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Abstract

As shown in the literature, methods based on multiple templates usually achieve better 

performance, compared with those using only a single template for processing medical images. 

However, most existing multi-template based methods simply average or concatenate multiple sets 

of features extracted from different templates, which potentially ignores important structural 

information contained in the multi-template data. Accordingly, in this paper, we propose a novel 

relationship induced multi-template learning method for automatic diagnosis of Alzheimer’s 

disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI), by explicitly 

modeling structural information in the multi-template data. Specifically, we first nonlinearly 

register each brain’s magnetic resonance (MR) image separately onto multiple pre-selected 

templates, and then extract multiple sets of features for this MR image. Next, we develop a novel 

feature selection algorithm by introducing two regularization terms to model the relationships 

among templates and among individual subjects. Using these selected features corresponding to 

multiple templates, we then construct multiple support vector machine (SVM) classifiers. Finally, 

an ensemble classification is used to combine outputs of all SVM classifiers, for achieving the 

final result. We evaluate our proposed method on 459 subjects from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database, including 97 AD patients, 128 normal controls (NC), 

117 progressive MCI (pMCI) patients, and 117 stable MCI (sMCI) patients. The experimental 

results demonstrate promising classification performance, compared with several state-of-the-art 

methods for multi-template based AD/MCI classification.
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I. Introduction

BRAIN morphometric pattern analysis using magnetic resonance imaging (MRI) has been 

widely investigated for automatic diagnosis of Alzheimer’s disease (AD) and its prodromal 

stage, i.e., mild cognitive impairment (MCI) [1]–[6]. Using MRI data, brain morphometry 

can not only identify anatomical differences between populations of AD patients and normal 

controls (NCs) for diagnostics assistance, but also evaluate the progression of MCI [1]–[3]. 

Recently, many machine learning techniques have been proposed for identification of AD-

related neurodegeneration patterns, based on brain morphometry with MRI data [5], [7]–

[13]. Existing MRI-based diagnosis methods can be roughly divided into two categories, 

based on the number of templates used: 1) single-template based methods, where the 

morphometric representation of brain structures is generated from a specific template [4], 

[14], [15]; and 2) multi-template based methods, where multiple morphometric 

representations of each subject are generated from multiple templates [13], [15], [16].

In single-template based methods, one specific template is used as a benchmark space to 

provide a representation basis, through which one can compare the anatomical structures of 

different groups of disease-affected patients and NCs [17]–[19]. Specifically, all brain 

images are often spatially normalized onto a pre-defined template via a certain nonlinear 

registration method, where the morphometric representation of each brain image can be 

obtained. It is worth noting that such pre-defined template can be an individual subject’s 

brain image, or an average brain image generated from the particular image data under study 

[20]. In the literature, researchers have developed various single-template based 

morphometry pattern analysis methods, and demonstrated promising results in automatic 

AD/MCI diagnosis using different classification methods [19], [21]. Among them, voxel-

based morphometry (VBM) [2], [22], deformation-based morphometry (DBM) [3], [23], 

[24], and tensor-based morphometry (TBM) [21], [25], [26] are the most widely used 

methods. In these methods, after nonlinearly transforming each brain image onto a pre-

defined common template space, VBM measures local tissue density of the original brain 

image directly, while DBM and TBM measure local deformation and Jacobian of the local 

deformation, respectively. Such measurements can then be regarded as feature 

representations, which can serve as inputs to multivariate analysis methods (e.g., support 

vector machines, SVM) to conclude the diagnosis. However, feature representations 

generated from a single template may not be sufficient enough to reveal the underlying 

complex differences between groups of patients and normal controls, due to potential bias 

associated with the use of a single template. Specifically, subjects are acquired from a wide 

range of patients and normal controls with different ages, ethnicities, races and etc., and 

therefore a single template could not effectively represent all the subjects.
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To address the issue mentioned above, researchers have proposed several methods that can 

take advantage of multiple diverse templates to compare group differences more efficiently. 

Although these methods require higher computational costs (compared to single-template 

based methods), multi-template based methods are very effective in reducing negative 

impact of registration errors and providing richer representations for morphometric analysis 

of brain MRI [27]. Recently, several studies [17], [18], [28]–[30] have shown that multi-

template based methods can often achieve more accurate diagnosis than single-template 

based methods. For example, Leporé et al. [19] proposed a multi-template based method by 

first registering all brain images onto 9 templates that have been nonlinearly aligned to a 

common space. Then, they computed average deformation tensors from all these templates 

for each brain image, for enhancing TBM-based monozygotic/dizygotic twin classification. 

In addition, Koikkalainen et al. [18] developed a multi-template based method to investigate 

the effects of utilizing mean deformation fields, mean volumetric features, and mean 

predicted responses of the regression-based classifiers from multiple templates, and showed 

better AD classification results than single-template based methods. In another work, Min et 
al. [17] proposed to obtain multiple sets of features from multiple templates for each subject 

and then to concatenate these features for subsequent classification tasks.

