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that every graph with maximum average degree less than 10k+22 3dmits a (k, 1)-coloring,

where k > 2.In particular, every planar graph with girth at least 7 is (2, 1)-colorable, while
every planar graph with girth at least 6 is (5, 1)-colorable. On the other hand, when k > 2

we construct non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily
14k
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1. Introduction
A graph G is (d, ..., dy)-colorable if the vertex set of G can be partitioned into subsets Vq, ..., V} such that the graph
G[V;i] induced by the vertices of V; has maximum degree at most d; for all 1 < i < k. This notion generalizes those of proper
k-coloring (when d; = - - - = d;, = 0) and d-improper k-coloring (whend; =--- =d, =d > 1).

Proper and d-improper colorings have been widely studied. As shown by Appel and Haken [1,2], every planar graph is
(0, 0, 0, 0)-colorable. Cowen et al. [10] proved that every planar graph is (2, 2, 2)-colorable (a list version of this theorem
was given by Eaton and Hull [11] and independently Skrekovski [14]). This latter result was extended by Havet and
Sereni [13] to not necessarily planar sparse graphs as follows: for every k > 0, every graph G with mad(G) < ‘:(":24 is
(k, k)-colorable (in fact (k, k)-choosable), where

2|E(H)|
L HC G
[V(H)

is the maximum average degree of a graph G.

Let g(G) denote the girth of graph G (the length of a shortest cycle in G). Glebov and Zambalaeva [12] proved that every
planar graph G is (1, 0)-colorable if g(G) > 16. This was strengthened by Borodin and Ivanova [5] by proving that every
graph G is (1, 0)-colorable if mad(G) < £, which implies that every planar graph G is (1, 0)-colorable if g(G) > 14.

Borodin and Kostochka [9] proved that every graph G with mad(G) < % is (1, 0)-colorable. In particular, it follows
that every planar graph G with g(G) > 12 is (1, 0)-colorable. On the other hand, they constructed graphs G with mad(G)

arbitrarily close (from above) to 15—2 that are not (1, 0)-colorable.

This was extended by Borodin et al. [7] by proving that every graph with a maximum average degree smaller than
is (k, 0)-colorable if k > 2. The proof in [7] extends that in [5] but does not work for k = 1.

mad(G) = max {

3k+4
k+2
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Table 1

The relationship between the girth of G and its (k, j)-colorability.
£(G) (k, 0) (k, 1) (k, 2)
6 x [7] (5,1) (2,2)[13]
7 (8,0)[7] 2n
8 (4,0)[7] (1, D [13]

In this paper, we focus on (k, 1)-colorability of a graph. A graph G is (k, 1)-colorable if its vertices can be partitioned into
subsets V; and V; such that in G[V;] every vertex has degree at most k, while in G[V,] every component has at most two
vertices. Our main result is:

10k+22
3k+9

Theorem 1. For k > 2, every graph G with mad(G) < is (k, 1)-colorable.

On the other hand, we construct non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily close to %.
28(G)
g(G)-2’

Since every planar graph G satisfies mad(G) < from Theorem 1 we have:

Corollary 1. Planar graphs with girth at least 7 are (2, 1)-colorable; planar graphs with girth at least 6 are (5, 1)-colorable.

On the other hand, there is (see [7]) a planar graph with girth 6 that is not (k, 0)-colorable for any k, whereas planar
graphs with girth at least 7 are (8, 0)-colorable, and those with girth at least 8 are (4, 0)-colorable (see [7]). Also note that
planar graphs G with girth at least 6 are (2, 2)-colorable, while those with girth at least 8 are (1, 1)-colorable (see [13]). The
results are summarized in Table 1.

A distinctive feature of the discharging in the proof of Theorem 1 for 2 < k < 4 isits “global nature”: a charge for certain
vertices is collected from arbitrarily large “feeding areas”, which is possible due to the existence of reducible configurations
of unlimited size in the minimum counter-examples, called “soft components”. Such global discharging first appears in [3]
and is used, in particular, in [4,6,8,5,7,13]. The terms “feeding area” and “soft component” are introduced in [5] and also
used in our recent paper [7].

2. Non-(k, 1)-colorable graphs with small maximum average degree

Let H;’b be the graph consisting of two adjacent vertices a and b and vertices cy, . . ., ¢; each having neighborhood {a, b}.

