235 research outputs found

    Vertically symmetric alternating sign matrices and a multivariate Laurent polynomial identity

    Full text link
    In 2007, the first author gave an alternative proof of the refined alternating sign matrix theorem by introducing a linear equation system that determines the refined ASM numbers uniquely. Computer experiments suggest that the numbers appearing in a conjecture concerning the number of vertically symmetric alternating sign matrices with respect to the position of the first 1 in the second row of the matrix establish the solution of a linear equation system similar to the one for the ordinary refined ASM numbers. In this paper we show how our attempt to prove this fact naturally leads to a more general conjectural multivariate Laurent polynomial identity. Remarkably, in contrast to the ordinary refined ASM numbers, we need to extend the combinatorial interpretation of the numbers to parameters which are not contained in the combinatorial admissible domain. Some partial results towards proving the conjectured multivariate Laurent polynomial identity and additional motivation why to study it are presented as well

    f(zσ(1),..., zσ(n)). Since P (z1,..., zn) =

    Get PDF
    z −1 i + zj −

    Symmetry classes of alternating-sign matrices under one roof

    Full text link
    In a previous article [math.CO/9712207], we derived the alternating-sign matrix (ASM) theorem from the Izergin-Korepin determinant for a partition function for square ice with domain wall boundary. Here we show that the same argument enumerates three other symmetry classes of alternating-sign matrices: VSASMs (vertically symmetric ASMs), even HTSASMs (half-turn-symmetric ASMs), and even QTSASMs (quarter-turn-symmetric ASMs). The VSASM enumeration was conjectured by Mills; the others by Robbins [math.CO/0008045]. We introduce several new types of ASMs: UASMs (ASMs with a U-turn side), UUASMs (two U-turn sides), OSASMs (off-diagonally symmetric ASMs), OOSASMs (off-diagonally, off-antidiagonally symmetric), and UOSASMs (off-diagonally symmetric with U-turn sides). UASMs generalize VSASMs, while UUASMs generalize VHSASMs (vertically and horizontally symmetric ASMs) and another new class, VHPASMs (vertically and horizontally perverse). OSASMs, OOSASMs, and UOSASMs are related to the remaining symmetry classes of ASMs, namely DSASMs (diagonally symmetric), DASASMs (diagonally, anti-diagonally symmetric), and TSASMs (totally symmetric ASMs). We enumerate several of these new classes, and we provide several 2-enumerations and 3-enumerations. Our main technical tool is a set of multi-parameter determinant and Pfaffian formulas generalizing the Izergin-Korepin determinant for ASMs and the Tsuchiya determinant for UASMs [solv-int/9804010]. We evaluate specializations of the determinants and Pfaffians using the factor exhaustion method.Comment: 16 pages, 16 inline figures. Introduction rewritten with more motivation and context. To appear in the Annals of Mathematic

    Enumerative Combinatorics

    Get PDF
    Enumerative Combinatorics focusses on the exact and asymptotic counting of combinatorial objects. It is strongly connected to the probabilistic analysis of large combinatorial structures and has fruitful connections to several disciplines, including statistical physics, algebraic combinatorics, graph theory and computer science. This workshop brought together experts from all these various fields, including also computer algebra, with the goal of promoting cooperation and interaction among researchers with largely varying backgrounds

    Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory

    Full text link
    We develop a new method for studying the asymptotics of symmetric polynomials of representation-theoretic origin as the number of variables tends to infinity. Several applications of our method are presented: We prove a number of theorems concerning characters of infinite-dimensional unitary group and their qq-deformations. We study the behavior of uniformly random lozenge tilings of large polygonal domains and find the GUE-eigenvalues distribution in the limit. We also investigate similar behavior for alternating sign matrices (equivalently, six-vertex model with domain wall boundary conditions). Finally, we compute the asymptotic expansion of certain observables in O(n=1)O(n=1) dense loop model.Comment: Published at http://dx.doi.org/10.1214/14-AOP955 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore