brought to you by CORE

Discrete Mathematics 312 (2012) 1128-1135

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

(k, 1)-coloring of sparse graphs

O.V. Borodin^a, A.O. Ivanova^b, M. Montassier^{c,*}, A. Raspaud^c

^a Institute of Mathematics at Novosibirsk State University, Novosibirsk 630090, Russia

^b Institute of Mathematics at Yakutsk State University, Yakutsk 677891, Russia

^c Université de Bordeaux - LaBRI UMR 5800, F-33405 Talence Cedex, France

ARTICLE INFO

Article history: Received 23 October 2009 Received in revised form 3 November 2011 Accepted 28 November 2011 Available online 24 December 2011

Keywords: Improper coloring Bounded maximum average degree Discharging procedure with global approach

1. Introduction

ABSTRACT

A graph *G* is (k, 1)-colorable if the vertex set of *G* can be partitioned into subsets V_1 and V_2 such that the graph $G[V_1]$ induced by the vertices of V_1 has maximum degree at most k and the graph $G[V_2]$ induced by the vertices of V_2 has maximum degree at most 1. We prove that every graph with maximum average degree less than $\frac{10k+22}{3k+9}$ admits a (k, 1)-coloring, where $k \ge 2$. In particular, every planar graph with girth at least 7 is (2, 1)-colorable, while every planar graph with girth at least 6 is (5, 1)-colorable. On the other hand, when $k \ge 2$ we construct non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily close to $\frac{14k}{4k+1}$.

© 2011 Elsevier B.V. All rights reserved.

A graph *G* is (d_1, \ldots, d_k) -colorable if the vertex set of *G* can be partitioned into subsets V_1, \ldots, V_k such that the graph $G[V_i]$ induced by the vertices of V_i has maximum degree at most d_i for all $1 \le i \le k$. This notion generalizes those of proper *k*-coloring (when $d_1 = \cdots = d_k = 0$) and *d*-improper *k*-coloring (when $d_1 = \cdots = d_k = d \ge 1$).

Proper and *d*-improper colorings have been widely studied. As shown by Appel and Haken [1,2], every planar graph is (0, 0, 0, 0)-colorable. Cowen et al. [10] proved that every planar graph is (2, 2, 2)-colorable (a list version of this theorem was given by Eaton and Hull [11] and independently Škrekovski [14]). This latter result was extended by Havet and Sereni [13] to not necessarily planar sparse graphs as follows: for every $k \ge 0$, every graph *G* with mad(*G*) $< \frac{4k+4}{k+2}$ is (k, k)-colorable (in fact (k, k)-choosable), where

$$\operatorname{mad}(G) = \operatorname{max}\left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}$$

is the maximum average degree of a graph G.

Let g(G) denote the girth of graph G (the length of a shortest cycle in G). Glebov and Zambalaeva [12] proved that every planar graph G is (1, 0)-colorable if $g(G) \ge 16$. This was strengthened by Borodin and Ivanova [5] by proving that every graph G is (1, 0)-colorable if mad $(G) < \frac{7}{3}$, which implies that every planar graph G is (1, 0)-colorable if $g(G) \ge 14$.

Borodin and Kostochka [9] proved that every graph *G* with mad(*G*) $\leq \frac{12}{5}$ is (1, 0)-colorable. In particular, it follows that every planar graph *G* with $g(G) \geq 12$ is (1, 0)-colorable. On the other hand, they constructed graphs *G* with mad(*G*) arbitrarily close (from above) to $\frac{12}{5}$ that are not (1, 0)-colorable.

This was extended by Borodin et al. [7] by proving that every graph with a maximum average degree smaller than $\frac{3k+4}{k+2}$ is (k, 0)-colorable if $k \ge 2$. The proof in [7] extends that in [5] but does not work for k = 1.

* Corresponding author. E-mail address: montassi@labri.fr (M. Montassier).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.11.031

Table 1 The relationship between the girth of G and its (k, j)-colorability. (k, 0)(k, 1)(k, 2)g(G)6 × [7] (5, 1)(2, 2)[13]7 (8, 0) [7] (2, 1)8 (4, 0) [7] (1, 1) [13]

In this paper, we focus on (k, 1)-colorability of a graph. A graph *G* is (k, 1)-colorable if its vertices can be partitioned into subsets V_1 and V_2 such that in $G[V_1]$ every vertex has degree at most k, while in $G[V_2]$ every component has at most two vertices. Our main result is:

Theorem 1. For $k \ge 2$, every graph G with mad(G) < $\frac{10k+22}{3k+9}$ is (k, 1)-colorable.

