstream registration methods (Shen and 

Davatzikos 2002; Ardekani, Guckemus et al. 2005; Andersson, Smith et al. 2008; Avants, 

Epstein et al. 2008; Vercauteren, Pennec et al. 2009) can be used for registering the training 

images in the training stage. In order to save the computation time in the application stage, 

we predict only the initial deformations on the subject key points, which are detected 

automatically, as explained below.

2.2.1. Extraction of Patch on Each Key Point—To consistently and efficiently choose 

the key points from the subject image, rather than randomly selecting them, we follow the 

importance sampling strategy to hierarchically select the key points (Wang, Wu et al. 2010; 

Wu, Kim et al. 2012). Two criteria are used for selection of key points: (1) In a local view, 
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key points should locate at the distinctive regions in the subject image, such as at sulcal root, 

gyral crown, and ventricular boundary, since points in these regions are relatively easy to 

identify for their correspondences; (2) In a global view, key points should cover the entire 

brain volume (i.e., the key points distributed in the whole brain) to derive the whole-brain 

deformation, while the density of key points should be high in the context-rich regions such 

as border of white matter and grey matter, while low in the context-uniform regions such as 

inside of the white matter. Specifically, we smooth and normalize the gradient magnitude 

values of intensities for all voxels in the subject image over the whole image domain. Then, 

we regard the obtained values as importance (or the probability) of each voxel to be selected 

as the key point. Higher importance value implies that the location under consideration is 

more likely to be drawn in non-uniform sampling, while lower value denotes lower chance 

for the respective location to be selected as a key point. Thus, based on this importance map, 

a set of key points can be sampled via Monte Carlo simulation. Fig. 2(a) shows the selected 

key points by the importance sampling as introduced above.

Suppose we have selected K key points X in the new testing subject image IS. For each key 

point xk ∊ X, we use PS (xk) to denote the particular image patch in the new testing subject 

IS, which is centered at the key point xk. Similarly, we use Pm(y) to denote a candidate image 

patch centered at the point y ∊ n (xk) of the training image Im, where n(xk) denotes a search 

neighborhood centered at xk.

For each subject key point xk under consideration, we can constrnct the over-complete 

coupled dictionaiy D (xk) by incorporating all possible candidate image patches Pm (y) 

across all training images {Im}, as well as the associated deformations fm(y) obtained in the 

training stage, i.e., D (xk) = {(Pm(y), fm(y)) | y ∊ n(xk),m = 1, …,N}.

It is worth noting that the size of each local subject patch PS(xk) also needs to be adaptively 

determined since the scale of the local image content is highly related with the power in 

representing patch-based appearance. Intuitively, the patch size should be small at the areas 

with rich edge information (e.g., cortical area) in order to capture the complex local 

structural features, while the relatively large image patches should be used at the uniform 

regions (e.g., inside of the whiter matter) in order to make the image patch as distinctive as 

possible. Here, we adapt the Octree technique (Meagher 1980) to efficiently partition the 

whole brain into a set of blocks, where the size of each block is adaptive to the local image 

content. Specifically, the whole image is partitioned into 8 blocks equally in the beginning. 

Then, in each block, the intensity entropy is calculated. If the local entropy is higher than a 

certain threshold, further partitioning in the block is applied recursively until the intensity 

entropy drops below a certain threshold. Thus, for each subject key point xk, we can finally 

acquire its associated block size (determined in the Octree-based paitition) as the patch size. 

Fig. 2(b) displays the adaptively-determined patch sizes for the key points in Fig. 2(a).

2.2.2. Patch Pre-Selection—Patch pre-selection is applied here among all candidate 

patches when constructing the dictionary, in order to reduce the computational burden and 

also improve the prediction accuracy by excluding the irrelevant patches from the 

dictionary. Similar to the patch-based labeling approach (Coupé, Manjón et al. 2011), the 

criterion for patch pre-selection is specially defined between PS(xk) and Pm(y) as follows:
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(1)

where μS(xk) and σS(xk) are the intensity mean and standard deviation in the local patch 

PS(xk), respectively, and μm(y) and σm(y) are the intensity mean and standard deviation in 

the local patch Pm(y), respectively. Then, the new coupled local dictionary D* (xk) at the 

subject key point xk can be obtained as below:

(2)

where Γ is the threshold used in patch pre-selection. Only if the value γ is greater than Γ, the 

patch Pm(y) will be included in the dictionary; otherwise, this patch will be discarded. After 

this pre- selection procedure, we assume obtaining of Q elements in the dictionary D*(xk) for 

the following sparse representation. For clarity, we use the column vector  to denote the 

appearance of image patch Pm(y) in D*(xk), by using the bivariate index q = (y,m). Similarly, 

we use the column vector  for the coupled deformation fm(y) in D*(xk). The image patch 

PS(xk) at the subject key point xk is also vectorized as .

