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a b s t r a c t

A graph G is (k, 1)-colorable if the vertex set of G can be partitioned into subsets V1 and V2
such that the graph G[V1] induced by the vertices of V1 has maximum degree at most k and
the graph G[V2] induced by the vertices of V2 has maximum degree at most 1. We prove
that every graph with maximum average degree less than 10k+22

3k+9 admits a (k, 1)-coloring,
where k ≥ 2. In particular, every planar graphwith girth at least 7 is (2, 1)-colorable, while
every planar graph with girth at least 6 is (5, 1)-colorable. On the other hand, when k ≥ 2
we construct non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily
close to 14k

4k+1 .
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is (d1, . . . , dk)-colorable if the vertex set of G can be partitioned into subsets V1, . . . , Vk such that the graph
G[Vi] induced by the vertices of Vi has maximum degree at most di for all 1 ≤ i ≤ k. This notion generalizes those of proper
k-coloring (when d1 = · · · = dk = 0) and d-improper k-coloring (when d1 = · · · = dk = d ≥ 1).

Proper and d-improper colorings have been widely studied. As shown by Appel and Haken [1,2], every planar graph is
(0, 0, 0, 0)-colorable. Cowen et al. [10] proved that every planar graph is (2, 2, 2)-colorable (a list version of this theorem
was given by Eaton and Hull [11] and independently Škrekovski [14]). This latter result was extended by Havet and
Sereni [13] to not necessarily planar sparse graphs as follows: for every k ≥ 0, every graph G with mad(G) < 4k+4

k+2 is
(k, k)-colorable (in fact (k, k)-choosable), where

mad(G) = max

2|E(H)|

|V (H)|
,H ⊆ G


is the maximum average degree of a graph G.

Let g(G) denote the girth of graph G (the length of a shortest cycle in G). Glebov and Zambalaeva [12] proved that every
planar graph G is (1, 0)-colorable if g(G) ≥ 16. This was strengthened by Borodin and Ivanova [5] by proving that every
graph G is (1, 0)-colorable if mad(G) < 7

3 , which implies that every planar graph G is (1, 0)-colorable if g(G) ≥ 14.
Borodin and Kostochka [9] proved that every graph G with mad(G) ≤

12
5 is (1, 0)-colorable. In particular, it follows

that every planar graph G with g(G) ≥ 12 is (1, 0)-colorable. On the other hand, they constructed graphs G with mad(G)
arbitrarily close (from above) to 12

5 that are not (1, 0)-colorable.
This was extended by Borodin et al. [7] by proving that every graph with a maximum average degree smaller than 3k+4

k+2
is (k, 0)-colorable if k ≥ 2. The proof in [7] extends that in [5] but does not work for k = 1.
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Table 1
The relationship between the girth of G and its (k, j)-colorability.

g(G) (k, 0) (k, 1) (k, 2)

6 × [7] (5, 1) (2, 2) [13]
7 (8, 0) [7] (2, 1)
8 (4, 0) [7] (1, 1) [13]

In this paper, we focus on (k, 1)-colorability of a graph. A graph G is (k, 1)-colorable if its vertices can be partitioned into
subsets V1 and V2 such that in G[V1] every vertex has degree at most k, while in G[V2] every component has at most two
vertices. Our main result is:

Theorem 1. For k ≥ 2, every graph G with mad(G) < 10k+22
3k+9 is (k, 1)-colorable.

On the other hand, we construct non-(k, 1)-colorable graphswhosemaximum average degree is arbitrarily close to 14k
4k+1 .

Since every planar graph G satisfies mad(G) <
2g(G)

g(G)−2 , from Theorem 1 we have:

Corollary 1. Planar graphs with girth at least 7 are (2, 1)-colorable; planar graphs with girth at least 6 are (5, 1)-colorable.

On the other hand, there is (see [7]) a planar graph with girth 6 that is not (k, 0)-colorable for any k, whereas planar
graphs with girth at least 7 are (8, 0)-colorable, and those with girth at least 8 are (4, 0)-colorable (see [7]). Also note that
planar graphs Gwith girth at least 6 are (2, 2)-colorable, while those with girth at least 8 are (1, 1)-colorable (see [13]). The
results are summarized in Table 1.