As inferred from literature, most of existing multi-template based methods simply average or 

concatenate multiple sets of features generated from multiple templates. They do not 

effectively exploit the underlying structural information of multi-template data. In fact, some 

very important structural information exists in multi-template data, e.g., the inherent 

relationships among templates and among subjects. Intuitively, modeling such relationships 

can bring more prior information into the learning process, thus further boosting the learning 

performance. To the best of our knowledge, no previous multi-template based methods 

utilized such relationship information for AD/MCI classification.

Accordingly, in this paper, we propose a novel relationship induced multi-template learning 

(RIML) method, to explicitly model the structural information of multi-template data for 

AD/MCI classification. Unlike most previous multi-template based methods (e.g., [18], [19] 

that averaged the representations from multiple templates, or [17] that simply concatenated 

features generated from different templates), we retain each template in its original (linearly-

aligned) space and focus on feature representations from each template individually. Our 

proposed method is composed of two main parts: a relationship induced sparse (RIS) feature 
selection method and an ensemble classification strategy. More specifically, we first 

spatially normalize each brain image onto multiple pre-selected templates via nonlinear 

registration, for extracting multiple sets of regional features from multiple templates. 

Afterwards, our relationship induced multi-task sparse feature selection method is used to 

select discriminative features in each template space, by considering both the relationship 

among multiple templates and the relationship among different subjects in the same template 

space. Then, for each template, we build a support vector machine (SVM) classifier [31] 

using its respectively selected features. Finally, we combine the outputs of all SVM 

classifiers from multiple templates to make a final decision through an ensemble 

classification technique. To evaluate the efficacy of our method, we perform four groups of 

experiments: 1) AD vs. NC classification, 2) progressive MCI (pMCI) vs. stable MCI 

(sMCI) classification, 3) pMCI vs. NC classification, and 4) sMCI vs. NC classification. By 
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using a 10-fold cross-validation strategy on the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database [9], we achieve a significant performance improvement for each of these 

four classification tasks, compared with several state-of-the-art methods for AD/MCI 

diagnosis.

It is worth noting that this work is different from our earlier work in [28]. First, in [28], one 

template is regarded as the main source, while the other templates are used as supplementary 

sources to provide guidance information. In this work, we focus on exploring the inherent 

relationship information in multi-template data, which is different from [28]. Second, the 

feature selection methods used in this work and our earlier work [28] are also different. The 

feature selection process in [28] is performed in each individual template space by ignoring 

the inherent relationships among different templates. In this work, we propose to explicitly 

model the relationships among templates and among subjects, and then utilize such 

relationships to guide the multi-task sparse feature selection. Such inherent relationships are 

important prior information, as they are valuable for the subsequent learning model, 

conformed by our experiments on the ADNI database.

The rest of this paper is organized as follows. We first describe the proposed method in the 

‘Method’ section. Then, we illustrate experiments and results in the ‘Results’ section. In the 

‘Discussion’ section, we investigate the influences of parameters and the performance of our 

method using the proposed ensemble classification strategy, and then discuss the pros/cons 

of our method. Finally, we draw conclusions and elaborate future research directions in the 

‘Conclusion’ section.

II. Method

An overview of our proposed relationship induced multi-template learning (RIML) method 

for AD/MCI classification is provided in Fig. 1. As can be seen from Fig. 1, there are three 

main steps in RIML: 1) multi-template feature extraction, 2) relationship induced sparse 

feature selection, and 3) ensemble classification. In the following, we will introduce each 

step in detail.

A. Multi-Template Feature Extraction

In this study, a standard image pre-processing procedure is applied to the T1-weighted MR 

brain images for each studied subject. Specifically, we first perform a non-parametric non-

uniform bias correction (N3) [11] on each MR image to correct intensity inhomogeneity. 

Next, we perform skull stripping [7], followed by manual correction to ensure that both skull 

and dura have been cleanly removed. Then, we remove the cerebellum by warping a labeled 

template to each skull-stripped image. Afterwards, we adopt the FAST method [32] to 

segment each brain image into three tissues, i.e., gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF). Finally, all brain images are affine-aligned using the FLIRT 

method proposed in [33].

One of the most crucial challenges in multi-template based methods is selecting an 

appropriate set of templates. Selecting a diverse template set with sufficiently large 

generalization capability can lead to less registration errors and more efficient/accurate 
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representations. In the literature, different strategies are studied. For instance, Jenkinson et 
al. [33] randomly selected 30 templates from different categories of subjects. However, there 

may be different distributions of brain structure in the neuroimaging data within a specific 

class [34]. As a result, randomly selected templates from these data may not necessarily 

capture the true distribution of the entire population, which could introduce redundant or 

insignificant information to the feature respresentations. Generally, those selected templates 

shall not only be representative enough to cover the entire population, in order to reduce the 

overall registration errors, but also capture discriminative information of brain abnormality 

related to diseases. To address this problem, we first cluster all subjects using the Affinity 