2.3. Deformation Prediction by Sparse Patch Representation

We here describe how to predict the local deformation on the subject key point xk. The most 

straightforward way is to use non-local averaging of targets from all possible candidate 

patches in the coupled dictionary as described in Section 2.3.1. On the other hand, we can 

also deploy the sparse representation to predict the local deformation by using only a small 

number of candidate patches (Section 2.3.2). These two ways are described below one by 

one.

2.3.1. Deformation Prediction via Non-local Mean—Originated from the non-local 

strategy which has been widely used in the computer vision area, such as image denoising 

and super-resolution (Buades, Coll et al. 2008; Protter, Elad et al. 2009; Manjón, Coupé et 

al. 2010), most patch-based methods work in a non-local manner (Coupé, Manjón et al. 

2011). The overview of patch-based method is provided in Fig 3. Specifically, all possible 

candidate patches from different training images are considered, with their contributions 

weighted by the patch similarities with respect to the subject patch, i.e.,

(3)

where Wq is the q-th element in the column weighting vector . The parameter 

h controls the strength of exponential penalty over the patch appearance similarity between 

the local patch  of each key point and the local training patch . Then, for each point xk ∊ 
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ΩIS in the testing subject image IS, the prediction of its initial deformation  can be 

estimated by using the weights estimated from the non-local mean as below:

(4)

where βq is the associated deformation to .

2.3.2. Deformation Prediction by Sparse Representation—While non-local mean 

is efficient, it has several limitations: (1) the discrimination power of excluding misleading 

patches can be limited since all candidate patches in the training images, including some 

training patches apparently different from the subject patch in appearance, eventually 

contribute to the representation of the subject patch. Thus, the overall accuracy in predicting 

the deformation of the subject key point might be impacted negatively by these misleading 

training patches, although their individual weights might be low. (2) The non-local mean is 

very sensitive to the parameter h, which is usually determined in an empirical way for 

different applications.

To deal with the above issues, we use sparsity constraint for selecting only a small number 

of candidate training patches. Given the local dictionary D*(xk) for each subject key point xk, 

we seek for the sparse representation for its local appearance patch , which can be 

formulated in a well-known least absolute shrinkage and selection operator (LASSO) 

problem (Tibshirani 1994). Specifically, we first assemble all Q local training patch 

appearances (represented by their respective column vectors) in the dictionary into a matrix 

A = [αq] q=1,...,Q. With the same order, we can also arrange their associated deformations {fm 

(y)} into a matrix B = [βq] q=1,...,Q. Then, we can apply l1-norm constraint on the weighting 

vector  to require that only a small number of similar patches in the dictionary should be 

selected to represent the subject patch . In this way, our method will become more robust 

to the outlier patches. Mathematically, the sparse coefficient vector  at each subject key 

point xk can be estimated by solving the following optimization problem:

(5)

where λ is a parameter controlling the strength of the l1-norm regularization. This objective 

function can be optimized by Euclidian-projection based method as described in (Liu and Ye 

2009). After obtaining the sparse coefficient vector , the initial deformation on the subject 

key point xk can be predicted by Eq. 4. The estimation of the sparse coefficient vector  and 

the prediction of the initial deformation  are demonstrated in Fig. 4.
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2.4. Summary of Our Learning-based Registration Framework

Our registration method is capable of achieving robust registration results, with much less 

computation time, by predicting a good initial deformation field and then an intermediate 

template for a new subject image. The whole registration framework consists of two stages, 

i.e., training stage and the application stage, which are summarized below.

Training stage: Calculate N deformation fields {fm|m = 1,...,N} by using an existing 

deformable registration method (e.g., HAMMER, diffeomorphic Demons, FNIRT, ART, or 

SyN) to register the template T with each of the N training images {Im|m = 1,...,N}

Testing stage:

1) Affine align the subject image IS to the template IT.

2) A set of key points are first selected automatically in the subject image IS.

