Vertically symmetric alternating sign matrices and a multivariate Laurent polynomial identity
 Ilse Fischer
 (joint work with Lukas Riegler)

Consider the following rational function P

$$
\prod_{1 \leq i<j \leq n} \frac{z_{i}^{-1}+z_{j}-1}{1-z_{i} z_{j}^{-1}}
$$

and let R denote the function we obtain after symmetrizing it, that is $R=$ $\operatorname{Sym} P$ with $\operatorname{Sym} f\left(z_{1}, \ldots, z_{n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} f\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)$. Since $P\left(z_{1}, \ldots, z_{n}\right)=$ $P\left(z_{n}^{-1}, \ldots, z_{1}^{-1}\right)$, it is obvious that $R\left(z_{1}, \ldots, z_{n}\right)=R\left(z_{1}^{-1}, \ldots, z_{n}^{-1}\right)$, however, computer experiment suggest that also

$$
R\left(z_{1}, \ldots, z_{i-1}, z_{i}, z_{i+1}, \ldots, z_{n}\right)=R\left(z_{1}, \ldots, z_{i-1}, z_{i}^{-1}, z_{i+1}, \ldots, z_{n}\right)
$$

This is the special case $s=0$ of the following conjecture.
Conjecture 1 (Fischer, Riegler). For integers $s, t \geq 0$, consider the following rational function $P_{s, t}$

$$
\prod_{i=1}^{s} z_{i}^{2 s-2 i-t+1}\left(1-z_{i}^{-1}\right)^{i-1} \prod_{i=s+1}^{s+t-1} z_{i}^{2 i-2 s-t}\left(1-z_{i}^{-1}\right)^{s} \prod_{1 \leq p<q \leq s+t-1} \frac{1-z_{p}+z_{p} z_{q}}{z_{q}-z_{p}}
$$

and let $R_{s, t}=\boldsymbol{\operatorname { S y m }} P_{s, t}$. If $s \leq t$ then

$$
R_{s, t}\left(z_{1}, \ldots, z_{i-1}, z_{i}, z_{i+1}, \ldots, z_{s+t-1}\right)=R_{s, t}\left(z_{1}, \ldots, z_{i-1}, z_{i}^{-1}, z_{i+1}, \ldots, z_{s+t-1}\right)
$$

for all $i \in\{1,2, \ldots, s+t-1\}$.
In the talk I first explained how we came up with this conjecture in an attempt to prove a conjecture on a refined enumeration of vertically symmetric alternating sign matrices. An alternating sign matrix is a quadratic $0,1,-1$ matrix such that the non-zero entries alternate and sum up to 1 in each row and column. Next we give an example of such an object

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right),
$$

which is in fact symmetric with respect to the vertically axis. Vertically symmetric alternating sign matrices have been enumerated by Kuperberg [3]. In [1], I presented the following conjecture on a refined enumeration of vertically symmetric alternating sign matrices.

Conjecture 2. The number of $(2 n+1) \times(2 n+1)$ vertically symmetric alternating sign matrices where the first 1 in the second row is in column i is

$$
\frac{\binom{2 n+i-2}{2 n-1}\binom{4 n-i-1}{2 n-1}}{\binom{4 n-2}{2 n-1}} \prod_{j=1}^{n-1} \frac{(3 j-1)(2 j-1)!(6 j-3)!}{(4 j-2)!(4 j-1)!}
$$

In [2], this was shown that a consequence of Conjecture 1 implies Conjecture 2.
Theorem 1. If $R_{s, t}\left(z_{1}, \ldots, z_{s+t-1}\right)=R_{s, t}\left(z_{1}^{-1}, \ldots, z_{s+t-1}^{-1}\right)$ for all $1 \leq s \leq t$ then Conjecture 2 is true.

In the talk, I have also sketched the proof of the following partial result towards proving Conjecture 1 :

Theorem 2. Suppose

$$
\begin{equation*}
R_{s, t}\left(z_{1}, \ldots, z_{s+t-1}\right)=R_{s, t}\left(z_{1}^{-1}, \ldots, z_{s+t-1}^{-1}\right) \tag{1}
\end{equation*}
$$

if $t=s$ and $t=s+1, s \geq 1$. Then (1) holds for all s, t with $1 \leq s \leq t$.
Coming back to the special case mentioned in the beginning: another result we have obtained is the following.

Theorem 3. The coefficient of z^{i} in $R(z, 1, \ldots, 1)$ is the number of $(2 n+1) \times$ $(2 n+1)$ vertically symmetric alternating sign matrices where the unique 1 in the first column is in row $n+i+1$.

Conjecture 1 implies $R(z, 1, \ldots, 1)=R\left(z^{-1}, 1, \ldots, 1\right)$, which has from the point of view of Theorem 3 the explanation that reflecting a $(2 n+1) \times(2 n+1)$ vertically symmetric alternating sign matrix $A=\left(a_{i, j}\right)$ with $a_{n+i+1,1}=1$ along the vertically axis transforms it into a matrix with $a_{n+1-i, 1}=1$. This makes it plausible that $R\left(z_{1}, \ldots, z_{n}\right)$ is a certain generating function of vertically symmetric alternating sign matrices, which, once the weight is identified, could also imply the fact that R is invariant under replacing z_{i} by z_{i}^{-1}.

References

[1] I. Fischer, An operator formula for the number of halved monotone triangles with prescribed bottom row, J. Combin. Theory Ser. A 116 (2009), 515 - 538.
[2] I. Fischer and L. Riegler, Vertically symmetric alternating sign matrices and a multivariate Laurent polynomial identity, arXiv:1403.0535, preprint.
[3] G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Ann. of Math. (2) 156 (2002), $835-866$.