A distinctive feature of the discharging in the proof of Theorem 1 for 2 ≤ k ≤ 4 is its ‘‘global nature’’: a charge for certain
vertices is collected from arbitrarily large ‘‘feeding areas’’, which is possible due to the existence of reducible configurations
of unlimited size in the minimum counter-examples, called ‘‘soft components’’. Such global discharging first appears in [3]
and is used, in particular, in [4,6,8,5,7,13]. The terms ‘‘feeding area’’ and ‘‘soft component’’ are introduced in [5] and also
used in our recent paper [7].

2. Non-(k, 1)-colorable graphs with small maximum average degree

Let H i
a,b be the graph consisting of two adjacent vertices a and b and vertices c1, . . . , ci each having neighborhood {a, b}.

We take one copy of Hk+1
a,b and k− 1 copies of H2

a,b and identify all the vertices a to a single vertex a∗. Let Ha∗ be the resulting
graph. Finally, we take an odd cycle C2n−1 = a1a2 . . . a2n−1 and n copies ofHa∗ , andwe identify each vertex ai with odd index
with the vertex a∗ of a copy of Ha∗ . Let Gn,k be the resulting graph. An example is given in Fig. 1.

One can observe that Gn,k is not (k, 1)-colorable. Indeed, observe first that no two consecutive vertices x, y on C2n−1

belong to V2: otherwise all the vertices except x of the subgraph Hk+1
a,b associated to x must belong to V1; it follows that the

degree of b (of Hk+1
a,b ) in G[V1] is k + 1, a contradiction. Due to the parity of C2n−1, it follows that two consecutive vertices

x, y on C2n−1 belong to V1. We can suppose that x is of odd index on C2n−1. If Gn,k is (k, 1)-colorable, then one more vertex in
each H i

a,b associated to xmust belong to V1; it follows that the degree of x in G[V1] is k + 1, a contradiction.
It is easy to check that the maximum average degree of Gn,k is equal to its average degree. We have:

mad(Gn,k) =
2|E(Gn,k)|

|V (Gn,k)|
=

2(2n − 1 + 5(k − 1)n + n(2k + 3))
2n − 1 + 3(k − 1)n + n(k + 2)

=
2(7nk − 1)

n(4k + 1) − 1

lim
n→∞

mad(Gn,k) =
14k

4k + 1
.

3. Proof of Theorem 1

Let G be a counterexample to Theorem 1 on the fewest number of vertices. Clearly, G is connected and its minimum
degree is at least 2. By definition, we have:

2|E(G)|

|V (G)|
≤ mad(G) <

10k + 22
3k + 9

2|E(G)| − |V (G)|
10k + 22
3k + 9

=


v∈V


d(v) −

10k + 22
3k + 9


< 0,

where d(v) is the degree of a vertex v.
Thus, we have:

v∈V (G)


3(k + 3)
2(k + 1)

d(v) −
5k + 11
k + 1


< 0. (1)
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Fig. 1. An example of Gn,k with n = 3 and k = 3.

Let the charge µ(v) of each vertex v of G be 3(k+3)
2(k+1)d(v) −

5k+11
k+1 . We shall describe a number of structural properties of

G (Section 3.1) which make it possible to vary the charges so that the new charge µ∗ of every vertex becomes nonnegative
for k ≥ 5 (Section 3.2). For 2 ≤ k ≤ 4 there is a difference: some vertices have a non-negative µ∗ individually (Section 3.3),
while the others are partitioned into disjoint subsets, called feeding areas, and the total charge of each feeding area is proven
to be non-negative (Lemma 1 in Section 3.3). Since the sum of charges does not change, in both cases we get a contradiction
with (1), which will complete the proof of Theorem 1.

A vertex of degree d (resp. at least d, at most d) is a d-vertex (resp. d+-vertex, d−-vertex). A (k + 1)−-vertex is minor;
a (k + 2)+-vertex is senior. A weak vertex is a minor vertex adjacent to exactly one senior vertex. A light vertex is either a
2-vertex or a weak vertex. A 3i-vertex is a 3-vertex adjacent to i 2-vertices.

