9 research outputs found

    (k,1)-coloring of sparse graphs

    Get PDF
    AbstractA graph G is (k,1)-colorable if the vertex set of G can be partitioned into subsets V1 and V2 such that the graph G[V1] induced by the vertices of V1 has maximum degree at most k and the graph G[V2] induced by the vertices of V2 has maximum degree at most 1. We prove that every graph with maximum average degree less than 10k+223k+9 admits a (k,1)-coloring, where k≥2. In particular, every planar graph with girth at least 7 is (2,1)-colorable, while every planar graph with girth at least 6 is (5,1)-colorable. On the other hand, when k≥2 we construct non-(k,1)-colorable graphs whose maximum average degree is arbitrarily close to 14k4k+1

    Defective and Clustered Choosability of Sparse Graphs

    Full text link
    An (improper) graph colouring has "defect" dd if each monochromatic subgraph has maximum degree at most dd, and has "clustering" cc if each monochromatic component has at most cc vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than 2d+2d+2k\frac{2d+2}{d+2} k is kk-choosable with defect dd. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree mm, no (1ϵ)m(1-\epsilon)m bound on the number of colours was previously known. The above result with d=1d=1 solves this problem. It implies that every graph with maximum average degree mm is 34m+1\lfloor{\frac{3}{4}m+1}\rfloor-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree mm is 710m+1\lfloor{\frac{7}{10}m+1}\rfloor-choosable with clustering 99, and is 23m+1\lfloor{\frac{2}{3}m+1}\rfloor-choosable with clustering O(m)O(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented

    Defective DP-colorings of sparse simple graphs

    Full text link
    DP-coloring (also known as correspondence coloring) is a generalization of list coloring developed recently by Dvo\v{r}\'ak and Postle. We introduce and study (i,j)(i,j)-defective DP-colorings of simple graphs. Let gDP(i,j,n)g_{DP}(i,j,n) be the minimum number of edges in an nn-vertex DP-(i,j)(i,j)-critical graph. In this paper we determine sharp bound on gDP(i,j,n)g_{DP}(i,j,n) for each i3i\geq3 and j2i+1j\geq 2i+1 for infinitely many nn.Comment: 17 page

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique
    corecore