3) Construct the coupled (appearance-deformation) local dictionary D(xk) for each 

subject key point xk, by incorporating all possible candidate image patches {Pm(y)} 

from all training images as well as their associated deformations {fm(y)} at the center 

point y. Note that the patch size is adaptively determined by using the Octree technique.

4) Perform patch pre-selection and reduce the dictionary to contain Q coupled 

appearances and deformations.

5) Estimate the representation coefficient vector  by the sparse representation 

technique in Eq. 5.

6) Predict the initial deformation on the subject key point xk by Eq. 4.

7) Perform Steps 3)-6) for all key points in the subject image IS.

8) Apply TPS interpolation to obtain the initial dense deformation field  by 

considering all subject key points as the source point set and their predicted local 

deformations as the target point set.

9) Deform the template using the initial deformation field estimated in Step (8), and 

obtain the intermediate template.

10) Apply the existing deformable registration method to estimate the remaining 

deformation field between the intermediate template and the subject image.

11) Obtain the complete deformation field fS by concatenating the initial dense 

deformation field  with the remaining deformation  estimated in Step (10).

3. Experimental results

We first used HAMMER, available in NITRC (http://www.nitrc.org/projects/

hammer_suite), as a baseline method to demonstrate the benefit of patch-based deformation 

prediction for image registration. Moreover, to examine the advantage of sparse patch 

representation, we compared our method with a degenerated version, i.e., non-local mean. 

The results were also compared with our previous global regression-model-based 
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deformation prediction method (Kim, Wu et al. 2012). The elderly brain images 

demonstrated in Section 3.2 were used to determine the values for all parameters, i.e., the 

criterion γ for patch pre-selection in Eq. 1, the decay parameter h in Eq. 3, and the strength λ 

of the l1-norm regularization in Eq. 5. Specifically, we followed the parameter setting in a 

non-local means study (Coupé, Manjón et al. 2011) to set γ = 0.98 and allow h to be adapted 

to the minimum distance of all candidate patches. We also fixed λ = 0.4 for all image 

datasets.

It is worth noting that our proposed sparse patch-based method owns the general capability 

to improve the registration performance of many existing deformable registration methods. 

To this end, we also tested other widely-used deformable registration algorithms, e.g., 

FNIRT (Andersson, Smith et al. 2008), SyN (Avants, Epstein et al. 2008), ART (Ardekani, 

Guckemus et al. 2005), and diffeomorphic Demons (Vercauteren, Pennec et al. 2009), after 

integrated with our patch-guided deformation prediction framework. Regardless of different 

registration algorithms incorporated in our framework, all above-mentioned parameters γ, h, 

and λ were kept same.

3.1 Experiments on Simulated Data

We used the algorithm proposed in (Xue, Shen et al. 2006) to generate 30 simulated brain 

images, thus the simulated deformation fields are considered as the ground-truth for 

evaluation. The mean magnitude of the ground-truth deformation fields was set to 5 mm 

during simulation. As displayed in Fig. 5, the simulated images are grouped into 3 groups 

according to their perturbed deformation amounts. Group 1 includes the images with the 

relatively small deformations, while Group 3 includes the images with large deformations. 

For example, the average magnitude of deformations in Group 1 is 3 mm, while the average 

magnitudes of deformations in Groups 2 and 3 are 5 mm and 7 mm, respectively. Then, we 

applied two patch-based prediction methods, i.e., the non-local mean patch- based method 

and the sparse patch-based method, to predict the initial deformation field for each simulated 

image, by using the rest images as training images. We further compared the performance of 

the patch-based prediction methods with a deformation prediction method using a global 

statistical model, i.e., the regression-model-based deformation prediction method in (Kim, 

Wu et al. 2012). Table 1 compares the mean of the deformation prediction errors obtained 

by three deformation prediction methods. As we can see, our sparse patch-based method 

achieves the lowest residual error, with respect to the simulated ground-truth deformation 

fields, thus showing the best deformation prediction performance among the three prediction 

methods. Furthermore, greater improvement can be observed in Group 3 (with larger 

magnitudes of the simulated deformations) than in other two groups. Also, our proposed 

method consistently works better than other two methods even for the images with large 

deformations. In Table 1, we specifically added the p-values by performing two-sample t-

tests on deformation prediction errors by our sparse patch-based method compared with 

those by other two methods (e.g., regression-model-based and non-local patch-based 

methods) in Groups 1-3. As shown in Table 1, the p-values are mostly smaller than 0.05, 

thus indicating the statistical significance of the difference in deformation prediction errors 

between sparse patch-based method and other two methods. On the other hand, we observed 

that all p-values from two-sample t-tests on the deformation prediction errors between 
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regression-model-based and non-local patch-based methods were smaller than 0.05, 

regardless of different groups, thus also showing the statistical significance.