Claims 2 and 3 below lead us to the following definition. A d-vertex, where d ≥ k+3, is soft if it is adjacent to d−1 weak
vertices. For d = k + 2 the notion of soft vertex is broader: a (k + 2)-vertex is soft if it is adjacent to k + 1 light vertices.

We will color the vertices of the subgraph of maximum degree at most k by color k and the other vertices by color 1.

3.1. Structural properties of G

Claim 1. No 2-vertex in G is adjacent to a 2-vertex.

Proof. SupposeG has two adjacent 2-vertices t and u, and let s (resp. v) be the other neighbor of t (resp. u). By theminimality
of G, the graph G − {t, u} has a (k, 1)-coloring c. It suffices to color t and u with a color different from those of s and v
respectively to extend c to the whole graph G, a contradiction. �

Claim 2. Every minor vertex in G is adjacent to at least one senior vertex.

Proof. Suppose G has a minor vertex x adjacent only to minor vertices. Take a (k, 1)-coloring c of G − x. If none of the
neighbors of x has color 1, then we simply color x with 1. So suppose that at least one neighbor of x is colored with 1. We
then color x with k. There is now a problem only if there exists a neighbor of x, say y, colored with k and surrounded by
k+ 1 neighbors colored with k. In this case, we recolor ywith 1. We iterate this operation while such a y exists. The coloring
obtained is a (k, 1)-coloring of G, a contradiction. �

Claim 3. If a senior d-vertex is adjacent to d − 1 weak vertices, then it is adjacent to a non-light vertex.

Proof. Suppose G has a d-vertex x adjacent to vertices x1, . . . , xd, where x1, . . . , xd−1 are weak while xd is either weak or
has d(xd) = 2. We take a (k, 1)-coloring of G − x. We recolor each weak vertex xi with color k. There is now a problem only
if there exists a neighbor of a xi, say y, colored with k and surrounded by k + 1 neighbors colored with k. In this case, we
recolor ywith 1. We iterate this operation until such a y exists. If xd is a 2-vertex, then we recolor it properly. Now it suffices
to color xwith 1, a contradiction. �

Claim 4. No 3-vertex is adjacent to two soft vertices and to a minor vertex.

Proof. Suppose G has a 3-vertex x adjacent to vertices x1, x2, x3, where x1 and x2 are (k+ 2)+-vertices while d(x3) ≤ k+ 1.
Let y11, . . . , y

1
d(x1)−1 (resp. y

2
1, . . . , y

2
d(x2)−1) be the other neighbors of x1 (resp. x2). We take a (k, 1)-coloring of G− {x, x1, x2}.

We first recolor the vertices yij as follows: if yij has d(y
i
j) = 2 and is not weak, then we recolor yij properly; otherwise if yij is

weak, then we recolor yij with k (followed by recoloring if necessary the neighbors of yij’s; see the proof of Claim 3). Now if
d(x1) ≥ k + 3, then we color x1 with 1 (observe that all colored neighbors of x1 are colored with k). Assume d(x1) = k + 2.
If the color 1 appears at least twice on the yij, then we color x1 with k and with 1 otherwise. We do the same for x2. Finally,
if an identical color appears three times in the neighborhood of x, then we color x properly. Otherwise we color x with k
(followed by recoloring x3 if necessary). This gives an extension of c to the whole graph G, a contradiction. �
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An edge xy is soft if one of the following holds:

• d(x) = k + 2 while y is light, i.e. is a 2-vertex or a weak vertex, or
• x is a minor vertex while d(y) = 2.

The vertex x is called the good end of the soft edge xy.
A soft component SC is a subgraph of G such that:

• ∆(SC) ≤ k + 2;
• each edge joining SC to G \ SC is soft and each good end of the soft edges belongs to SC;
• in addition, a 2-vertex having its two neighbors in SC is in SC .

Claim 5. G does not contain soft components.