We take one copy of Hﬂ] and k — 1 copies oinb and identify all the vertices a to a single vertex a*. Let Hy+ be the resulting
graph. Finally, we take an odd cycle C;,_1 = a1a; . . . a;,_1 and n copies of H,+, and we identify each vertex a; with odd index
with the vertex a* of a copy of Hg«. Let G, x be the resulting graph. An example is given in Fig. 1.

One can observe that G, is not (k, 1)-colorable. Indeed, observe first that no two consecutive vertices x, y on Cyp—1

belong to V;: otherwise all the vertices except x of the subgraph H(’;;‘ associated to x must belong to Vy; it follows that the
degree of b (of Hffg]) in G[V1] is k 4+ 1, a contradiction. Due to the parity of C,,_1, it follows that two consecutive vertices
x,y on Gz, belong to V;. We can suppose that x is of odd index on Cy;—1. If Gy i is (k, 1)-colorable, then one more vertex in
each H, , associated to x must belong to V; it follows that the degree of x in G[V;] is k + 1, a contradiction.

It is easy to check that the maximum average degree of G, x is equal to its average degree. We have:

2IE(Gri)l  22n—1+5(k—Dn+n2k+3))  2(7nk—1)

mad(Gn k) = =
: V(G| 2n—1+3(k— DHn+n(k+2) n(dk+1) — 1
y 4G 14k
im mad(G ) = ——.
00 K 4k

3. Proof of Theorem 1

Let G be a counterexample to Theorem 1 on the fewest number of vertices. Clearly, G is connected and its minimum
degree is at least 2. By definition, we have:

2|E(G)| 10k + 22
<madG) < ———
V(G| 3k+9
10k + 22 10k + 22
2EQ)| — V@) ——— = d - 0,
@I = VO Z 5 UEZV<(U) 3k+9)<

where d(v) is the degree of a vertex v.
Thus, we have:

3(k + 3) 5k + 11
> (72(“1)(1(1))— P ><o. (1)

veV(G)
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Fig. 1. Anexample of G, , withn = 3 and k = 3.

Let the charge w(v) of each vertex v of G be 38:?; dv) — 5’,:}1 . We shall describe a number of structural properties of

G (Section 3.1) which make it possible to vary the charges so that the new charge u* of every vertex becomes nonnegative
for k > 5 (Section 3.2). For 2 < k < 4 there is a difference: some vertices have a non-negative u* individually (Section 3.3),
while the others are partitioned into disjoint subsets, called feeding areas, and the total charge of each feeding area is proven
to be non-negative (Lemma 1 in Section 3.3). Since the sum of charges does not change, in both cases we get a contradiction
with (1), which will complete the proof of Theorem 1.

A vertex of degree d (resp. at least d, at most d) is a d-vertex (resp. d™-vertex, d”-vertex). A (k + 1)~ -vertex is minor;
a (k + 2)*-vertex is senior. A weak vertex is a minor vertex adjacent to exactly one senior vertex. A light vertex is either a
2-vertex or a weak vertex. A 3;-vertex is a 3-vertex adjacent to i 2-vertices.

Claims 2 and 3 below lead us to the following definition. A d-vertex, where d > k+ 3, is soft if it is adjacent to d — 1 weak
vertices. For d = k + 2 the notion of soft vertex is broader: a (k 4 2)-vertex is soft if it is adjacent to k + 1 light vertices.

We will color the vertices of the subgraph of maximum degree at most k by color k and the other vertices by color 1.

3.1. Structural properties of G

Claim 1. No 2-vertex in G is adjacent to a 2-vertex.

Proof. Suppose G has two adjacent 2-vertices t and u, and let s (resp. v) be the other neighbor of t (resp. u). By the minimality
of G, the graph G — {t, u} has a (k, 1)-coloring c. It suffices to color t and u with a color different from those of s and v
respectively to extend c to the whole graph G, a contradiction. O

Claim 2. Every minor vertex in G is adjacent to at least one senior vertex.

Proof. Suppose G has a minor vertex x adjacent only to minor vertices. Take a (k, 1)-coloring ¢ of G — x. If none of the
neighbors of x has color 1, then we simply color x with 1. So suppose that at least one neighbor of x is colored with 1. We
then color x with k. There is now a problem only if there exists a neighbor of x, say y, colored with k and surrounded by
k + 1 neighbors colored with k. In this case, we recolor y with 1. We iterate this operation while such a y exists. The coloring
obtained is a (k, 1)-coloring of G, a contradiction. O

Claim 3. If a senior d-vertex is adjacent to d — 1 weak vertices, then it is adjacent to a non-light vertex.