On the other hand, we construct non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily close to $\frac{14k}{4k+1}$. Since every planar graph *G* satisfies mad(*G*) < $\frac{2g(G)}{g(G)-2}$, from Theorem 1 we have:

Corollary 1. Planar graphs with girth at least 7 are (2, 1)-colorable; planar graphs with girth at least 6 are (5, 1)-colorable.

On the other hand, there is (see [7]) a planar graph with girth 6 that is not (k, 0)-colorable for any k, whereas planar graphs with girth at least 7 are (8, 0)-colorable, and those with girth at least 8 are (4, 0)-colorable (see [7]). Also note that planar graphs *G* with girth at least 6 are (2, 2)-colorable, while those with girth at least 8 are (1, 1)-colorable (see [13]). The results are summarized in Table 1.

A distinctive feature of the discharging in the proof of Theorem 1 for $2 \le k \le 4$ is its "global nature": a charge for certain vertices is collected from arbitrarily large "feeding areas", which is possible due to the existence of reducible configurations of unlimited size in the minimum counter-examples, called "soft components". Such global discharging first appears in [3] and is used, in particular, in [4,6,8,5,7,13]. The terms "feeding area" and "soft component" are introduced in [5] and also used in our recent paper [7].

2. Non-(k, 1)-colorable graphs with small maximum average degree

Let $H_{a,b}^i$ be the graph consisting of two adjacent vertices a and b and vertices c_1, \ldots, c_i each having neighborhood $\{a, b\}$. We take one copy of $H_{a,b}^{k+1}$ and k-1 copies of $H_{a,b}^2$ and identify all the vertices a to a single vertex a^* . Let H_{a^*} be the resulting graph. Finally, we take an odd cycle $C_{2n-1} = a_1a_2 \ldots a_{2n-1}$ and n copies of $H_{a^*}^a$, and we identify each vertex a_i with odd index with the vertex a^* of a copy of H_{a^*} . Let $G_{n,k}$ be the resulting graph. An example is given in Fig. 1.

One can observe that $G_{n,k}$ is not (k, 1)-colorable. Indeed, observe first that no two consecutive vertices x, y on C_{2n-1} belong to V_2 : otherwise all the vertices except x of the subgraph $H_{a,b}^{k+1}$ associated to x must belong to V_1 ; it follows that the degree of b (of $H_{a,b}^{k+1}$) in $G[V_1]$ is k + 1, a contradiction. Due to the parity of C_{2n-1} , it follows that two consecutive vertices x, y on C_{2n-1} belong to V_1 . We can suppose that x is of odd index on C_{2n-1} . If $G_{n,k}$ is (k, 1)-colorable, then one more vertex in each $H_{a,b}^i$ associated to x must belong to V_1 ; it follows that the degree of x in $G[V_1]$ is k + 1, a contradiction. It is easy to check that the maximum average degree of $G_{n,k}$ is equal to its average degree. We have:

$$mad(G_{n,k}) = \frac{2|E(G_{n,k})|}{|V(G_{n,k})|} = \frac{2(2n-1+5(k-1)n+n(2k+3))}{2n-1+3(k-1)n+n(k+2)} = \frac{2(7nk-1)}{n(4k+1)-1}$$

$$\lim_{n\to\infty} \mathrm{mad}(G_{n,k}) = \frac{14k}{4k+1}.$$

3. Proof of Theorem 1

Let *G* be a counterexample to Theorem 1 on the fewest number of vertices. Clearly, *G* is connected and its minimum degree is at least 2. By definition, we have:

$$\frac{2|E(G)|}{|V(G)|} \le \operatorname{mad}(G) < \frac{10k + 22}{3k + 9}$$
$$2|E(G)| - |V(G)| \frac{10k + 22}{3k + 9} = \sum_{v \in V} \left(d(v) - \frac{10k + 22}{3k + 9} \right) < 0$$

where d(v) is the degree of a vertex v.

Thus, we have:

$$\sum_{v \in V(G)} \left(\frac{3(k+3)}{2(k+1)} d(v) - \frac{5k+11}{k+1} \right) < 0.$$
(1)

Fig. 1. An example of $G_{n,k}$ with n = 3 and k = 3.