The residual deformation could be further estimated by applying an existing deformable 

registration algorithm, such as HAMMER. Table 2 compares the mean registration error 

obtained by four different registration methods, i.e., HAMMER without deformation 

prediction, HAMMER+Regression (Kim, Wu et al. 2012), HAMMER+Non-Local, and 

HAMMER+Sparse, for those three image groups. Note that we use the same registration 

parameters for all these four methods. As shown in Table 2, our HAMMER+Sparse method 

achieves the lowest residual error w.r.t. the simulated ground-truth deformation fields, and 

also more registration improvement in Group 3 than other two groups. This also indicates 

our prediction method can provide better initialization than other prediction methods. 

Similar to the statistical significance tests on deformation prediction performance as 

demonstrated in Table 1, the two-sample t-tests on the registration errors by our HAMMER

+Sparse and three other methods (HAMMER, HAMMER+Regression, and HAMMER

+Non-Local) were also performed and provided in Table 2. Specifically, for Group 3, 

HAMMER+Sparse shows the statistical significance over all other methods in terms of 

registration error. We also performed, respectively, the two-sample t-tests among 

HAMMER, HAMMER+Regression and HAMMER+Non-Local, and found that all p- 

values are smaller than 0.05. Specifically, the difference of registration error of HAMMER

+Regression compared to HAMMER is statistically better (with most p-values smaller than 

0.01). This indicates that all methods with initialization (e.g., HAMMER+Regression, 

HAMMER+Non-Local, and HAMMER+Sparse) outperform HAMMER alone, while patch-

based methods (e.g., HAMMER+Non-Local and HAMMER+Sparse) are still better than 

HAMMER+Regression, and HAMMER+Sparse shows the best performance.

To inspect the deformation prediction performance in the local brain regions, we further 

measured the averaged voxel-wise deformation discrepancies on 93 ROIs separately, 

between the estimated deformations by the four registration methods and the simulated 

ground-truth deformations. Compared to the original HAMMER algorithm without 

deformation initialization, our proposed prediction method + HAMMER (i.e., HAMMER

+Sparse) achieved comparable performance on 39 ROIs, while the significantly lower 

deformation errors on 54 ROIs with paired t-test. The maximum reduction of the 

deformation error is 2.62 mm. The other two registration schemes with initial deformation 

predictions, i.e., HAMMER+Regression and HAMMER+Non-Local, have the significantly 

lower deformation errors only on 22 and 38 ROIs, compared to the baseline HAMMER 

registration method, respectively. Specifically, the maximum reductions of deformation 

errors are 1.54 mm for HAMMER+Regression and 2.03 mm for HAMMER+Non-Local, 

respectively. Again, these results indicate that our method can improve the final registration 

accuracy by predicting more accurate initial deformation field.

3.2. Experiments on Elderly Brains

In this experiment, we evaluated not only the accuracy of the predicted initial deformation 

fields but also the benefit of using local adaptive patch size in the sparse representation of 

patches (Section 2.2.1).
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3.2.1. Quantitative measure of intermediate template—In the training stage, we 

estimated the deformation fields for 50 images with respect to the template (Fig. 6(a)) by 

HAMMER. These 50 training images and the template were randomly selected from a MR 

brain image database consisting of elderly brains aged from 65 to 80. To evaluate the quality 

of the initial deformations estimated by the three prediction methods, i.e., the regression-

model-based method (Kim, Wu et al. 2012), non-local patch-based method, and the sparse 

patch-based method, we applied these three methods to predict the initial deformations on 

30 new subject images (which are not used for training) in the application stage. 