Proof. Suppose G has a d-vertex x adjacent to vertices xq, ..., X5, where xq, ..., xg_1 are weak while x; is either weak or
has d(x4) = 2. We take a (k, 1)-coloring of G — x. We recolor each weak vertex x; with color k. There is now a problem only
if there exists a neighbor of a x;, say y, colored with k and surrounded by k + 1 neighbors colored with k. In this case, we
recolor y with 1. We iterate this operation until such a y exists. If x4 is a 2-vertex, then we recolor it properly. Now it suffices
to color x with 1, a contradiction. O

Claim 4. No 3-vertex is adjacent to two soft vertices and to a minor vertex.

Proof. Suppose G has a 3-vertex x adjacent to vertices x, x,, X3, where x; and x; are (k + 2)"-vertices while d(x3) < k+ 1.
Lety}, e y;(m_] (resp.yf, ce y§<xz)_1) be the other neighbors of x; (resp. x,). We take a (k, 1)-coloring of G — {x, x1, X2}.
We first recolor the vertices y; as follows: if yj has d(y}) = 2 and is not weak, then we recolor y; properly; otherwise if y is
weak, then we recolor y} with k (followed by recoloring if necessary the neighbors of yj’:'s; see the proof of Claim 3). Now if
d(x1) > k+ 3, then we color x; with 1 (observe that all colored neighbors of x; are colored with k). Assume d(x;) = k + 2.
If the color 1 appears at least twice on the y}, then we color x; with k and with 1 otherwise. We do the same for x,. Finally,
if an identical color appears three times in the neighborhood of x, then we color x properly. Otherwise we color x with k
(followed by recoloring x3 if necessary). This gives an extension of ¢ to the whole graph G, a contradiction. O
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An edge xy is soft if one of the following holds:

e d(x) = k + 2 while y is light, i.e. is a 2-vertex or a weak vertex, or
e x is a minor vertex while d(y) = 2.

The vertex x is called the good end of the soft edge xy.
A soft component SC is a subgraph of G such that:

e A(SC) <k+2;
e each edge joining SC to G \ SC is soft and each good end of the soft edges belongs to SC;
e in addition, a 2-vertex having its two neighbors in SC is in SC.

Claim 5. G does not contain soft components.

Proof. Assume that G contains a soft component S. By minimality of G, the graph G — V (S) has a (k, 1)-coloring c. We will
show that we can extend c to the whole graph G, a contradiction. First, for each edge xy withx € Sandy ¢ S, we will recolor
(if necessary) the vertex y such that the choice of any color for x will not create any problem on y. If y is a 2-vertex, then we
justrecolor y properly. Assume now that y is a weak vertex with degree at least 3. We first consider successively all the weak
vertices y having a neighbor colored with 1: if y is colored with 1, then we recolor y with k (followed by recoloring iteratively
the neighbors of y colored with k which are surrounded by k + 1 neighbors colored with k). We then consider all the weak
vertices y having k neighbors colored with k: we recolor all such y with color 1. Observe that if x is later colored with 1 or k,
then that will not create a conflict for y. Now we extend the coloring c to the whole graph G as follows: we choose a coloring
¢ of S that minimizes ¢ = k - E1; + Ex where E;; denotes the number of edges whose both ends are colored with i in G.
Clearly, such a coloring exists. Moreover we will show that ¢ and ¢ is a (k, 1)-coloring to the whole graph G. Assume that
the coloring ¢ of S and c of G — V(S) is not a (k, 1)-coloring of G. So suppose that there exists a vertex u of S colored with
1 that has two neighbors colored with 1. We just recolor u with k and obtain a coloring with a smaller o which contradicts
the choice of ¢. Similarly, assume that there exists a vertex v of S colored with k that has k + 1 neighbors colored with k.
We just recolor v with 1 and obtain a coloring with a smaller o, which contradicts the choice of ¢. O

Corollary 2. No (k + 2)-vertex can be adjacent to k + 2 light vertices.

3.2. Discharging procedure when k > 5

_ 3k+1 _ k=1 _ _ k=5 _ k43 .
Seta = gy Y S €= m.NotethatZ—a = 2(k+1).When k > 5, we have:
1 3
0<e<-—<2—-a<-<y<1l and -<a<-.
2 3 3

Our rules of discharging are as follows:

R1. Every d-vertex with 3 < d < k + 1 gives 2 — « to each adjacent 2-vertex.

R2. Every weak vertex gets « from its adjacent senior vertex.