Propagation (AP) algorithm [35], to partition the entire population (i.e., AD and NC brain 

images) into K non-overlapping clusters. In each cluster, one specific brain image is 

automatically selected as an exemplar. Then, we treat the exemplar image of each cluster as 

a template, and construct a template pool by combing all these templates. For the clustering 

purpose, we use normalized mutual information [35] as the similarity measure, and adopt a 

bi-section method [36] to find the appropriate preference value for the AP algorithm. Similar 

to previous multi-template based methods [18], [19], [33], we select 10 templates using the 

AP algorithm, as shown in Fig. 2. In Fig. 2, the first six templates (i.e., A1–A6) are NC 

subjects, while the last four templates (i.e., A7–A10) are AD subjects. Although it is possible 

to add more templates to the template pool, those additional templates can bring more 

computational costs. Here, we only select templates from AD and NC subjects, as these 

subjects can cover the entire distribution space using simple normalized mutual information 

as similarity measure.

To obtain multiple sets of features from multiple templates, we perform the following three 

steps: 1) a registration step to spatially normalize each individual brain image onto multiple 

templates, 2) a quantification step to obtain morphometric measurement of each brain image, 

and 3) a segmentation step to obtain a set of regions of interest (ROI) for computing regional 

features. Similar to the work [37], we utilize a mass-preserving shape transformation 

framework to capture morphometric patterns of each individual brain image in each of 

multiple templates.

To this end, for each tissue-segmented brain image (segmented into GM, WM and CSF 

tissues), we first nonlinearly register them onto K templates (K =10 in this study) separately, 

by using HAMMER [38], a high-dimensional elastic warping tool. Then, based on these K 
estimated deformation fields, for each brain tissue, we quantify its voxel-wise tissue density 

map [39] in each of the K template spaces to reflect the unique deformation behavior of a 

given brain image, with respect to each template. In this study, we only use gray matter 

(GM) density map for feature extraction and classification, since AD directly affects GM 

tissue densities and GM density maps are also widely used in literature [3], [13].

Typically, anatomical structures of multiple templates are often different from each other. 

Therefore, different templates can provide complementary information [17]–[19]. To 

efficiently extract the inherent structural information for each template, after registration and 

quantification steps, we group voxel-wise morphometric features into regional features using 

watershed segmentation algorithm [37]. This would lead to partitioning each of the 

templates into its own set of regions of interest (ROIs). To improve both discriminative 
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power and robustness of volumetric features computed from each ROI, we refine each ROI 

by choosing its most discriminant voxels. Specifically, we first select the most relevant voxel 

according to the Pearson correlation between this voxel’s tissue density values and class 

labels across all the training subjects. Then, we iteratively include neighboring voxels until 

no increase for Pearson correlation, when adding new voxels. Such voxel selection process 

will lead to a voxel subset for a specific region. Then, the average tissue density value of 

those selected voxels is computed as feature representation for this ROI. Such voxel 

selection process helps eliminate irrelevant and noisy features, as confirmed by several 

previous studies [40], [41]. Finally, the top M (M = 1500 in this study) most discriminative 

ROI features are selected in each template space. We align each subject, regardless of its 

class label (e.g., AD or NC), onto the aforementioned K templates for feature extraction. As 

a result, each subject is represented by K sets of M-dimensional feature vectors. Based on 

this multi-template feature representation, we perform feature selection and classification, 

with details given below.

B. Feature Selection

Although we select the most representative regional features for each template space in the 

feature extraction step above, these features can still be redundant or irrelevant for 

subsequent classification tasks, since each subject is represented by multiple sets of features. 

To address this problem, we develop a novel relationship induced sparse (RIS) feature 

selection method under a multi-task learning framework [14], [42], by treating the 

classification in each template space as a specific task. We first briefly introduce general 

formulation for the conventional multi-task feature learning, and then derive our RIS feature 

selection model.

1) Multi-Task Feature Learning—In our study, we have K learning tasks corresponding 

to K templates. Denote  as training data for the k-th 

learning task (corresponding to the k-th template) containing totally N subjects, where 

 represents a feature vector of the n-th subject in the k-th template space. Similarly, 

denote Y = [y1, …, yn, …, yN]T ∈ ℝN as the response vector for training data Xk, where yn ∈ 
{−1, 1} is the class label (i.e., normal control or patient) for the n-th subject. Denote W = 

[w1, …, wk, …, wK] ∈ ℝd×k as the weight matrix, where wk ∈ ℝd parameterizes a linear 

discriminant function for the k-th task. Let wi represent the i-th row of W. Then, the multi-

task feature learning model is formulated as follows [14], [43], [44]:

(1)

The first term in (1) is the empirical loss on the training data. The second one is a group-

sparsity regularizer to encourage the weight matrix W with many zero rows, where 

 is the sum of the l2-norm of the rows in matrix W. For feature 

selection purpose, only features corresponding to those rows with non-zero coefficients in W 
are selected, after solving (1). That is, the l2,1-norm regularization term ensures only a small 
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number of common features to be jointly selected across different tasks [45]. The parameter 

λ is a regularization parameter used to balance relative contributions of the two terms in (1). 