Accordingly, we can obtain 30 intermediate templates, corresponding to the 30 subject 

images, by each prediction method. For quantitative evaluation of those estimated 

intermediate templates, we calculated the Dice ratios (VanRijsbergen 1979) for those 30 

subjects, to measure the overlaps of white matter (WM), gray matter (GM), and ventricular 

cerebrospinal fluid (VN) between each pair of subject image and its respective intermediate 

template. The Dice ratios by three methods are shown in Table 3. It is apparent that our 

proposed sparse patch- based deformation prediction method achieves higher Dice ratios 

than both regression-based and non- local patch-based deformation prediction methods for 

all three tissue types. In Table 3, we specifically added the p-values by performing two-

sample t-tests on the overlap ratios of WM, GM and VN by our sparse patch-based method 

compared with those by other two methods (e.g., regression-model-based and non-local 

patch-based methods). As shown in Table 3, all p-values are smaller than 0.05, indicating 

statistical difference between our sparse patch-based method and other two methods. On the 

other hand, all p-values from two-sample t-tests on the overlap ratios of WM, GM and VN 

between regression-model-based and non-local patch-based methods were also found to be 

smaller than 0.05, thus also showing the statistical significance of these methods.

To examine the effect of using adaptive patch size, we computed the average overlap ratios 

of WM, GM, and VN calculated from 30 subjects (described above) by the sparse patch-

based method with different pre-determined patch sizes. Note that, in our proposed method, 

the patch size is adaptively determined by the Octree-based partition, which can vary from 

3×3×3 mm3 to 11×11×11 mm3. We examined the Dice ratio between the subject image and 

the intermediate template based on the initial deformation fields predicted by using the 

adaptive patch sizes or by using the fixed patch sizes, respectively. The results shown in 

Table 4 indicate that the adaptive determination of patch size can significantly help predict 

more accurate initial deformation fields than using the fixed patch size. Also, the two-

sample t-tests between all overlap ratios by our sparse patch-based method with adaptive 

patch size and those by other three cases with fixed patch sizes indicated the statistically 

significant differences of overlap ratios (with all p-values smaller than 0.05).

3.2.2. Visual inspection of intermediate template—We hereby compared the 

closeness between the generated intermediate template and the test subject in each 

deformation prediction method. Through visual inspection in Fig. 6, we can see that our 

method (Fig. 6(e)) is able to estimate the initial deformation for bringing the template closer 

to the respective test subject image, compared to the regression-model-based method (Fig. 

6(c)) and also the non-local patch-based method (Fig. 6(d)). To help visual comparison, we 

delineated the outline of the brain volume and also the contour of the ventricle of each test 
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subject image (as shown with the red curves), and superimposed the drawings on the 

intermediate templates generated by different deformation prediction methods. It can be 

observed that the intermediate templates generated by the patch-based deformation 

prediction methods are generally better than those by the regression-model-based method. 

Closer inspection further shows that the intermediate templates generated by the sparse 

patch-based deformation prediction method are much closer (in terms of structure shapes) to 

the test subject images than those by the other two methods, especially in the regions 

highlighted by the red arrows.

3.2.3. Registration performance—The remaining deformation from each intermediate 

template to each test subject image can be further estimated by HAMMER. For quantitative 

evaluation of registration performance by incorporating each of three deformation prediction 

methods, we calculated the Dice ratios for those 30 subjects mentioned in Section 3.2.1, to 

measure the overlaps of WM, GM, and VN between the finally registered subject images 

and the template. The Dice ratios by three methods, as well as the result by HAMMER, are 

shown in Error! Reference source not found.. The comparison results indicate that 

HAMMER with incorporation of each of three deformation prediction methods outperforms 

HAMMER without deformation initialization. It is also apparent that our proposed sparse 

patch-based deformation prediction method achieves higher Dice ratios than both 

regression-based and non-local patch-based deformation prediction methods, for all three 

tissue types. The two-sample t-tests on the overlap ratios of WM, GM and VN by our 

HAMMER+Sparse and three other methods (HAMMER, HAMMER+Regression, and 

HAMMER+Non-Local) are shown in Table 5. Specifically, for GM and VN, HAMMER

+Sparse shows statistical significance over all other methods, in terms of overlap ratio. We 

also performed, respectively, the two-sample t-tests among HAMMER, HAMMER

+Regression and HAMMER+Non-Local, and found that all p-values were smaller than 0.05. 

In particular, the difference in overlap ratio of HAMMER+Regression compared to 

HAMMER was statistically better (with most p-values smaller than 0.01). This indicates that 

all methods with initialization (e.g., HAMMER+Regression, HAMMER+Non-Local, and 

HAMMER+Sparse) outperform HAMMER alone, while patch-based methods (e.g., 

HAMMER+Non-Local and HAMMER+Sparse) are still better than HAMMER+Regression, 

and HAMMER+Sparse shows the best performance.