R3. Every non-weak 2-vertex gets 1 from each neighbor.

R4. Every minor non-light vertex gets y from each non-soft adjacent (k4 2)-vertex, € from each soft adjacent (k+ 2)-vertex
and 2 — « from each adjacent (k + 3)"-vertex.

We now show that p*(v) > 0 for all v in V(G). Let v be a d-vertex, where d > 2. Set
3(k+3) 5k+ 11

T2k+1) k+1
In particular, uy = —2, 5 = 2’(&15) =—¢,and—1 < u3 <0.

Case1.d > k + 3.

Hd

Claim 6. If d > k + 3, then ug > a(d — 2) + 2; in particular, 3 = a(k+ 1) 4+ 2.

Proof.

3(k+3)d_ 5k+ 11 _ 3k+1

2(k+1) k+1 2(k+1)

_ 4(d — (k+ 3)) -0
k+1 -

pa—a(d—2)—2 = d—2)—2

O

By Claim 3, v is adjacent to at most d — 1 weak vertices. If v is adjacent to at most d — 2 weak vertices, then
w*@W) > ug —a(d—2) — 2 x 1 > 0by R1-R4, due to Claim 6. Suppose now that v is adjacent to exactly d — 1 weak
vertices. By Claim 3, v is adjacent to a non-light vertex. So we have u*(v) > ug — a(d — 1) — (2 — @) > 0 by R1-R4, due
to Claim 6.
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Case2.d =k + 2.
By Corollary 2, the vertex v is adjacent to at most k + 1 light vertices. By Claim 6, we have:
3(k+3)
2(k+ 1)
3(k+3)
2(k+1)

Mi+2 = Hi+3 —

ak+1)+2—

= ak+2y.

If v is adjacent to at most k light vertices, then u*(v) > pry2 — ka — 2y > 0 by R1-R4.

If v is adjacent to exactly k+ 1 light vertices, then v is soft. By Claim 3 and R1-R4, we have u*(v) > g2 —a(k+1)—€ =
2y —a—€e=0.
Case3.2 <d<k+1.

By Claim 1, a 2-vertex is adjacent to 3*-vertices. By Claim 2, a d-vertex with 3 < d < k + 1is adjacent to at mostd — 1
vertices of degree 2, each of which gets 2 — « from v by R1.

Subcase 3.1. v is weak.

Ifd =2, then u*(v) = =2+ (2 — o) + @ = 0 by R1 and R2. Suppose d > 3.

Claim 7. Foreachd > 3, it holds that g — (d — 1)(2 — &) 4+ o = &EE=3),

k+1
Proof.
3(k+3) Sk+11 k+3  3k+1
—d-1@- = - —d-1
pa—@=DQ =) Fa=r-—rd= =~ W=D+ o
_(k+3)d—3)
- k+1 ’

The vertex v is weak. By R2, it gets « from its adjacent senior vertex and gives 2 — « to at most d — 1 adjacent 2-vertices,
it follows from Claim 7 that ©*(v) > (k’il# > 0,whend > 3.

Subcase 3.2. v is not weak.

The vertex v is adjacent to two senior vertices.

Ifd=2,then u*(v) = -2+4+2-1=0byR3.

Ifd = 3, then u3 = 25{—1"1) If v is adjacent to a 2-vertex, then v gives 2 — « by R1. By Claim 4, v is adjacent to a non soft
(k + 2)T-vertex. Note that y > 2 — a > €. By R1and R4, we have u*(v) > u3 — (2 — &) + 2 — a + € = 0. On the other
hand, if v is not adjacent to a 2-vertex, then u*(v) > us +2¢ =€ > 0.

Ifd > 4, then by R1, 11*(v) > g — (d — 2)(2 — o) = K=D3E8 > g

3.3. Discharging procedure when2 < k < 4

3.3.1. Preliminaries

A weak edge between vertices x and y is either an ordinary edge xy or a path xzy with 3 < d(z) < k + 1, where z is
called the intermediate vertex of the weak edge xy. A feeding area, abbreviated to FA, is a maximal subgraph of G consisting of
(k + 2)-vertices mutually accessible from each other along weak edges and of the intermediate vertices of the weak edges
of the feeding area. An edge xy withx € FAandy ¢ FA is a link. By Claim 5, at least one of the links for FA is not soft; such
links will be called rigid. An FA is a weak feeding area, denoted by WFA, if it has just one rigid link xy; in this case, the vertex y
is called the sponsor of WFA. See Fig. 2. Sometimes a WFA with d(x) = i will be denoted by WFA(i), where 3 < i < k+ 2. An
FA with at least two rigid links is strong and denoted by SFA. By definition (more precisely by maximality), no WFA(k + 2)
can be joined by its rigid link to an FA, and no WFA((k + 1)) can be joined by its rigid link to a (k 4 2)-vertex in an FA. An
immediate consequence of Claim 5 is that no two WFA((k 4+ 1)7) can be joined by their rigid link.

