$(k, 1)$-coloring of sparse graphs

O.V. Borodin ${ }^{\text {a }}$, A.O. Ivanova ${ }^{\text {b }}$, M. Montassier ${ }^{\text {c,* }}$, A. Raspaud ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Mathematics at Novosibirsk State University, Novosibirsk 630090, Russia
${ }^{\mathrm{b}}$ Institute of Mathematics at Yakutsk State University, Yakutsk 677891, Russia
${ }^{\text {c }}$ Université de Bordeaux - LaBRI UMR 5800, F-33405 Talence Cedex, France

ARTICLE INFO

Article history:

Received 23 October 2009
Received in revised form 3 November 2011
Accepted 28 November 2011
Available online 24 December 2011

Keywords:

Improper coloring
Bounded maximum average degree Discharging procedure with global approach

Abstract

A graph G is ($k, 1$)-colorable if the vertex set of G can be partitioned into subsets V_{1} and V_{2} such that the graph $G\left[V_{1}\right]$ induced by the vertices of V_{1} has maximum degree at most k and the graph $G\left[V_{2}\right]$ induced by the vertices of V_{2} has maximum degree at most 1 . We prove that every graph with maximum average degree less than $\frac{10 k+22}{3 k+9}$ admits a $(k, 1)$-coloring, where $k \geq 2$. In particular, every planar graph with girth at least 7 is $(2,1)$-colorable, while every planar graph with girth at least 6 is $(5,1)$-colorable. On the other hand, when $k \geq 2$ we construct non-($k, 1$)-colorable graphs whose maximum average degree is arbitrarily close to $\frac{14 k}{4 k+1}$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is $\left(d_{1}, \ldots, d_{k}\right)$-colorable if the vertex set of G can be partitioned into subsets V_{1}, \ldots, V_{k} such that the graph $G\left[V_{i}\right]$ induced by the vertices of V_{i} has maximum degree at most d_{i} for all $1 \leq i \leq k$. This notion generalizes those of proper k-coloring (when $d_{1}=\cdots=d_{k}=0$) and d-improper k-coloring (when $d_{1}=\cdots=d_{k}=d \geq 1$).

Proper and d-improper colorings have been widely studied. As shown by Appel and Haken [1,2], every planar graph is $(0,0,0,0)$-colorable. Cowen et al. [10] proved that every planar graph is ($2,2,2$)-colorable (a list version of this theorem was given by Eaton and Hull [11] and independently Škrekovski [14]). This latter result was extended by Havet and Sereni [13] to not necessarily planar sparse graphs as follows: for every $k \geq 0$, every $\operatorname{graph} G$ with $\operatorname{mad}(G)<\frac{4 k+4}{k+2}$ is (k, k)-colorable (in fact (k, k)-choosable), where

$$
\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}
$$

is the maximum average degree of a graph G.
Let $g(G)$ denote the girth of graph G (the length of a shortest cycle in G). Glebov and Zambalaeva [12] proved that every planar graph G is $(1,0)$-colorable if $g(G) \geq 16$. This was strengthened by Borodin and Ivanova [5] by proving that every graph G is $(1,0)$-colorable if $\operatorname{mad}(G)<\frac{7}{3}$, which implies that every planar graph G is $(1,0)$-colorable if $g(G) \geq 14$.

Borodin and Kostochka [9] proved that every graph G with $\operatorname{mad}(G) \leq \frac{12}{5}$ is $(1,0)$-colorable. In particular, it follows that every planar graph G with $g(G) \geq 12$ is $(1,0)$-colorable. On the other hand, they constructed graphs G with $\operatorname{mad}(G)$ arbitrarily close (from above) to $\frac{12}{5}$ that are not (1,0)-colorable.

This was extended by Borodin et al. [7] by proving that every graph with a maximum average degree smaller than $\frac{3 k+4}{k+2}$ is ($k, 0$)-colorable if $k \geq 2$. The proof in [7] extends that in [5] but does not work for $k=1$.

[^0]Table 1
The relationship between the girth of G and its (k, j)-colorability.