3.3. Performance of Deformation Prediction and Registration on LONI LPBA40 dataset

The LONI LPBA40 dataset (Shattuck, Mirza et al. 2008) consists of 40 images, each with 

54 manually-labeled ROIs. After selecting one individual image as the template, we used the 

remaining 20 images for training and other 19 images as test subject images. To evaluate the 

prediction accuracy, the template image was first warped towards the 19 subjects by 

applying the initial deformations predicted by the regression-model-based method, non-local 

patch-based method, and our proposed sparse patch-based method, respectively. Then, the 

Dice ratios for all ROIs between each subject image and its corresponding intermediate 

template image, yielded by those three methods, were computed for quantitative 

comparison. The obtained average Dice ratios over all 19 subjects were 54.7% by the 

regression-model-based method, 56.7% by the non-local patch-based method, and 58.6% by 

our sparse patch-based method. According to the two-sample t-tests on the average Dice 
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ratios over 19 subjects for all 54 ROIs performed between our HAMMER+Sparse and two 

other methods (i.e., HAMMER and HAMMER+Regression), the improvement by 

HAMMER+Sparse was statistically significant (p<0.01). HAMMER+Regression also 

showed the statistical significance (with p-value <0.05) compared with HAMMER, in terms 

of overlap ratios on 54 ROIs. Specifically, our sparse patch-based method achieved higher 

overlap scores on 38 out of 54 ROIs (with the maximum improvement of 8.1%) than the 

regression-model-based method, while the non-local patch-based method achieved higher 

overlap scores in 29 out of 54 ROIs (with the maximum improvement of 5.9%) than the 

regression-model-based method.

The remaining deformation from each intermediate template to each test subject image can 

be further estimated by HAMMER. Compared with the direct registration of template to 

subject by HAMMER, our HAMMER+Sparse method obtained higher average Dice overlap 

ratio (72.5%) than HAMMER (71.0%) and HAMMER+Regression (71.8%), respectively. In 

Fig. 7, we show the Dice overlap ratio of each ROI for HAMMER (in blue), HAMME R

+Regression (in green), and HAMMER+Sparse method (in pink), indicating that our 

integrated framework yields better registration performance (in terms of higher tissue 

overlap ratios) for most ROIs than HAMMER without deformation initialization.

It is worth noting that our framework is general enough to allow for the incorporation of 

other registration algorithms. Thus, besides HAMMER, we also integrate our sparse patch-

based deformation prediction method with diffeomorphic Demons, FNIRT, ART, and SyN 

registration algorithms, respectively. That is, for each registration method, we use it to 

register the training images in the training stage, which provides the training deformations to 

construct the coupled dictionary. To register with the new test subject image, we apply our 

sparse patch-based prediction method to predict the initial deformation field. Finally, we use 

the respective registration method again to estimate the remaining deformation between the 

intermediate template and the subject, as shown in Fig. 1. Note that our intention here is not 

to compare the performances of the individual registration methods, e.g., HAMMER, 

diffeomorphic Demons, FNIRT, ART and SyN, but to demonstrate the improvement after 

integrating our sparse patch-based deformation prediction framework into these methods.

Since the software of ART and SyN do not provide the interfaces to use the initial 

deformation field, the integrated versions of these two methods consider the intermediate 

template images as the target image in their standard registration procedure. That is, for each 

new testing subject image, we first use our method to estimate the intermediate template and 

then use ART (or SyN) to estimate the deformation between the subject and the intermediate 

template. By using the same dataset (i.e., 1 image in LONI LPBA40 dataset as the template, 

20 images for training, and the rest 19 images as the test subject images), the average Dice 

ratio of the 19 test subject images by 5 registration methods, before and after integrating our 

sparse patch-based deformation prediction framework, are listed in Table 6. The five sets of 

two-sample t-tests on the average Dice ratios over 19 test subjects for all 54 ROIs by five 

pairs of registration methods before and after integrating our sparse patch-based deformation 

prediction framework showed statistical significance in improvement of the average Dice 

ratio (with all p-values smaller than 0.05) as shown in Table 6.
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3.4. Computation Time

Since our method can predict the initial deformation field, the registration time can also be 

reduced significantly by applying only the existing registration methods to estimate the 

small remaining deformation field. By taking LONI LPBA40 dataset (with a size of 

220×220×184 for each image) for example, we compared the average computation time 

costs of the direct registration and the indirect registration with the use of our predicted 

initial deformation field. The computation time before and after using our estimated initial 

deformation field by HAMMER, diffeomorphic demons, FNIRT, ART and SyN are shown 

in Table 7. It is clear that the reduction of computation time can be up to 4~7 folds for all 

five registration methods after integrating our predictions.