Let the charge $\mu(v)$ of each vertex v of G be $\frac{3(k+3)}{2(k+1)}d(v) - \frac{5k+11}{k+1}$. We shall describe a number of structural properties of G (Section 3.1) which make it possible to vary the charges so that the new charge μ^* of every vertex becomes nonnegative for $k \ge 5$ (Section 3.2). For $2 \le k \le 4$ there is a difference: some vertices have a non-negative μ^* individually (Section 3.3), while the others are partitioned into disjoint subsets, called *feeding areas*, and the total charge of each feeding area is proven to be non-negative (Lemma 1 in Section 3.3). Since the sum of charges does not change, in both cases we get a contradiction with (1), which will complete the proof of Theorem 1.

A vertex of degree d (resp. at least d, at most d) is a d-vertex (resp. d^+ -vertex, d^- -vertex). A $(k + 1)^-$ -vertex is minor; a $(k + 2)^+$ -vertex is senior. A weak vertex is a minor vertex adjacent to exactly one senior vertex. A light vertex is either a 2-vertex or a weak vertex. A 3_i -vertex is a 3-vertex adjacent to i 2-vertices.

Claims 2 and 3 below lead us to the following definition. A *d*-vertex, where $d \ge k+3$, is *soft* if it is adjacent to d-1 weak vertices. For d = k + 2 the notion of soft vertex is broader: a (k + 2)-vertex is *soft* if it is adjacent to k + 1 light vertices.

We will color the vertices of the subgraph of maximum degree at most *k* by color *k* and the other vertices by color 1.

3.1. Structural properties of G

Claim 1. No 2-vertex in G is adjacent to a 2-vertex.

Proof. Suppose *G* has two adjacent 2-vertices *t* and *u*, and let *s* (resp. *v*) be the other neighbor of *t* (resp. *u*). By the minimality of *G*, the graph $G - \{t, u\}$ has a (k, 1)-coloring *c*. It suffices to color *t* and *u* with a color different from those of *s* and *v* respectively to extend *c* to the whole graph *G*, a contradiction.

Claim 2. Every minor vertex in G is adjacent to at least one senior vertex.

Proof. Suppose *G* has a minor vertex *x* adjacent only to minor vertices. Take a (k, 1)-coloring *c* of G - x. If none of the neighbors of *x* has color 1, then we simply color *x* with 1. So suppose that at least one neighbor of *x* is colored with 1. We then color *x* with *k*. There is now a problem only if there exists a neighbor of *x*, say *y*, colored with *k* and surrounded by k + 1 neighbors colored with *k*. In this case, we recolor *y* with 1. We iterate this operation while such a *y* exists. The coloring obtained is a (k, 1)-coloring of *G*, a contradiction. \Box

Claim 3. If a senior d-vertex is adjacent to d - 1 weak vertices, then it is adjacent to a non-light vertex.

Proof. Suppose *G* has a *d*-vertex *x* adjacent to vertices x_1, \ldots, x_d , where x_1, \ldots, x_{d-1} are weak while x_d is either weak or has $d(x_d) = 2$. We take a (k, 1)-coloring of G - x. We recolor each weak vertex x_i with color *k*. There is now a problem only if there exists a neighbor of a x_i , say *y*, colored with *k* and surrounded by k + 1 neighbors colored with *k*. In this case, we recolor *y* with 1. We iterate this operation until such a *y* exists. If x_d is a 2-vertex, then we recolor it properly. Now it suffices to color *x* with 1, a contradiction. \Box

Claim 4. No 3-vertex is adjacent to two soft vertices and to a minor vertex.

Proof. Suppose *G* has a 3-vertex *x* adjacent to vertices x_1, x_2, x_3 , where x_1 and x_2 are $(k + 2)^+$ -vertices while $d(x_3) \le k + 1$. Let $y_1^1, \ldots, y_{d(x_1)-1}^1$ (resp. $y_1^2, \ldots, y_{d(x_2)-1}^2$) be the other neighbors of x_1 (resp. x_2). We take a (k, 1)-coloring of $G - \{x, x_1, x_2\}$. We first recolor the vertices y_j^i as follows: if y_j^i has $d(y_j^i) = 2$ and is not weak, then we recolor y_j^i properly; otherwise if y_j^i is weak, then we recolor y_j^i with *k* (followed by recoloring if necessary the neighbors of x_j^i 's; see the proof of Claim 3). Now if $d(x_1) \ge k + 3$, then we color x_1 with 1 (observe that all colored neighbors of x_1 are colored with *k*). Assume $d(x_1) = k + 2$. If the color 1 appears at least twice on the y_j^i , then we color x_1 with *k* and with 1 otherwise. We do the same for x_2 . Finally, if an identical color appears three times in the neighborhood of *x*, then we color *x* properly. Otherwise we color *x* with *k* (followed by recoloring x_3 if necessary). This gives an extension of *c* to the whole graph *G*, a contradiction. \Box An edge xy is soft if one of the following holds:

- d(x) = k + 2 while y is light, i.e. is a 2-vertex or a weak vertex, or
- *x* is a minor vertex while d(y) = 2.