Particularly, a large λ leads to the selection of less number of features, while a small λ urges 

the algorithm to select more features.

2) Relationship Induced Sparse Feature Selection—It is worth noting that, due to 

anatomical differences across templates, different sets of features for each brain image 

generally come from different ROIs. Thus, the l2,1-norm regularization in (1) is not 

appropriate for our case, since it jointly selects features across different tasks (i.e., 

templates). To encourage sparsity of the weight matrix W as well as selection of informative 

features corresponding to each template space, we propose the following multi-task sparse 

feature learning model:

(2)

where  is the sum of l1-norm of the rows in matrix W. Different from 

the l2,1-norm that encourages some rows of W to be zeros, the l1,1-norm encourages some 

elements of W to be zeros, which helps select features specific to different tasks [46], [47].

In (1) and (2), a linear mapping function (i.e., f(x) = xTw) is learned to transform data in the 

original high-dimensional feature space to a one-dimensional label space. In all these 

models, the supervision is limited to only preserve the relationship between the samples and 

their corresponding class labels, while some other important structural information exists in 

the multi-template data. We find that preserving the following relationships between the 

subjects and the templates in the label space could enhance performance of the learned 

models: 1) the relationship among multiple templates (template-relationship), and 2) the 

relationship among different subjects (subject-relationship).

1. As illustrated in Fig. 3(a), a subject xn is represented as  and  in the k1-th 

and the k2-th template spaces, respectively. After being mapped to the label 

space, they should also be close to each other (i.e.,  should be similar to 

), since they represent the same subject.

2. Similarly, as shown in Fig. 3(b), if two subjects  and  in the same k-th 

template space are very similar, the distance between  and  should 

be also small, implying that the estimated labels of these two subjects are similar.

Accordingly, in the following, we first introduce a novel template-relationship induced 

regularization term:

(3)
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where tr(·) denotes the trace of a square matrix, 

represents multiple sets of features derived from K templates for the n-th subject, and Ln ∈ 
ℝK×K is a matrix with diagonal elements being K − 1 and all other elements being −1. By 

using (3), we can model the relationships among multiple templates explicitly.

Similarly, we propose the following subject-relationship induced regularization term:

(4)

where Xk is the data matrix in the k-th learning task (i.e., k-th template) as mentioned above, 

and  denotes a similarity matrix with elements defining the 

similarity among N training subjects in the k-th template space. Here, Lk = Dk − Sk 

represents the Laplacian matrix for task k, where Dk is a diagonal matrix with diagonal 

element , and  is defined as

(5)

where σ is a constant, and q = 3 in this study. It is evident that (4) aims to preserve the local 

neighboring structures of the original data during mapping, through which we can capture 

the relationships among subjects explicitly.

By incorporating two relationship induced regularization terms defined in (3) and (4) into 

(2), the objective function of our proposed relationship induced sparse (RIS) feature 

selection model can be written as follows:

(6)

where λ1, λ2, and λ3 are positive constants used to balance the relative contribution of four 

terms in the proposed RIS model, and their values can be determined via inner cross-

validation on the training data. In (6), the l1,1-norm regularization term (the 2nd term) 

ensures only a small number of features to be selected, for each task. The template-
relationship induced regularization term (the 3rd term) is used to capture the relationship 

among different templates, while the subject-relationship regularization term (the 4th term) 

is employed to preserve local neighboring structures of data in each template space. Note 
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that, if we replace the square loss function with the logistic/hinge loss function in (6), the 

RIS model could be used directly as a classifier.

The objective function in (6) is convex but non-smooth, because of using the l1,1-norm 

regularization term (i.e., ‖W‖1,1) that is not smooth. This may decrease the optimization 

efficiency. Fortunately, the objective function, with such non-smooth terms, can be solved by 

a smooth approximation technique [14], [43], [48]. Specifically, we first adopt a smooth 

approximation technique to approximate (6) by a smoothed objective function, and then 

employ the Accelerated Proximal Gradient (APG) algorithm [49] to solve the smoothed 

objective function.

C. Ensemble Classification

To better take advantage of multiple sets of features generated from multiple templates, we 

further propose an ensemble classification approach. Particularly, after feature selection 

using our relationship induced sparse feature selection algorithm, we obtain K feature 

subsets corresponding to the K templates. Based on these selected features, we can then 

construct K classifiers separately, with each classifier corresponding to a specific template 

space. Here, we adopt a linear SVM to perform classification, since linear SVM has good 

generalization capability across different training data [12], [28], [50], [51]. Next, we adopt 

the majority voting strategy, a simple and effective classifier fusion method, to combine the 

outputs of K different SVM classifiers to make a final decision. In this way, majority voting 

from outputs of K classifiers determine the class label of a new testing subject.