Proof. Assume that G contains a soft component S. By minimality of G, the graph G − V (S) has a (k, 1)-coloring c . We will
show that we can extend c to the whole graph G, a contradiction. First, for each edge xywith x ∈ S and y ∉ S, we will recolor
(if necessary) the vertex y such that the choice of any color for xwill not create any problem on y. If y is a 2-vertex, then we
just recolor y properly. Assume now that y is a weak vertexwith degree at least 3.We first consider successively all theweak
vertices y having a neighbor coloredwith 1: if y is coloredwith 1, thenwe recolor ywith k (followed by recoloring iteratively
the neighbors of y colored with k which are surrounded by k + 1 neighbors colored with k). We then consider all the weak
vertices y having k neighbors colored with k: we recolor all such ywith color 1. Observe that if x is later colored with 1 or k,
then that will not create a conflict for y. Nowwe extend the coloring c to the whole graph G as follows: we choose a coloring
φ of S that minimizes σ = k · E11 + Ekk where Eii denotes the number of edges whose both ends are colored with i in G.
Clearly, such a coloring exists. Moreover we will show that c and φ is a (k, 1)-coloring to the whole graph G. Assume that
the coloring φ of S and c of G − V (S) is not a (k, 1)-coloring of G. So suppose that there exists a vertex u of S colored with
1 that has two neighbors colored with 1. We just recolor u with k and obtain a coloring with a smaller σ which contradicts
the choice of φ. Similarly, assume that there exists a vertex v of S colored with k that has k + 1 neighbors colored with k.
We just recolor v with 1 and obtain a coloring with a smaller σ , which contradicts the choice of φ. �

Corollary 2. No (k + 2)-vertex can be adjacent to k + 2 light vertices.

3.2. Discharging procedure when k ≥ 5

Set α =
3k+1
2(k+1) , γ =

k−1
k+1 , ϵ =

k−5
2(k+1) . Note that 2 − α =

k+3
2(k+1) . When k ≥ 5, we have:

0 ≤ ϵ <
1
2

< 2 − α ≤
2
3

≤ γ < 1 and
4
3

≤ α <
3
2
.

Our rules of discharging are as follows:

R1. Every d-vertex with 3 ≤ d ≤ k + 1 gives 2 − α to each adjacent 2-vertex.
R2. Every weak vertex gets α from its adjacent senior vertex.
R3. Every non-weak 2-vertex gets 1 from each neighbor.
R4. Everyminor non-light vertex gets γ from each non-soft adjacent (k+2)-vertex, ϵ from each soft adjacent (k+2)-vertex

and 2 − α from each adjacent (k + 3)+-vertex.

We now show that µ∗(v) ≥ 0 for all v in V (G). Let v be a d-vertex, where d ≥ 2. Set

µd =
3(k + 3)
2(k + 1)

d −
5k + 11
k + 1

.

In particular, µ2 = −2, µ3 =
−k+5
2(k+1) = −ϵ, and −

1
2 < µ3 ≤ 0.

Case 1. d ≥ k + 3.

Claim 6. If d ≥ k + 3, then µd ≥ α(d − 2) + 2; in particular, µk+3 = α(k + 1) + 2.

Proof.

µd − α(d − 2) − 2 =
3(k + 3)
2(k + 1)

d −
5k + 11
k + 1

−
3k + 1
2(k + 1)

(d − 2) − 2

=
4(d − (k + 3))

k + 1
≥ 0. �

By Claim 3, v is adjacent to at most d − 1 weak vertices. If v is adjacent to at most d − 2 weak vertices, then
µ∗(v) ≥ µd − α(d − 2) − 2 × 1 ≥ 0 by R1–R4, due to Claim 6. Suppose now that v is adjacent to exactly d − 1 weak
vertices. By Claim 3, v is adjacent to a non-light vertex. So we have µ∗(v) ≥ µd − α(d − 1) − (2 − α) ≥ 0 by R1–R4, due
to Claim 6.
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Case 2. d = k + 2.
By Corollary 2, the vertex v is adjacent to at most k + 1 light vertices. By Claim 6, we have:

µk+2 = µk+3 −
3(k + 3)
2(k + 1)

= α(k + 1) + 2 −
3(k + 3)
2(k + 1)

= αk + 2γ .

If v is adjacent to at most k light vertices, then µ∗(v) ≥ µk+2 − kα − 2γ ≥ 0 by R1–R4.
If v is adjacent to exactly k+1 light vertices, then v is soft. By Claim 3 and R1–R4, we haveµ∗(v) ≥ µk+2−α(k+1)−ϵ =

2γ − α − ϵ = 0.
Case 3. 2 ≤ d ≤ k + 1.