The vertex *x* is called the good end of the soft edge *xy*.

A soft component SC is a subgraph of G such that:

- $\Delta(SC) < k+2$:
- each edge joining SC to $G \setminus SC$ is soft and each good end of the soft edges belongs to SC;
- in addition, a 2-vertex having its two neighbors in SC is in SC.

Claim 5. *G* does not contain soft components.

Proof. Assume that G contains a soft component S. By minimality of G, the graph G - V(S) has a (k, 1)-coloring c. We will show that we can extend c to the whole graph G, a contradiction. First, for each edge xy with $x \in S$ and $y \notin S$, we will recolor (if necessary) the vertex y such that the choice of any color for x will not create any problem on y. If y is a 2-vertex, then we just recolor y properly. Assume now that y is a weak vertex with degree at least 3. We first consider successively all the weak vertices y having a neighbor colored with 1: if y is colored with 1, then we recolor y with k (followed by recoloring iteratively the neighbors of y colored with k which are surrounded by k + 1 neighbors colored with k). We then consider all the weak vertices v having k neighbors colored with k: we recolor all such v with color 1. Observe that if x is later colored with 1 or k. then that will not create a conflict for y. Now we extend the coloring c to the whole graph G as follows: we choose a coloring ϕ of *S* that minimizes $\sigma = k \cdot E_{11} + E_{kk}$ where E_{ii} denotes the number of edges whose both ends are colored with *i* in *G*. Clearly, such a coloring exists. Moreover we will show that c and ϕ is a (k, 1)-coloring to the whole graph G. Assume that the coloring ϕ of S and c of G - V(S) is not a (k, 1)-coloring of G. So suppose that there exists a vertex u of S colored with 1 that has two neighbors colored with 1. We just recolor u with k and obtain a coloring with a smaller σ which contradicts the choice of ϕ . Similarly, assume that there exists a vertex v of S colored with k that has k + 1 neighbors colored with k. We just recolor v with 1 and obtain a coloring with a smaller σ , which contradicts the choice of ϕ .

Corollary 2. No (k + 2)-vertex can be adjacent to k + 2 light vertices.

3.2. Discharging procedure when k > 5

Set
$$\alpha = \frac{3k+1}{2(k+1)}$$
, $\gamma = \frac{k-1}{k+1}$, $\epsilon = \frac{k-5}{2(k+1)}$. Note that $2 - \alpha = \frac{k+3}{2(k+1)}$. When $k \ge 5$, we have:
 $0 \le \epsilon < \frac{1}{2} < 2 - \alpha \le \frac{2}{3} \le \gamma < 1$ and $\frac{4}{3} \le \alpha < \frac{3}{2}$.

Our rules of discharging are as follows:

- R1. Every *d*-vertex with $3 \le d \le k + 1$ gives 2α to each adjacent 2-vertex.
- R2. Every weak vertex gets α from its adjacent senior vertex.
- R3. Every non-weak 2-vertex gets 1 from each neighbor.
- R4. Every minor non-light vertex gets γ from each non-soft adjacent (k+2)-vertex, ϵ from each soft adjacent (k+2)-vertex and 2 – α from each adjacent $(k + 3)^+$ -vertex.

We now show that $\mu^*(v) \ge 0$ for all v in V(G). Let v be a d-vertex, where $d \ge 2$. Set

$$\mu_d = \frac{3(k+3)}{2(k+1)}d - \frac{5k+11}{k+1}.$$

In particular, $\mu_2 = -2$, $\mu_3 = \frac{-k+5}{2(k+1)} = -\epsilon$, and $-\frac{1}{2} < \mu_3 \le 0$. *Case* 1. $d \ge k + 3$.