D. Subjects and Experimental Setting

1) Subjects—To evaluate the efficacy of our proposed method, we perform experiments on 

T1-weighted MRI data in the ADNI database (http://adni.loni.usc.edu/). For diagnostic 

classification at baseline, we use a total of 459 subjects, randomly selected from those 

scanned with a 1.5T scanner. These subjects include (i) 97 AD subjects, if diagnosis was AD 

at baseline; (ii) 128 NC subjects, if diagnosis was normal at baseline; (iii) 117 stable MCI 

(sMCI) subjects, if diagnosis was MCI at all available time points (0–96 months); (iv) 117 

progressive MCI (pMCI) subjects, if diagnosis was MCI at baseline but these subjects 

converted to AD after baseline within 24 months. The roster IDs of these subjects are listed 

in Tables S4–S7 in the supplementary material available in the supplementary files/

multimedia tab. In Table I, the demographic information of these 459 subjects is provided.

2) Experimental Setting—The evaluation of our method is conducted on four different 

tasks, including 1) AD vs. NC classification, 2) pMCI vs. NC classification, 3) pMCI vs. 

sMCI classification, and 4) sMCI vs. NC classification. The last two problems are 

considered to be more difficult than the first two problems, but have received relatively less 

attention in previous studies. However, it is important to distinguish progressive MCI from 

stable MCI, and stable MCI from NCs, in order to achieve an early diagnosis and then 

possibly slow down the progression of MCI to AD via timely therapeutic interventions.

In this study, we adopt a 10-fold cross-validation strategy [28], [52], [53] to evaluate the 

performances of different methods. Specifically, all samples are partitioned into 10 subsets 
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(with each subset having a roughly equal size), and each time samples in one subset are 

selected as the test data, while samples in all other nine subsets are used as the training data 

for performing feature selection and classifier construction. Such process is repeated ten 

times independently to avoid any bias introduced by the random partitioning of the original 

data in the cross-validation process. Finally, we measure the average values of corresponding 

classification results.

To better make use of multiple sets of features generated from multiple templates, we adopt 

the following two strategies: 1) the feature concatenation method, and 2) our proposed 

ensemble-based method. Specifically, in the feature concatenation method, features from 

multiple templates are simply concatenated into a long vector, and the corresponding SVM 

classifier is constructed using this feature vector. In the ensemble-based method, we treat 

each feature set individually, and construct multiple SVM classifiers based on these feature 

sets separately, followed by an ensemble strategy to combine the outputs of all SVMs for 

making a final decision.

In addition, we compare our RIS algorithm with four feature selection methods, i.e., Pearson 

correlation (Pearson), COMPARE method proposed in [37] that combines Pearson and 

SVM-RFE [44], statistical t-test method [54], and Lasso [55] that is widely used for sparse 

feature selection in neuroimaging analysis. Here, we use Pearson〈con〉, COMPARE〈con〉, t-
test〈con〉, and Lasso〈con〉 to denote methods using four different feature selection 

algorithms (i.e., Pearson, COMPARE, t-test, and Lasso) and the feature concatenation 

strategy (i.e., 〈con〉), respectively. Similarly, we use Pearson〈ens〉, COMPARE〈ens〉, t-test

〈ens〉, and Lasso〈ens〉 to denote methods using four different feature selection algorithms in 

each of the multiple template spaces during feature selection and then the proposed 

ensemble method (i.e., 〈ens〉) in the final classification step. For fair comparison, features 

selected by a specific feature selection algorithm are fed into an SVM classifier.

In our proposed RIS feature selection model, the regularization parameters (i.e., λ1, λ1 and 

λ3) are, respectively, chosen from the range {10−10, 10−9,…,100} through an inner cross-

validation on the training data. That is, in each fold of 10-fold cross validation, we find the 

optimal parameters, via cross-validation on the training subset. Note that, no testing data is 

used in such cross-validation process. Similarly, the parameter for the l1-norm regularizer in 

Lasso is selected from {10−10, 10−9,…,100} through another inner cross-validation on the 

training data. The parameters σ and q in (5) are set empirically as the mean distance of 

samples in the training set and 3, respectively. For the t-test method, the p-value is chosen 

from {0.05, 0.08, 0.10, 0.12, 0.15} via inner cross-validation on the training data. For fair 

comparison, a linear SVM [31] with default parameter (i.e., C = 1) is used to perform 

classification. We evaluate performances of different methods via four criteria, i.e., 

classification accuracy (ACC), sensitivity (SEN), specificity (SPE), and the area under the 

receiver operating characteristic (ROC) curve (AUC). More specifically, accuracy measures 

the proportion of subjects that are correctly predicted, sensitivity denotes the proportion of 

patients that are correctly predicted, and specificity represents the proportion of NCs that are 

correctly predicted.
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III. Results

A. Classification Results Using Single-Template Data

To demonstrate the variability of classification results, achieved by using different single 

templates even for the same classification task, we perform classification based on single-

template data in the first group of experiments. Since our proposed method models the 

template-relationship that cannot be obtained in the single-template case, we only perform 

experiments using four feature selection algorithms, including Pearson, COMPARE, t-test 

and Lasso. In Fig. 4, we show the distribution of results achieved by the different methods 

using 10 single templates (shown in Fig. 2) in AD vs. NC classification and pMCI vs. sMCI 

classification, while results of pMCI vs. NC classification and sMCI vs. NC classification 

are given in Fig. S1 in the supplementary material available in the supplementary files/

multimedia tab.