Note that, in predicting the initial deformation field by sparse representation, we used 

parallel programming on 16 CPUs to speed up the prediction time. In our experiment, the 

non-local patch- based method and the sparse patch-based method take 8 minutes and 4 

minutes, respectively, for deformation prediction.

4. Discussion and Conclusion

A novel patch-based deformation prediction framework has been proposed in this paper for 

improving the registration performance of the existing registration algorithms. Specifically, 

we assume that, if two image patches have similar appearance, they should follow similar 

deformations toward the same template image. Thus, we construct a coupled local adaptive 

dictionary, for each subject key point, with the patch-based image appearances and 

deformations obtained from the training images. By using the sparse representation 

technique to find the sparse coefficients for the subject image patch appearance with patch 

appearances in the constructed dictionary, we can predict the initial deformation for each 

subject key point by applying the same sparse coefficients onto the coupled deformation 

dictionary.

Since our sparse patch-based prediction method is fully adatpive to the local image content, 

our proposed method is flexible to improve the registration proformance of the conventional 

registration methods than other global learning-based methods (Kim, Wu et al. 2012), which 

consider the entire image as a whole for prediction. It is worth noting that, to make the 

comptuation efficient, we use only the simple intensity information for sparse patch 

representation. In the future, we will test using more image features to make the sparse patch 

representation and deformation prediction more robust. Our future work also includes 

incorporation of our proposed prediction method with more existing registration algorithms, 

such as the B-Spline based registration method (Rueckert, Sonoda et al. 1999), and then tests 

their performances on more image datasets (beyond the brain images).
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Fig. 1. 
Illustration of our proposed learning-based registration framework, using the sparse patch-

based deformation initialization. In the training stage, we register all training images to the 

template image, and obtain a set of deformation fields (see the solid red box). In the 

application stage, to predict the initial deformation field for the new testing subject, we first 

extract a set of key points in the new testing subject image. Then, for each key point, we 

adaptively construct a coupled dictionary from the training images, where each coupled 

atom includes both appearance and deformation of the same image patch (see the red dash 

box). After calculating the sparse coefficients in representing the appearance of the patch of 

each subject key point based on the constructed dictionary, we can predict the deformation 

for this subject key point by applying the same coefficients (estimated from the appearance) 

to the respective deformations in the coupled dictionary. Then, the dense deformation field 

can be interpolated via TPS, and further used as the initial deformation field to warp the 

template to generate the intermediate template. Finally, we can employ a certain existing 

registration algorithm to estimate the remaining small deformation between the generated 

intermediate template and the new test subject, thus completing the estimation of the entire 

deformation pathway.
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Fig. 2. 
(a) The sampled key points and (b) the respective patches centered at the key points with 

adaptive sizes.
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Fig. 3. 
The overview of the deformation estimation for one key point in a non-local manner. All 

candidate patches in the dictionary of training images contribute to the subject patch 

according to their individual weights in the vector , which is computed from patch 

similarities.
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Fig. 4. 
Deformation prediction on a subject key point via sparse patch-based representation.
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Fig. 5. 
Simulated images, generated by warping the template with the simulated deformation fields. 

According to the extent of deformations from the template, the simulated images can be 

classified into three groups: 3 mm (Group 1), 5 mm (Group 2), and 7 mm (Group 3).
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Fig. 6. 
Demonstration of generating intermediate templates for two typical subject images in (b), by 

predicting the initial deformations with the regression-model-based method (c), non-local 

patch-based method (d), and our proposed sparse patch-based method (e), respectively. 