$g(G)$	$(k, 0)$	$(k, 1)$	$(k, 2)$
6	$\times[7]$	$(5,1)$	$(2,2)[13]$
7	$(8,0)[7]$	$(2,1)$	
8	$(4,0)[7]$	$(1,1)[13]$	

In this paper, we focus on $(k, 1)$-colorability of a graph. A graph G is $(k, 1)$-colorable if its vertices can be partitioned into subsets V_{1} and V_{2} such that in $G\left[V_{1}\right]$ every vertex has degree at most k, while in $G\left[V_{2}\right]$ every component has at most two vertices. Our main result is:
Theorem 1. For $k \geq 2$, every graph G with $\operatorname{mad}(G)<\frac{10 k+22}{3 k+9}$ is $(k, 1)$-colorable.
On the other hand, we construct non- $(k, 1)$-colorable graphs whose maximum average degree is arbitrarily close to $\frac{14 k}{4 k+1}$. Since every planar graph G satisfies $\operatorname{mad}(G)<\frac{2 g(G)}{g(G)-2}$, from Theorem 1 we have:

Corollary 1. Planar graphs with girth at least 7 are $(2,1)$-colorable; planar graphs with girth at least 6 are $(5,1)$-colorable.
On the other hand, there is (see [7]) a planar graph with girth 6 that is not ($k, 0$)-colorable for any k, whereas planar graphs with girth at least 7 are (8,0)-colorable, and those with girth at least 8 are $(4,0)$-colorable (see [7]). Also note that planar graphs G with girth at least 6 are $(2,2)$-colorable, while those with girth at least 8 are (1, 1)-colorable (see [13]). The results are summarized in Table 1.

A distinctive feature of the discharging in the proof of Theorem 1 for $2 \leq k \leq 4$ is its "global nature": a charge for certain vertices is collected from arbitrarily large "feeding areas", which is possible due to the existence of reducible configurations of unlimited size in the minimum counter-examples, called "soft components". Such global discharging first appears in [3] and is used, in particular, in [4,6,8,5,7,13]. The terms "feeding area" and "soft component" are introduced in [5] and also used in our recent paper [7].

2. Non-($k, 1)$-colorable graphs with small maximum average degree

Let $H_{a, b}^{i}$ be the graph consisting of two adjacent vertices a and b and vertices c_{1}, \ldots, c_{i} each having neighborhood $\{a, b\}$. We take one copy of $H_{a, b}^{k+1}$ and $k-1$ copies of $H_{a, b}^{2}$ and identify all the vertices a to a single vertex a^{*}. Let $H_{a^{*}}$ be the resulting graph. Finally, we take an odd cycle $C_{2 n-1}=a_{1} a_{2} \ldots a_{2 n-1}$ and n copies of $H_{a^{*}}$, and we identify each vertex a_{i} with odd index with the vertex a^{*} of a copy of $H_{a^{*}}$. Let $G_{n, k}$ be the resulting graph. An example is given in Fig. 1.

One can observe that $G_{n, k}$ is not ($k, 1$)-colorable. Indeed, observe first that no two consecutive vertices x, y on $C_{2 n-1}$ belong to V_{2} : otherwise all the vertices except x of the subgraph $H_{a, b}^{k+1}$ associated to x must belong to V_{1}; it follows that the degree of b (of $H_{a, b}^{k+1}$) in $G\left[V_{1}\right]$ is $k+1$, a contradiction. Due to the parity of $C_{2 n-1}$, it follows that two consecutive vertices x, y on $C_{2 n-1}$ belong to V_{1}. We can suppose that x is of odd index on $C_{2 n-1}$. If $G_{n, k}$ is ($k, 1$)-colorable, then one more vertex in each $H_{a, b}^{i}$ associated to x must belong to V_{1}; it follows that the degree of x in $G\left[V_{1}\right]$ is $k+1$, a contradiction.

It is easy to check that the maximum average degree of $G_{n, k}$ is equal to its average degree. We have:

$$
\begin{aligned}
& \operatorname{mad}\left(G_{n, k}\right)=\frac{2\left|E\left(G_{n, k}\right)\right|}{\left|V\left(G_{n, k}\right)\right|}=\frac{2(2 n-1+5(k-1) n+n(2 k+3))}{2 n-1+3(k-1) n+n(k+2)}=\frac{2(7 n k-1)}{n(4 k+1)-1} \\
& \lim _{n \rightarrow \infty} \operatorname{mad}\left(G_{n, k}\right)=\frac{14 k}{4 k+1} .
\end{aligned}
$$

3. Proof of Theorem 1

Let G be a counterexample to Theorem 1 on the fewest number of vertices. Clearly, G is connected and its minimum degree is at least 2. By definition, we have:

$$
\begin{aligned}
& \frac{2|E(G)|}{|V(G)|} \leq \operatorname{mad}(G)<\frac{10 k+22}{3 k+9} \\
& 2|E(G)|-|V(G)| \frac{10 k+22}{3 k+9}=\sum_{v \in V}\left(d(v)-\frac{10 k+22}{3 k+9}\right)<0,
\end{aligned}
$$

where $d(v)$ is the degree of a vertex v.
Thus, we have:

$$
\begin{equation*}
\sum_{v \in V(G)}\left(\frac{3(k+3)}{2(k+1)} d(v)-\frac{5 k+11}{k+1}\right)<0 \tag{1}
\end{equation*}
$$