From Fig. 4, one can observe that the classification results using different single templates 

are very different, regardless of different feature selection methods. For example, in AD vs. 

NC classification, the sensitivities achieved by four methods vary significantly among 10 

single templates. There are several reasons leading to different performances when using 

different templates. First, a certain template may have more representative anatomical 

structures for the entire population under study, compared with the other templates. In this 

way, there would be less noise in respective feature representations generated from this 

template. Second, the disease-related patterns generated from one template may be more 

discriminative than those derived from other templates.

B. Classification Results Using Multi-Template Data

In the second group of experiments, we perform AD/MCI classification by using multiple 

templates. Specifically, we compare our method with two categories of methods, i.e., 1) 

feature concatenation methods (i.e., Pearson〈con〉, COMPARE〈con〉, t-test〈con〉, and Lasso

〈con〉), and 2) ensemble methods (i.e., Pearson〈ens〉, COMPARE〈ens〉, t-test〈ens〉, and 

Lasso〈ens〉). Following the work in [17], for Pearson〈con〉 and COMPARE〈con〉 methods, 

we first concatenate the regional features extracted from K (K in this study) templates as a 

15000-dimensional feature vector. Then, the top m (m = {1,2,…,1500}) features are 

sequentially selected according to the Pearson correlation (with respect to class labels) for 

Pearson〈con〉 and according to Pearson + SVM-RFE for COMPARE〈con〉, and then the best 

classification results are reported. For t-test〈con〉 and Lasso〈con〉, we first concatenate K 
sets of features, and then use t-test and Lasso to perform feature selection, respectively. In 

ensemble-based methods, we first perform feature selection using respective algorithms in 

each of K template spaces, and then learn multiple SVM classifiers based on selected feature 

subsets in the respective K templates, followed by ensemble classification with majority 

voting strategy.

For comparison, we also report the averaged classification results of single-template based 

methods (including Pearson, COMPARE, t-test, and Lasso). The classification results of AD 

vs. NC and pMCI vs. sMCI are given in Table II, while those of pMCI vs. NC and sMCI vs. 

NC are shown in Tables S1 and S2 in the supplementary material available in the 
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supplementary files/multimedia tab. We also perform a paired t-test on classification 

accuracies achieved by our method and by any comparison method, with the corresponding 

p-values reported in Table II, S1 and S2. In addition, we perform the paired McNemar’s test 

[56] on the classification accuracies of our proposed method and each compared method, as 

well as the paired Delong’s test [57] on the AUCs of our method and each compared 

method, to test whether our method performs statistically better than the compared methods. 

In the supplementary material available in the supplementary files/multimedia tab, we show 

the p-values of the McNemar’s test and the Delong’s test in Table S8 and Table S9, 

respectively. Furthermore, we plot the ROC curves achieved by ensemble-based methods in 

Fig. 5 and Fig. S2.

From the results of AD vs. NC classification in Table II and Fig. 5(a), we can observe three 

main points. First, multi-template based methods generally achieve significantly better 

performance, compared to single-template based methods (i.e., Pearson, COMPARE, t-test, 

and Lasso). For example, the highest accuracy achieved by single-template based methods is 

only 84.32% (achieved by Lasso), which is noticeably lower than those of multi-template 

based methods. This demonstrates that, compared with the single-template case, the multi-

template based methods can achieve better classification performance by taking advantage 

of richer feature representations for each subject. Second, by using multiple templates, 

methods that adopt our proposed ensemble classification strategy (i.e., Pearson〈ens〉, 
COMPARE〈ens〉, t-test〈ens〉, and Lasso〈ens〉) usually outperform their counterparts that 

simply employ the feature concatenation strategy (i.e., Pearson〈con〉, COMPARE〈con〉, t-
test〈con〉, and Lasso〈con〉), in terms of all evaluation criteria. This implies that the feature 

concatenation strategy may not be a good choice to make use of multiple sets of features 

generated from multiple templates. Finally, our proposed method using RIS feature selection 

algorithm achieves consistently better results than that of other methods in terms of 

classification accuracy, sensitivity, and AUC. Specifically, our method achieves a 

classification accuracy of 93.06%, a sensitivity of 94.85%, and an AUC of 0.9579, while the 

second best accuracy is 87.27%, the second best sensitivity is 85.44%, and the second best 

AUC is 0.9279. Also, results in Table II show that our proposed method is significantly 

better than that of the compared methods, as demonstrated by very small p-values.