3.3.2. Discharging for 2 < k < 4 and its consequences
Setor = =Kkl 1y, — k=1 g — S-k_ QOpserve that 2 — o = <3 We have:

2(k+1) 7 T k10 2(k+1) 2(k+1)
2 3 4
7/6 | 5/4 | 13/10
1/3 ] 1/2 | 3/5

12 [ 1/4] 1/10
—« | 5/6 | 3/4| 7/10

NIR|IR |~
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“O sponsor

" sponsor

FA WFA WFA

O any vertex A 3-vertex
B 4-vertex /\ weak 3-vertex or 2-vertex

@ 2-vertex

Fig. 2. Examples of feeding areas for k = 2.

a>1>2—a>pB and 2—a>y.

Moreover, yu, = —2 and pu3 = .
A 3*-vertex is a 3-vertex adjacent to exactly one minor vertex.
The discharging rules for 2 < k < 4 are almost the same as for k > 5. Our rules of discharging are as follows:

R1. Every d-vertex with 3 < d < k + 1 gives 2 — « to each adjacent 2-vertex.
R2. Every weak vertex gets « from its adjacent senior vertex.

R3. Every non-weak 2-vertex gets 1 from each neighbor.

R4. Every 3*-vertex gets 2 — o from each adjacent (k + 3) T -vertex.

R5. Every WFA gets § along the rigid link from its sponsor.

By the definition of FA, a minor vertex can belong to at most one feeding area. We cannot prove that each vertex v
belonging to an FA has *(v) > 0; however, it turns out that the total new charge u* (FA) of a feeding area FA is nonnegative
(see Lemma 1). This is also a way to arrive at a contradiction with (1).

We now prove p*(v) > 0 assuming that v is not in an FA.

Case1.d =d(v) > k+ 3.

By Claim 3, the vertex v is adjacent to at most d — 1 weak vertices. If v is adjacent to exactly d — 1 weak vertices
z1, ..., Z4—1, then its dth neighbor z4 (which is not a 2-vertex by Claim 3) may be a 3*-vertex or a vertex belonging to a WFA.
Hence v gives « to each adjacent weak vertex by R2 and may give 2 — « by R4, or 8 by R5 (2 — o > J); it follows that
w@) > pug—(d—Da—2—a) = pug—(d—2)a—2 > 0(see Claim 6). Now if v is adjacent to at most d — 2 weak vertices,
then its two last neighbors may be 2-vertices and so u*(v) > g — (d —2)a —2 > 0byR2-R5 (e > 1> 2 — @ > B).
Case2.d =k + 2.

Since every (k + 2)-vertex belongs to an FA by definition, this case does not occur.

Case3.2 <d<k+1.

We consider two cases depending on whether or not v is weak.

Subcase 3.1. v is weak.

If d = 2, then by R1 and R2, v receives 2 — « from its minor neighbor and « from its senior neighbor, so u*(v) =
—24+2—-—a+a=0.

Suppose that d > 3. The vertex v is adjacent to d — 1 minor vertices, say zi, . . ., Z4—1, and to a senior vertex, say z4. By
Claim 5, the edge vz, cannot be the rigid link of a WFA. By R2, v receives « from z4. Now, each edge vz; may lead to a 2-vertex,
and in this case, v gives 2 — « to z;, or may lead to a I-vertex with 3 <[ < k + 1 belonging to a WFA (vz; is a rigid link), and
in this case, v gives § to the corresponding WFA. Since 2 — o > S, it follows that u*(v) > ug— (d—1)2 —a) +a >0
(see Claim 7).

Subcase 3.2. v is not weak.

Ifd =2,then u*(v) = —2+2-1=0byR3.

Assume that d > 3. Observe that v is adjacent to at least two senior vertices (v is not weak) and at most one of them
belongs to an FA (otherwise, v would belong to an FA, contradicting our assumption).