Claim 6. If $d \ge k + 3$, then $\mu_d \ge \alpha(d - 2) + 2$; in particular, $\mu_{k+3} = \alpha(k + 1) + 2$. Proof.

$$\begin{split} \mu_d - \alpha(d-2) - 2 &= \frac{3(k+3)}{2(k+1)}d - \frac{5k+11}{k+1} - \frac{3k+1}{2(k+1)}(d-2) - 2 \\ &= \frac{4(d-(k+3))}{k+1} \ge 0. \quad \Box \end{split}$$

By Claim 3, v is adjacent to at most d - 1 weak vertices. If v is adjacent to at most d - 2 weak vertices, then $\mu^*(v) \ge \mu_d - \alpha(d-2) - 2 \times 1 \ge 0$ by R1–R4, due to Claim 6. Suppose now that v is adjacent to exactly d-1 weak vertices. By Claim 3, v is adjacent to a non-light vertex. So we have $\mu^*(v) \ge \mu_d - \alpha(d-1) - (2-\alpha) \ge 0$ by R1–R4, due to Claim 6.

Case 2. d = k + 2.

By Corollary 2, the vertex v is adjacent to at most k + 1 light vertices. By Claim 6, we have:

$$\mu_{k+2} = \mu_{k+3} - \frac{3(k+3)}{2(k+1)}$$
$$= \alpha(k+1) + 2 - \frac{3(k+3)}{2(k+1)}$$
$$= \alpha k + 2\gamma.$$

If v is adjacent to at most k light vertices, then $\mu^*(v) \ge \mu_{k+2} - k\alpha - 2\gamma \ge 0$ by R1–R4.

If v is adjacent to exactly k+1 light vertices, then v is soft. By Claim 3 and R1-R4, we have $\mu^*(v) > \mu_{k+2} - \alpha(k+1) - \epsilon = 0$ $2\gamma - \alpha - \epsilon = 0.$

Case 3.2 < d < k + 1.

By Claim 1, a 2-vertex is adjacent to 3⁺-vertices. By Claim 2, a *d*-vertex with $3 \le d \le k + 1$ is adjacent to at most d - 1vertices of degree 2, each of which gets $2 - \alpha$ from v by R1.

Subcase 3.1.
$$v$$
 is weak.

If d = 2, then $\mu^*(v) = -2 + (2 - \alpha) + \alpha = 0$ by R1 and R2. Suppose d > 3.

Claim 7. For each $d \ge 3$, it holds that $\mu_d - (d-1)(2-\alpha) + \alpha = \frac{(k+3)(d-3)}{k+1}$.

Proof.

$$\mu_d - (d-1)(2-\alpha) + \alpha = \frac{3(k+3)}{2(k+1)}d - \frac{5k+11}{k+1} - (d-1)\frac{k+3}{2(k+1)} + \frac{3k+1}{2(k+1)}$$
$$= \frac{(k+3)(d-3)}{k+1}. \quad \Box$$

The vertex v is weak. By R2, it gets α from its adjacent senior vertex and gives $2 - \alpha$ to at most d - 1 adjacent 2-vertices, it follows from Claim 7 that $\mu^*(v) \ge \frac{(k+3)(d-3)}{k+1} \ge 0$, when $d \ge 3$.

Subcase 3.2. v is not weak.

The vertex v is adjacent to two senior vertices.

If d = 2, then $\mu^*(v) = -2 + 2 \cdot 1 = 0$ by R3. If d = 3, then $\mu_3 = \frac{5-k}{2(k+1)}$. If v is adjacent to a 2-vertex, then v gives $2 - \alpha$ by R1. By Claim 4, v is adjacent to a non soft $(k+2)^+$ -vertex. Note that $\gamma \ge 2 - \alpha > \epsilon$. By R1 and R4, we have $\mu^*(v) \ge \mu_3 - (2-\alpha) + 2 - \alpha + \epsilon = 0$. On the other hand, if v is not adjacent to a 2-vertex, then $\mu^*(v) \ge \mu_3 + 2\epsilon = \epsilon \ge 0$.

If $d \ge 4$, then by R1, $\mu^*(v) \ge \mu_d - (d-2)(2-\alpha) = \frac{k(d-4)+3d-8}{k+1} \ge 0$.

3.3. Discharging procedure when $2 \le k \le 4$

3.3.1. Preliminaries

A weak edge between vertices x and y is either an ordinary edge xy or a path xzy with 3 < d(z) < k + 1, where z is called the *intermediate vertex* of the weak edge xy. A feeding area, abbreviated to FA, is a maximal subgraph of G consisting of (k + 2)-vertices mutually accessible from each other along weak edges and of the intermediate vertices of the weak edges of the feeding area. An edge xy with $x \in FA$ and $y \notin FA$ is a link. By Claim 5, at least one of the links for FA is not soft; such links will be called *rigid*. An FA is a weak feeding area, denoted by WFA, if it has just one rigid link xy; in this case, the vertex y is called the sponsor of WFA. See Fig. 2. Sometimes a WFA with d(x) = i will be denoted by WFA(i), where 3 < i < k + 2. An FA with at least two rigid links is strong and denoted by SFA. By definition (more precisely by maximality), no WFA(k + 2)can be joined by its rigid link to an FA, and no $WFA((k + 1)^{-})$ can be joined by its rigid link to a (k + 2)-vertex in an FA. An immediate consequence of Claim 5 is that no two $WFA((k + 1)^{-})$ can be joined by their rigid link.