From the results of pMCI vs. sMCI classification shown in Table II and Fig. 5(b), we can 

observe again that the multi-template based methods usually outperform the single-template 

based methods. In addition, our method consistently achieves better performance than that of 

other multi-template based methods. In particular, our method achieves an AUC of 0.8344, 

while the best AUC achieved by the second best method (i.e., COMPARE〈ens〉) is only 

0.7658.

C. Comparison With the State-of-the-Art Methods

We also compare the results achieved by our method with several recent state-of-the-art 

results reported in the literature using MRI data of ADNI subjects for AD/MCI 

classification, including five single-template based methods [13]–[16], [50] and five multi-

template based methods [17], [18], [28]–[30]. Since very few works report sMCI vs. NC 

classification results, we only report the results of AD vs. NC and pMCI vs. sMCI in Tables 
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III–IV, while those of pMCI vs. NC are given in Table S3 in the supplementary material 

available in the supplementary files/multimedia tab.

From Table III, we can have the following observations. First, in AD vs. NC classification, 

our proposed method is superior to the comparison methods in terms of both classification 

accuracy and sensitivity. Although researchers in [15] reported the highest specificity, their 

accuracy and sensitivity are relatively lower than those produced by our method. Second, 

among six multi-template based methods in AD vs. NC classification, our method achieves 

consistently better accuracy and sensitivity than methods in [18], [30] that use the averaged 

feature representation from multi-templates, slightly better in accuracy but much higher in 

sensitivity than methods used in [17], [29] that concatenate multiple sets of features from 

multiple templates, and comparable accuracy but higher sensitivity and specificity than the 

method in [28] that focuses on features from one template with side information provided by 

the other templates. It is worth noting that high sensitivity may be advantageous for 

confident AD diagnosis, which is potentially useful in clinical practice. Similar trend can be 

found in pMCI vs. sMCI classification from Table IV (i.e., our method usually outperforms 

the competing methods). It is worth noting that the classification accuracies in Table IV are 

not fully comparable, since the definition in those compared methods may be slightly 

different due to the use of different cut-off value (i.e., how many months MCI will covert to 

AD). For instance, the cut-off value for the pMCI definition in both this work and [58] is 24 

months, while it is 18 months in [15].

D. Discussion

Several recent studies have demonstrated that multi-template based features contain 

complementary information for boosting performance of AD/MCI classification [14], [15], 

[17], [18], [29], [30]. However, the main disadvantage of these existing methods is that the 

structural information in multi-template data is seldom considered, which may lead to sub-

optimal learning performance. For example, the relationships among multiple templates and 

among different subjects are important prior information, which can be used to further 

promote performance of AD/MCI classification. Accordingly, we proposed a novel feature 

selection method, aiming to preserve structural information of multi-template data conveyed 

by the relationships among templates and among subjects. As can be seen from Table II, the 

comparison methods that ignore such structural information often do not achieve as good 

results as our method. We also developed an ensemble classification method, where multiple 

classifiers, with respect to different template spaces, are combined, via majority voting. 

Experimental results show that methods using our proposed ensemble classification strategy 

usually outperform their counterparts with feature concatenation strategy. We now evaluate 

the influence of parameters and analyze the diversity of multiple classifiers in the proposed 

ensemble classification method.

1) Effects of Parameters—In our RIS feature selection model, there are three parameters 

to be tuned, i.e., λ1, λ2 and λ3. In this sub-section, we evaluate the influence of parameters 

on the performance of our method. Specifically, we independently vary the values of λ1, λ2 

and λ3 in the range {10−10, 10−10,…, 100}, and record the corresponding classification 

results achieved by our method, using different parameters in AD vs. NC classification. In 
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Fig. 6, we show the classification accuracy as a function of two of these three parameters 

(i.e., λ1, λ2 and λ3). Note that, to facilitate the observation, in Fig. 6, one parameter is fixed 

as 0.1, when varying two other parameters. From Fig. 6(a)–(c), we can clearly see that the 

performance of our method slightly fluctuates within a very small range with the increase of 

parameter values of λ1, λ2 and λ3. In most cases, classification results are generally stable 

with respect to three parameters, demonstrating that our proposed RIS method is not 

particularly sensitive to the parameter values.

2) Diversity Analysis—As discussed earlier, in order to make use of multiple sets of 

features generated from multiple templates, we proposed an ensemble classification strategy. 

Here, we quantitatively measure the diversity and the mean classification error between any 

two different SVM classifiers, where each SVM is corresponding to a specific template 

space. Here, we use Kappa index to measure the diversity [63] of two classifiers. It is worth 

noting that small Kappa values indicate better diversity, and small mean classification errors 

imply better accuracies, achieved by a pair of classifiers. In Fig. 7, we plot averaged results 

among all pairs of classifiers, achieved by five ensemble-based methods (i.e., Pearson〈ens〉, 
COMPARE〈ens〉, t-test〈ens〉, Lasso〈ens〉, and the proposed method) in the four 

classification tasks (i.e., AD vs. NC, pMCI vs. NC, pMCI vs. sMCI, and sMCI vs. NC).