By Claim 1, a 2-vertex is adjacent to 3+-vertices. By Claim 2, a d-vertex with 3 ≤ d ≤ k + 1 is adjacent to at most d − 1
vertices of degree 2, each of which gets 2 − α from v by R1.

Subcase 3.1. v is weak.
If d = 2, then µ∗(v) = −2 + (2 − α) + α = 0 by R1 and R2. Suppose d ≥ 3.

Claim 7. For each d ≥ 3, it holds that µd − (d − 1)(2 − α) + α =
(k+3)(d−3)

k+1 .

Proof.

µd − (d − 1)(2 − α) + α =
3(k + 3)
2(k + 1)

d −
5k + 11
k + 1

− (d − 1)
k + 3

2(k + 1)
+

3k + 1
2(k + 1)

=
(k + 3)(d − 3)

k + 1
. �

The vertex v is weak. By R2, it gets α from its adjacent senior vertex and gives 2− α to at most d− 1 adjacent 2-vertices,
it follows from Claim 7 that µ∗(v) ≥

(k+3)(d−3)
k+1 ≥ 0, when d ≥ 3.

Subcase 3.2. v is not weak.
The vertex v is adjacent to two senior vertices.
If d = 2, then µ∗(v) = −2 + 2 · 1 = 0 by R3.
If d = 3, then µ3 =

5−k
2(k+1) . If v is adjacent to a 2-vertex, then v gives 2 − α by R1. By Claim 4, v is adjacent to a non soft

(k + 2)+-vertex. Note that γ ≥ 2 − α > ϵ. By R1 and R4, we have µ∗(v) ≥ µ3 − (2 − α) + 2 − α + ϵ = 0. On the other
hand, if v is not adjacent to a 2-vertex, then µ∗(v) ≥ µ3 + 2ϵ = ϵ ≥ 0.

If d ≥ 4, then by R1, µ∗(v) ≥ µd − (d − 2)(2 − α) =
k(d−4)+3d−8

k+1 ≥ 0.

3.3. Discharging procedure when 2 ≤ k ≤ 4

3.3.1. Preliminaries
A weak edge between vertices x and y is either an ordinary edge xy or a path xzy with 3 ≤ d(z) ≤ k + 1, where z is

called the intermediate vertex of the weak edge xy. A feeding area, abbreviated to FA, is a maximal subgraph of G consisting of
(k + 2)-vertices mutually accessible from each other along weak edges and of the intermediate vertices of the weak edges
of the feeding area. An edge xy with x ∈ FA and y ∉ FA is a link. By Claim 5, at least one of the links for FA is not soft; such
links will be called rigid. An FA is aweak feeding area, denoted byWFA, if it has just one rigid link xy; in this case, the vertex y
is called the sponsor ofWFA. See Fig. 2. Sometimes aWFAwith d(x) = iwill be denoted byWFA(i), where 3 ≤ i ≤ k + 2. An
FA with at least two rigid links is strong and denoted by SFA. By definition (more precisely by maximality), no WFA(k + 2)
can be joined by its rigid link to an FA, and no WFA((k + 1)−) can be joined by its rigid link to a (k + 2)-vertex in an FA. An
immediate consequence of Claim 5 is that no twoWFA((k + 1)−) can be joined by their rigid link.

3.3.2. Discharging for 2 ≤ k ≤ 4 and its consequences
Set α =

3k+1
2(k+1) , γ =

k−1
k+1 , β =

5−k
2(k+1) . Observe that 2 − α =

k+3
2(k+1) . We have:

k 2 3 4
α 7/6 5/4 13/10
γ 1/3 1/2 3/5
β 1/2 1/4 1/10
2−α 5/6 3/4 7/10
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Fig. 2. Examples of feeding areas for k = 2.

α > 1 > 2 − α > β and 2 − α ≥ γ .