Suppose d = 3.If v is not a 3*-vertex, then v is adjacent to three senior vertices and ©*(v) > us — 8 =0byR5.Ifvisa
3*-vertex, then v is adjacent to a (k+3) T -vertex which gives 2 —a to v by R4. Hence, u*(v) > pu3— 2—a)—B+Q2—a) =0
by R1,R4,and R5 (2 — o > B).

Suppose d > 4. By R1 and R5, v gives nothing to at least one (k + 3)"-vertex; hence u*(v) > pug— (d—2)2 —a) — B =

2d—7)(k+3)
Sy > 0whend > 4.
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Hence we proved that for every vertex v not in an FA, u*(v) > 0. Since the FA’s in G are disjoint, to complete the proof
of Theorem 1 it suffices to prove the following:

Lemma 1. For each FAin G,

WHER) = ) p() =0,

veV(FA)

Proof. Consider a feeding area F and let v be a vertex of F. Let f (v) be the number of neighbors of v in F, s(v) the number
of rigid links incident with v over that v does not send charge by R5, and r(v) the number of all other rigid links incident
with v.

Suppose first v has degree k+ 2. By maximality of the feeding area, v does not send charge by R5. It follows that r(v) = 0.
Hence v sends charge only by R2 and R3 to adjacent light vertices (the charge is sent only over incident soft edges). The final
charge of v is at least

u) = (k+2—=f) —s) —r@)a = ) +s@) +r@)a — 22 —a).

Observe that this charge is non-negative if s(v) 4+ r(v) > 2.If s(v) 4+ r(v) = 1, then the charge is equal to —g, but, in
that case, F is a weak feeding area containing only v, and receives 8 by R5. Hence u*(F) > 0. Thus we can assume that F
has more than one vertex.

Suppose now that 3 < d(v) < k + 1. Vertex v sends charge over soft edges by R1 and over rigid links by R5, and its
charge becomes at least

5k + 11
k+1°

u) = [@d@) —f() =s() —r()2 —a) —r()B = (2 —a)(2dW) +f(v) +s(v)) + yr(v) —
Since d(v) > 3, we have (2 — a)2d(v) — 2411 > _2 The final charge of v is at least

1 =
@2—=a)(f() +s) +yr(v) —2.

Lets =)y s)andr =3, r(v). Foravertexv € F,let us define w(v) = e ifd(v) = k+2and w(v) =2 -«
otherwise. Let n; be the number of vertices of F of degree k + 2 and n, the number of minor vertices of F. Summing the
estimates obtained in the previous two paragraphs, we conclude that the total charge of the vertices of F is at least

Q-s+yr—22—mn —2m+ Y w)f@). (2)

veV(F)

For an edge e = uv of F, let us define w(e) = w(u) + w(v). Observe that ZUEV(F) w)f (v) = ZeeE(F) w(e). Let an edge
of F be good if at least one of its incident vertices has degree k + 2. We have w(e) > 2 if e is good and w(e) = 2(2 — @)
otherwise. Let m be the number of good edges of F. Since F contains a spanning tree consisting of only good edges, we have
m>n;+n—1LLlts§=m-—(ny+n, —1).

Observe that if F is weak, then F has a unique rigid edge (by definition) and by R5 a charge g is transferred inside F
along this edge. If F is strong, then at least one rigid link does not lead to a weak feeding area by Claim 5, and no charge is
transferred along this link by R5. Hence s > 1. Applying these inequalities, we conclude that the total charge of the vertices
of F is at least

Q-—a—y)+yr+s)—2Q—a)yn; —2n,+2ny+np —14+8) =+ yT+s)+yn —2+26.

Recall that F contains at least two vertices. Hence n; > 2.
Let us first consider the case r + s = 1, i.e. F is weak. Then F receives 8 by R5 and its final charge is at least

B+y+ym—24+284+8>3y+28-2>0.

Consider now the case r+s > 2. The charge of F is at least 8 +2y + yn; —2+ 28, which is only negative ifk = 2, n; = 2,
and § = O (in this case, the charge is at least 8 + 4y — 2). Since § = 0, F contains at most one minor vertex, and since
k = 2, such a vertex has degree 3 and can be incident with at most one rigid link. Therefore, at least one vertex of degree
k+ 2 is incident with a rigid link. However, this rigid link contributes « to the charge of F instead of 2 — « that we accounted
for it in (2). Therefore, the charge of F is by 2(a — 1) greater than we estimated, and thus the final total charge of F is
B+4y —2+2(a—1)>0.

This completes the proofs of Lemma 1 and Theorem 1. O
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