Compared to the subject images in (b), the resulting intermediate templates by our proposed 

method are more similar (i.e., as pointed by the red arrows in the enlarged views) than those 

by the other two prediction methods. For visual comparison, the outlines of the whole brain 

volumes and ventricles are also extracted from the subject images and overlaid onto the 

respective intermediate templates.
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Fig. 7. 
Average overlap ratios of the 54 aligned ROIs by HAMMER, HAMMER+Regression, and 

HAMMER+Sparse, respectively. Two-sample t-tests between HAMME R+Sparse and other 

two methods (HAMMER and HAMMER+Regression) show the statistical significance 

(p<0.01).
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Table 1

Mean deformation prediction error, compared to the simulated ground-truth deformations in mm. The 

asterisks denote the statistical significance on the deformation prediction errors by different methods via two-

sample t-tests w.r.t. the sparse patch-based method

Group1 Group2 Group3 Average

Regression-model-based 1.88** 2.26** 2.72*** 2.29

Non-local patch-based 1.69* 2.02** 2.31** 2.01

Sparse patch-based 1.54 1.81 1.96 1.77

***
: p<0.01,

**
: p<0.05

*
: p<0.1
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Table 2

Mean registration error, compared to the simulated ground-truth deformations in mm. The asterisks denote the 

statistical significance on the registration errors by different methods via two-sample t-tests w.r.t. HAMMER

+Sparse method

Group1 Group2 Group3 Average

HAMMER 0.45** 0.53*** 0.64*** 0.54

HAMMER+Regression 0.38** 0.42** 0.51** 0.44

HAMMER+Non-Local 0.36* 0.39* 0.48** 0.41

HAMMER+Sparse 0.34 0.36 0.43 0.38

***
: p<0.01,

**
: p<0.05

*
: p<0.1
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Table 3

Average overlap ratios of WM, GM and VN, computed based on 30 subjects after deformation prediction with 

the regression-model-based, non-local patch-based, and sparse patch-based methods, respectively. The 

asterisks denote the statistical significance on the overlap ratios by different methods via two-sample t-tests 

w.r.t. the sparse patch-based method

WM GM VN Overall

Regression-model-based 75.5%*** 68.9%** 82.2%*** 75.5%

Non-local patch-based 77.0%** 69.8%** 84.5%** 77.1%

Sparse patch-based 78.5% 71.4% 87.3% 79.1%

* :p<0.1

***
: p<0.01,

**
: p<0.05
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Table 4

Average overlap ratios (%) of WM, GM and VN, computed based on 30 testing subjects after deformation 

prediction by the sparse patch-based methods with different settings of patch size. The asterisks denote the 

statistical significance on the overlap ratios by our method with fixed patch sizes w.r.t. our method with 

adaptive patch size

WM GM VN Overall

Fixed patch size (3×3×3) 77.4%** 70.4%** 85.3%** 77.7%

Fixed patch size (7×7×7) 77.4%** 70.2%** 85.1%** 77.6%

Fixed patch size (11×11×11) 77.2%** 70.1%** 84.9%*** 77.4%

Adaptive patch size 78.5% 71.4% 87.3% 79.1%

*: p<0.1

***
: p<0.01,

**
: p<0.05
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Table 5

Average overlap ratios of WM, GM and VN, computed based on the 30 testing subjects aligned, respectively, 

by HAMMER, HAMMER+Regression, HAMMER+Non-local and HAMMER+Sparse methods to a template. 

The asterisks denote the statistical significance on the overlap ratios by different methods via two-sample t-

tests w.r.t. HAMMER+Sparse method

WM GM VN Overall

HAMMER 82.3%** 72.0%*** 88.5%*** 80.9%

HAMMER+Regression 83.2%** 73.1%** 89.3%** 81.9%

HAMMER+Non-local 83.7%* 74.0%** 89.7%** 82.5%

HAMMER+Sparse 84.0% 74.3% 90.2% 82.8%

***
: p<0.01,

**
: p<0.05,

*
: p<0.05.
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Table 6

Average Dice ratio by HAMMER, diffeomorphic Demons, FNIRT, ART and SyN, before and after 

integrating our sparse patch-based deformation prediction framework. The asterisks denote the statistical 

significance on the overlap ratios over 19 subjects by different registration algorithms before integrating our 

sparse patch-based deformation prediction framework w.r.t. those after integrating our sparse patch-based 

deformation prediction framework

HAMMER Diff. Demons FNIRT ART SyN

Before 71.0%*** 70.3%*** 69.7%** 70.5%** 72.4%***

After 72.5% 72.2% 71.0% 71.6% 73.5%

*: p<0.1

***
: p<0.01,

**
: p<0.05
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Table 7

Comparison of computation times for HAMMER, diffeomorphic Demons, FNIRT, ART and SyN before and 

after integrating our sparse patch-based deformation prediction framework (unit: minute).

HAMMER Diff. Demons FNIRT ART SyN

Before 28 4 40 12 31

After 5 1 11 3 8

Neuroimage. Author manuscript; available in PMC 2016 January 15.