Moreover, µ2 = −2 and µ3 = β .
A 3∗-vertex is a 3-vertex adjacent to exactly one minor vertex.
The discharging rules for 2 ≤ k ≤ 4 are almost the same as for k ≥ 5. Our rules of discharging are as follows:

R1. Every d-vertex with 3 ≤ d ≤ k + 1 gives 2 − α to each adjacent 2-vertex.
R2. Every weak vertex gets α from its adjacent senior vertex.
R3. Every non-weak 2-vertex gets 1 from each neighbor.
R4. Every 3∗-vertex gets 2 − α from each adjacent (k + 3)+-vertex.
R5. EveryWFA gets β along the rigid link from its sponsor.

By the definition of FA, a minor vertex can belong to at most one feeding area. We cannot prove that each vertex v
belonging to an FA hasµ∗(v) ≥ 0; however, it turns out that the total new chargeµ∗(FA) of a feeding area FA is nonnegative
(see Lemma 1). This is also a way to arrive at a contradiction with (1).

We now prove µ∗(v) ≥ 0 assuming that v is not in an FA.
Case 1. d = d(v) ≥ k + 3.

By Claim 3, the vertex v is adjacent to at most d − 1 weak vertices. If v is adjacent to exactly d − 1 weak vertices
z1, . . . , zd−1, then its dth neighbor zd (which is not a 2-vertex by Claim 3) may be a 3∗-vertex or a vertex belonging to aWFA.
Hence v gives α to each adjacent weak vertex by R2 and may give 2 − α by R4, or β by R5 (2 − α > β); it follows that
µ∗(v) ≥ µd − (d−1)α− (2−α) = µd − (d−2)α−2 ≥ 0 (see Claim 6). Now if v is adjacent to at most d−2weak vertices,
then its two last neighbors may be 2-vertices and so µ∗(v) ≥ µd − (d − 2)α − 2 ≥ 0 by R2–R5 (α > 1 > 2 − α > β).
Case 2. d = k + 2.

Since every (k + 2)-vertex belongs to an FA by definition, this case does not occur.
Case 3. 2 ≤ d ≤ k + 1.

We consider two cases depending on whether or not v is weak.
Subcase 3.1. v is weak.
If d = 2, then by R1 and R2, v receives 2 − α from its minor neighbor and α from its senior neighbor, so µ∗(v) =

−2 + 2 − α + α = 0.
Suppose that d ≥ 3. The vertex v is adjacent to d − 1 minor vertices, say z1, . . . , zd−1, and to a senior vertex, say zd. By

Claim 5, the edge vzd cannot be the rigid link of aWFA. By R2, v receives α from zd. Now, each edge vzi may lead to a 2-vertex,
and in this case, v gives 2 − α to zi, or may lead to a l-vertex with 3 ≤ l ≤ k + 1 belonging to aWFA (vzi is a rigid link), and
in this case, v gives β to the corresponding WFA. Since 2 − α > β , it follows that µ∗(v) ≥ µd − (d − 1)(2 − α) + α ≥ 0
(see Claim 7).

Subcase 3.2. v is not weak.
If d = 2, then µ∗(v) = −2 + 2 · 1 = 0 by R3.
Assume that d ≥ 3. Observe that v is adjacent to at least two senior vertices (v is not weak) and at most one of them

belongs to an FA (otherwise, v would belong to an FA, contradicting our assumption).
Suppose d = 3. If v is not a 3∗-vertex, then v is adjacent to three senior vertices and µ∗(v) ≥ µ3 − β = 0 by R5. If v is a

3∗-vertex, then v is adjacent to a (k+3)+-vertexwhich gives 2−α to v by R4. Hence,µ∗(v) ≥ µ3−(2−α)−β+(2−α) = 0
by R1, R4, and R5 (2 − α > β).

Suppose d ≥ 4. By R1 and R5, v gives nothing to at least one (k+ 3)+-vertex; hence µ∗(v) ≥ µd − (d− 2)(2−α)−β =
(2d−7)(k+3)

2(k+1) ≥ 0 when d ≥ 4.
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Hence we proved that for every vertex v not in an FA, µ∗(v) ≥ 0. Since the FA’s in G are disjoint, to complete the proof
of Theorem 1 it suffices to prove the following:

Lemma 1. For each FA in G,

µ∗(FA) =


v∈V (FA)

µ∗(v) ≥ 0.