From Fig. 7(a), one can see that our method achieves better diversity than the comparison 

methods in AD vs. NC, pMCI vs. NC, and pMCI vs. sMCI classification tasks. From Fig. 

7(b), we can observe that our method usually obtains lower classification error, compared to 

other methods. It is worth noting that, although our method obtains slightly less diversity 

than other methods in sMCI vs. NC classification, it apparently achieves the lowest 

classification error. Recalling the results in Table II, our method was shown to outperform 

other ensemble-based methods (i.e., Pearson〈ens〉, COMPARE〈ens〉, t-test〈ens〉 and Lasso

〈ens〉), which implies that our method achieves better trade-off between accuracy and 

diversity.

3) Limitations—There are several limitations that should be considered, in the current 

study. First, our method has high computational costs, because of the multiple templates 

used for image registration with HAMMER [38]. One possible solution is to parallelize the 

registration process by using multiple CPUs. Another solution is to replace the registration 

method (i.e., HAMMER) with another less computationally expensive technique (e.g., 

diffeomorphic demos [64]), which may speed up the registration process. Second, the 

proposed method requires feature representations, generated from different templates, to 

have the same dimensionality, as we use a feature selection method within the multi-task 

learning framework. Since there are anatomical differences among multiple templates, 

features generated from different templates may be of different dimensionality, which is not 

considered in our current method. Third, we lack consideration of spatial/anatomical 

correlation relationship among templates [17] in our current method. Actually, the 

anatomical correlation among templates can also be explored as prior information to further 

promote performance of the proposed RIS feature selection model, which is one of our 

future directions. Fourth, the proposed RIS model in (6) is simply used as a feature selection 

model. If the square loss function is replaced by the logistic (or hinge) loss function, RIS 
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model can be also directly employed as a classification model. In addition, we only evaluate 

our method on the ADNI dataset. It is interesting to investigate the efficacy of the proposed 

method on other data sets, such as the Computer-Aided Diagnosis of Dementia 

(CADDementia) data set [65]. As one of our future work, we will perform such experiments 

to ensure thorough comparisons between our method and those competing approaches.

IV. Conclusion

In this paper, we proposed a relationship induced multi-template learning method for 

AD/MCI classification, which can make use of the underlying structure information of 

multi-template data. To this end, we first extracted multiple sets of feature representations 

from multiple selected templates, and then proposed a relationship induced sparse feature 

selection algorithm to reduce the dimensionality of the feature vectors in each template 

space, followed by an SVM classifier corresponding to each template. Then, we developed 

an ensemble classification strategy to combine the outputs of multiple SVMs to make a final 

classification decision. Experimental results on the ADNI database demonstrated that our 

method achieved significant performance improvement in multi-template based AD/MCI 

classification, compared with several state-of-the-art methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The framework of our relationship induced multi-template learning (RIML) method, which 

consists of three main steps: 1) multi-template feature extraction, 2) relationship induced 

sparse feature selection, and 3) ensemble classification.
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Fig. 2. 
Ten templates determined by the Affinity Propagation (AP) clustering algorithm.
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Fig. 3. 
Illustration of structural information, conveyed by (a) relationship between features of two 

templates (i.e., features of the n-th subject in the k1-th and the k2-th template spaces, 

respectively), and (b) relationship between features of two subjects in the same template 

(i.e., features of the n1-th subject and the n2-th subject in the k-th template space). Here, 

yellow denotes positive training subjects, while blue denotes negative training subjects. 

Different shapes (circle, triangle, and square) denote samples in three different template 

spaces (i.e., the k1-th template, the k2-th template, and the k-th template).
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Fig. 4. 
Distributions of classification accuracy (ACC), sensitivity (SEN) and specificity (SPE) 

achieved by four different single-template based methods in (a) AD vs. NC classification, 

and (b) pMCI vs. sMCI classification.
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Fig. 5. 
ROC curves achieved by five ensemble-based methods using multiple templates in (a) AD 

vs. NC classification, and (b) pMCI vs. sMCI classification.
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Fig. 6. 
Accuracies of AD vs. NC classification with respect to different parameter values in the 

proposed RIS model. Note that, in (a)-(c), when two parameters vary, another parameter is 

fixed as 0.1, for convenience of display. (a) λ1 = 0.1. (b) λ2 = 0.1. (c) λ3 = 0.1.
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Fig. 7. 
The diversities and mean classification errors achieved by five ensemble-based methods in 

four classification tasks.
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TABLE I

Demographic Information of 459 Studied Subjects From the ADNI Database

Diagnosis # Subject Age Gender (M/F) MMSE

AD 97 75.90±6.84 48/49 23.37±1.84

NC 128 76.11±5.10 63/65 29.13±0.96

pMCI 117 75.18±6.97 67/50 26.45±1.66

sMCI 117 75.09±7.65 79/38 27.42±1.78

Note: Values are denoted as mean ± deviation; MMSE means mini-mental state examination; M and F represent male and female, respectively.
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