3.3.2. Discharging for $2 \le k \le 4$ and its consequences Set $\alpha = \frac{3k+1}{2(k+1)}$, $\gamma = \frac{k-1}{k+1}$, $\beta = \frac{5-k}{2(k+1)}$. Observe that $2 - \alpha = \frac{k+3}{2(k+1)}$. We have:

k	2	3	4
α	7/6	5/4	13/10
γ	1/3	1/2	3/5
β	1/2	1/4	1/10
$2-\alpha$	5/6	3/4	7/10

1132

Fig. 2. Examples of feeding areas for k = 2.

 $\alpha > 1 > 2 - \alpha > \beta$ and $2 - \alpha \ge \gamma$.

Moreover, $\mu_2 = -2$ and $\mu_3 = \beta$.

A 3*-vertex is a 3-vertex adjacent to exactly one minor vertex.

The discharging rules for $2 \le k \le 4$ are almost the same as for $k \ge 5$. Our rules of discharging are as follows:

R1. Every *d*-vertex with 3 < d < k + 1 gives $2 - \alpha$ to each adjacent 2-vertex.

R2. Every weak vertex gets α from its adjacent senior vertex.

R3. Every non-weak 2-vertex gets 1 from each neighbor.

R4. Every 3*-vertex gets 2 – α from each adjacent $(k + 3)^+$ -vertex.

R5. Every WFA gets β along the rigid link from its sponsor.

By the definition of *FA*, a minor vertex can belong to at most one feeding area. We cannot prove that each vertex v belonging to an *FA* has $\mu^*(v) \ge 0$; however, it turns out that the total new charge $\mu^*(FA)$ of a feeding area *FA* is nonnegative (see Lemma 1). This is also a way to arrive at a contradiction with (1).

We now prove $\mu^*(v) \ge 0$ assuming that v is not in an FA.

Case 1. d = d(v) > k + 3.

By Claim 3, the vertex v is adjacent to at most d - 1 weak vertices. If v is adjacent to exactly d - 1 weak vertices z_1, \ldots, z_{d-1} , then its dth neighbor z_d (which is not a 2-vertex by Claim 3) may be a 3*-vertex or a vertex belonging to a *WFA*. Hence v gives α to each adjacent weak vertex by R2 and may give $2 - \alpha$ by R4, or β by R5 ($2 - \alpha > \beta$); it follows that $\mu^*(v) \ge \mu_d - (d-1)\alpha - (2-\alpha) = \mu_d - (d-2)\alpha - 2 \ge 0$ (see Claim 6). Now if v is adjacent to at most d - 2 weak vertices, then its two last neighbors may be 2-vertices and so $\mu^*(v) \ge \mu_d - (d-2)\alpha - 2 \ge 0$ by R2–R5 ($\alpha > 1 > 2 - \alpha > \beta$).

Case 2. d = k + 2.

Since every (k + 2)-vertex belongs to an *FA* by definition, this case does not occur.

Case 3. $2 \le d \le k + 1$.

We consider two cases depending on whether or not v is weak.

Subcase 3.1. v is weak.

If d = 2, then by R1 and R2, v receives $2 - \alpha$ from its minor neighbor and α from its senior neighbor, so $\mu^*(v) = -2 + 2 - \alpha + \alpha = 0$.

Suppose that $d \ge 3$. The vertex v is adjacent to d - 1 minor vertices, say z_1, \ldots, z_{d-1} , and to a senior vertex, say z_d . By Claim 5, the edge vz_d cannot be the rigid link of a WFA. By R2, v receives α from z_d . Now, each edge vz_i may lead to a 2-vertex, and in this case, v gives $2 - \alpha$ to z_i , or may lead to a *l*-vertex with $3 \le l \le k + 1$ belonging to a WFA (vz_i is a rigid link), and in this case, v gives β to the corresponding WFA. Since $2 - \alpha > \beta$, it follows that $\mu^*(v) \ge \mu_d - (d - 1)(2 - \alpha) + \alpha \ge 0$ (see Claim 7).