Proof. Consider a feeding area F and let v be a vertex of F . Let f (v) be the number of neighbors of v in F , s(v) the number
of rigid links incident with v over that v does not send charge by R5, and r(v) the number of all other rigid links incident
with v.

Suppose first v has degree k+2. Bymaximality of the feeding area, v does not send charge by R5. It follows that r(v) = 0.
Hence v sends charge only by R2 and R3 to adjacent light vertices (the charge is sent only over incident soft edges). The final
charge of v is at least

µ(v) − (k + 2 − f (v) − s(v) − r(v))α = (f (v) + s(v) + r(v))α − 2(2 − α).

Observe that this charge is non-negative if s(v) + r(v) ≥ 2. If s(v) + r(v) = 1, then the charge is equal to −β , but, in
that case, F is a weak feeding area containing only v, and receives β by R5. Hence µ∗(F) ≥ 0. Thus we can assume that F
has more than one vertex.

Suppose now that 3 ≤ d(v) ≤ k + 1. Vertex v sends charge over soft edges by R1 and over rigid links by R5, and its
charge becomes at least

µ(v) − (d(v) − f (v) − s(v) − r(v))(2 − α) − r(v)β = (2 − α)(2d(v) + f (v) + s(v)) + γ r(v) −
5k + 11
k + 1

.

Since d(v) ≥ 3, we have (2 − α)2d(v) −
5k+11
k+1 ≥ −2. The final charge of v is at least

(2 − α)(f (v) + s(v)) + γ r(v) − 2.

Let s =


v∈V (F) s(v) and r =


v∈V (F) r(v). For a vertex v ∈ F , let us define w(v) = α if d(v) = k+ 2 and w(v) = 2− α
otherwise. Let n1 be the number of vertices of F of degree k + 2 and n2 the number of minor vertices of F . Summing the
estimates obtained in the previous two paragraphs, we conclude that the total charge of the vertices of F is at least

(2 − α)s + γ r − 2(2 − α)n1 − 2n2 +


v∈V (F)

w(v)f (v). (2)

For an edge e = uv of F , let us define w(e) = w(u) + w(v). Observe that


v∈V (F) w(v)f (v) =


e∈E(F) w(e). Let an edge
of F be good if at least one of its incident vertices has degree k + 2. We have w(e) ≥ 2 if e is good and w(e) = 2(2 − α)
otherwise. Letm be the number of good edges of F . Since F contains a spanning tree consisting of only good edges, we have
m ≥ n1 + n2 − 1. Let δ = m − (n1 + n2 − 1).

Observe that if F is weak, then F has a unique rigid edge (by definition) and by R5 a charge β is transferred inside F
along this edge. If F is strong, then at least one rigid link does not lead to a weak feeding area by Claim 5, and no charge is
transferred along this link by R5. Hence s ≥ 1. Applying these inequalities, we conclude that the total charge of the vertices
of F is at least

(2 − α − γ ) + γ (r + s) − 2(2 − α)n1 − 2n2 + 2(n1 + n2 − 1 + δ) = β + γ (r + s) + γ n1 − 2 + 2δ.

Recall that F contains at least two vertices. Hence n1 ≥ 2.
Let us first consider the case r + s = 1, i.e. F is weak. Then F receives β by R5 and its final charge is at least

β + γ + γ n1 − 2 + 2δ + β ≥ 3γ + 2β − 2 ≥ 0.

Consider now the case r+s ≥ 2. The charge of F is at least β +2γ +γ n1−2+2δ, which is only negative if k = 2, n1 = 2,
and δ = 0 (in this case, the charge is at least β + 4γ − 2). Since δ = 0, F contains at most one minor vertex, and since
k = 2, such a vertex has degree 3 and can be incident with at most one rigid link. Therefore, at least one vertex of degree
k+2 is incident with a rigid link. However, this rigid link contributes α to the charge of F instead of 2−α that we accounted
for it in (2). Therefore, the charge of F is by 2(α − 1) greater than we estimated, and thus the final total charge of F is
β + 4γ − 2 + 2(α − 1) ≥ 0.

This completes the proofs of Lemma 1 and Theorem 1. �
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