Subcase 3.2. v is not weak.

If d = 2, then $\mu^*(v) = -2 + 2 \cdot 1 = 0$ by R3.

Assume that $d \ge 3$. Observe that v is adjacent to at least two senior vertices (v is not weak) and at most one of them belongs to an *FA* (otherwise, v would belong to an *FA*, contradicting our assumption).

Suppose d = 3. If v is not a 3*-vertex, then v is adjacent to three senior vertices and $\mu^*(v) \ge \mu_3 - \beta = 0$ by R5. If v is a 3*-vertex, then v is adjacent to a $(k+3)^+$ -vertex which gives $2-\alpha$ to v by R4. Hence, $\mu^*(v) \ge \mu_3 - (2-\alpha) - \beta + (2-\alpha) = 0$ by R1, R4, and R5 $(2-\alpha > \beta)$.

Suppose $d \ge 4$. By R1 and R5, v gives nothing to at least one $(k+3)^+$ -vertex; hence $\mu^*(v) \ge \mu_d - (d-2)(2-\alpha) - \beta = \frac{(2d-7)(k+3)}{2(k+1)} \ge 0$ when $d \ge 4$.

Hence we proved that for every vertex v not in an *FA*, $\mu^*(v) \ge 0$. Since the *FA*'s in *G* are disjoint, to complete the proof of Theorem 1 it suffices to prove the following:

Lemma 1. For each FA in G,

$$\mu^*(FA) = \sum_{v \in V(FA)} \mu^*(v) \ge 0.$$

Proof. Consider a feeding area *F* and let *v* be a vertex of *F*. Let f(v) be the number of neighbors of *v* in *F*, s(v) the number of rigid links incident with *v* over that *v* does not send charge by R5, and r(v) the number of all other rigid links incident with *v*.

Suppose first v has degree k+2. By maximality of the feeding area, v does not send charge by R5. It follows that r(v) = 0. Hence v sends charge only by R2 and R3 to adjacent light vertices (the charge is sent only over incident soft edges). The final charge of v is at least

$$\mu(v) - (k+2 - f(v) - s(v) - r(v))\alpha = (f(v) + s(v) + r(v))\alpha - 2(2 - \alpha).$$

Observe that this charge is non-negative if $s(v) + r(v) \ge 2$. If s(v) + r(v) = 1, then the charge is equal to $-\beta$, but, in that case, F is a weak feeding area containing only v, and receives β by R5. Hence $\mu^*(F) \ge 0$. Thus we can assume that F has more than one vertex.

Suppose now that $3 \le d(v) \le k + 1$. Vertex v sends charge over soft edges by R1 and over rigid links by R5, and its charge becomes at least

$$\mu(v) - (d(v) - f(v) - s(v) - r(v))(2 - \alpha) - r(v)\beta = (2 - \alpha)(2d(v) + f(v) + s(v)) + \gamma r(v) - \frac{5k + 11}{k + 1}.$$

Since $d(v) \ge 3$, we have $(2 - \alpha)2d(v) - \frac{5k+11}{k+1} \ge -2$. The final charge of v is at least

$$(2-\alpha)(f(v)+s(v))+\gamma r(v)-2.$$

Let $s = \sum_{v \in V(F)} s(v)$ and $r = \sum_{v \in V(F)} r(v)$. For a vertex $v \in F$, let us define $w(v) = \alpha$ if d(v) = k + 2 and $w(v) = 2 - \alpha$ otherwise. Let n_1 be the number of vertices of F of degree k + 2 and n_2 the number of minor vertices of F. Summing the estimates obtained in the previous two paragraphs, we conclude that the total charge of the vertices of F is at least

$$(2 - \alpha)s + \gamma r - 2(2 - \alpha)n_1 - 2n_2 + \sum_{v \in V(F)} w(v)f(v).$$
⁽²⁾

For an edge e = uv of F, let us define w(e) = w(u) + w(v). Observe that $\sum_{v \in V(F)} w(v)f(v) = \sum_{e \in E(F)} w(e)$. Let an edge of F be good if at least one of its incident vertices has degree k + 2. We have $w(e) \ge 2$ if e is good and $w(e) = 2(2 - \alpha)$ otherwise. Let m be the number of good edges of F. Since F contains a spanning tree consisting of only good edges, we have $m \ge n_1 + n_2 - 1$. Let $\delta = m - (n_1 + n_2 - 1)$.

Observe that if *F* is weak, then *F* has a unique rigid edge (by definition) and by R5 a charge β is transferred inside *F* along this edge. If *F* is strong, then at least one rigid link does not lead to a weak feeding area by Claim 5, and no charge is transferred along this link by R5. Hence $s \ge 1$. Applying these inequalities, we conclude that the total charge of the vertices of *F* is at least

$$(2 - \alpha - \gamma) + \gamma(r+s) - 2(2 - \alpha)n_1 - 2n_2 + 2(n_1 + n_2 - 1 + \delta) = \beta + \gamma(r+s) + \gamma n_1 - 2 + 2\delta.$$

Recall that *F* contains at least two vertices. Hence $n_1 \ge 2$. Let us first consider the case r + s = 1, i.e. *F* is weak. Then *F* receives β by R5 and its final charge is at least

$$\beta + \gamma + \gamma n_1 - 2 + 2\delta + \beta > 3\gamma + 2\beta - 2 > 0.$$

Consider now the case $r + s \ge 2$. The charge of *F* is at least $\beta + 2\gamma + \gamma n_1 - 2 + 2\delta$, which is only negative if k = 2, $n_1 = 2$, and $\delta = 0$ (in this case, the charge is at least $\beta + 4\gamma - 2$). Since $\delta = 0$, *F* contains at most one minor vertex, and since k = 2, such a vertex has degree 3 and can be incident with at most one rigid link. Therefore, at least one vertex of degree k+2 is incident with a rigid link. However, this rigid link contributes α to the charge of *F* instead of $2 - \alpha$ that we accounted for it in (2). Therefore, the charge of *F* is by $2(\alpha - 1)$ greater than we estimated, and thus the final total charge of *F* is $\beta + 4\gamma - 2 + 2(\alpha - 1) \ge 0$.

This completes the proofs of Lemma 1 and Theorem 1. \Box

Acknowledgments

The authors are thankful to Douglas West and the referees for numerous remarks on improving the presentation, and especially to one of the referees for suggesting a short proof for Lemma 1.

The first and second authors were supported by grants 09-01-00244 and 08-01-00673 of the Russian Foundation for Basic Research, the second author was also supported by the President of Russia grant for young scientists MK-2302.2008.1. The third author was supported by the ANR Project GRATOS ANR-09-JCJC-0041-01 The fourth author was supported by the ANR Project IDEA ANR-08-EMER-007.

References

- [1] K. Appel, W. Haken, Every planar map is four colorable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.
- [2] K. Appel, W. Haken, Every planar map is four colorable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491–567.
- [3] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185.
- [4] O.V. Borodin, S.G. Hartke, A.O. Ivanova, A.V. Kostochka, D.B. West, (5, 2)-coloring of sparse graphs, Sib. Elektron. Mat. Izv. 5 (2008) 417-426, http://semr.math.nsc.ru.
- [5] O.V. Borodin, A.O. Ivanova, Near proper 2-coloring the vertices of sparse graphs, Diskretn. Anal. Issled. Oper. 16 (2) (2009) 16-20.
- [6] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Oriented vertex 5-coloring of sparse graphs, Diskretn. Anal. Issled. Oper. 13 (1) (2006) 16-32 (in Russian).
- [7] O.V. Borodin, A.O. Ivanova, M. Montassier, P. Ochem, A. Raspaud, Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k, J. Graph Theory 65 (2) (2010) 83–93.
- [8] O.V. Borodin, A.O. Ivanova, T.K. Neustroeva, List 2-distance (Δ + 1)-coloring of planar graphs with given girth, Diskretn. Anal. Issled. Oper. 14 (3) (2007) 13–30 (in Russian).
- [9] O.V. Borodin, A.V. Kostochka, Vertex partitions of sparse graphs into an independent vertex set and subgraph of maximum degree at most one, Sibirsk. Mat. Zh. 52 (5) (2011) 1004–1010 (in Russian).
- [10] LJ. Cowen, R.H. Cowen, D.R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (2) (1986) 187-195.
- [11] N. Eaton, T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 79–87.
- [12] A.N. Glebov, D.Zh. Zambalaeva, Path partitions of planar graphs, Sib. Elektron. Mat. Izv. 4 (2007) 450-459, http://semr.math.nsc.ru (in Russian).
- [13] F. Havet, J.-S. Sereni, Improper choosability of graphs and maximum average degree, J. Graph Theory 52 (2006) 181–199.
- [14] R. Škrekovski, List improper coloring of planar graphs, Combin. Probab. Comput. 8 (1999) 293–299.