Fig. 1. An example of $G_{n, k}$ with $n=3$ and $k=3$.
Let the charge $\mu(v)$ of each vertex v of G be $\frac{3(k+3)}{2(k+1)} d(v)-\frac{5 k+11}{k+1}$. We shall describe a number of structural properties of G (Section 3.1) which make it possible to vary the charges so that the new charge μ^{*} of every vertex becomes nonnegative for $k \geq 5$ (Section 3.2). For $2 \leq k \leq 4$ there is a difference: some vertices have a non-negative μ^{*} individually (Section 3.3), while the others are partitioned into disjoint subsets, called feeding areas, and the total charge of each feeding area is proven to be non-negative (Lemma 1 in Section 3.3). Since the sum of charges does not change, in both cases we get a contradiction with (1), which will complete the proof of Theorem 1.

A vertex of degree d (resp. at least d, at most d) is a d-vertex (resp. d^{+}-vertex, d^{-}-vertex). A $(k+1)^{-}$-vertex is minor; a $(k+2)^{+}$-vertex is senior. A weak vertex is a minor vertex adjacent to exactly one senior vertex. A light vertex is either a 2 -vertex or a weak vertex. A 3_{i}-vertex is a 3 -vertex adjacent to $i 2$-vertices.

Claims 2 and 3 below lead us to the following definition. A d-vertex, where $d \geq k+3$, is soft if it is adjacent to $d-1$ weak vertices. For $d=k+2$ the notion of soft vertex is broader: a $(k+2)$-vertex is soft if it is adjacent to $k+1$ light vertices.

We will color the vertices of the subgraph of maximum degree at most k by color k and the other vertices by color 1 .

3.1. Structural properties of G

Claim 1. No 2-vertex in G is adjacent to a 2-vertex.

Proof. Suppose G has two adjacent 2 -vertices t and u, and let s (resp. v) be the other neighbor of t (resp. u). By the minimality of G, the graph $G-\{t, u\}$ has a $(k, 1)$-coloring c. It suffices to color t and u with a color different from those of s and v respectively to extend c to the whole graph G, a contradiction.

Claim 2. Every minor vertex in G is adjacent to at least one senior vertex.
Proof. Suppose G has a minor vertex x adjacent only to minor vertices. Take a ($k, 1$)-coloring c of $G-x$. If none of the neighbors of x has color 1 , then we simply color x with 1 . So suppose that at least one neighbor of x is colored with 1 . We then color x with k. There is now a problem only if there exists a neighbor of x, say y, colored with k and surrounded by $k+1$ neighbors colored with k. In this case, we recolor y with 1 . We iterate this operation while such a y exists. The coloring obtained is a $(k, 1)$-coloring of G, a contradiction.

Claim 3. If a senior d-vertex is adjacent to $d-1$ weak vertices, then it is adjacent to a non-light vertex.
Proof. Suppose G has a d-vertex x adjacent to vertices x_{1}, \ldots, x_{d}, where x_{1}, \ldots, x_{d-1} are weak while x_{d} is either weak or has $d\left(x_{d}\right)=2$. We take a $(k, 1)$-coloring of $G-x$. We recolor each weak vertex x_{i} with color k. There is now a problem only if there exists a neighbor of a x_{i}, say y, colored with k and surrounded by $k+1$ neighbors colored with k. In this case, we recolor y with 1 . We iterate this operation until such a y exists. If x_{d} is a 2 -vertex, then we recolor it properly. Now it suffices to color x with 1 , a contradiction.

Claim 4. No 3-vertex is adjacent to two soft vertices and to a minor vertex.
Proof. Suppose G has a 3-vertex x adjacent to vertices x_{1}, x_{2}, x_{3}, where x_{1} and x_{2} are $(k+2)^{+}$-vertices while $d\left(x_{3}\right) \leq k+1$. Let $y_{1}^{1}, \ldots, y_{d\left(x_{1}\right)-1}^{1}$ (resp. $y_{1}^{2}, \ldots, y_{d\left(x_{2}\right)-1}^{2}$) be the other neighbors of x_{1} (resp. x_{2}). We take a $\left(k, 1\right.$)-coloring of $G-\left\{x, x_{1}, x_{2}\right\}$. We first recolor the vertices y_{j}^{i} as follows: if y_{j}^{i} has $d\left(y_{j}^{i}\right)=2$ and is not weak, then we recolor y_{j}^{i} properly; otherwise if y_{j}^{i} is weak, then we recolor y_{j}^{i} with k (followed by recoloring if necessary the neighbors of y_{j}^{i};s; see the proof of Claim 3). Now if $d\left(x_{1}\right) \geq k+3$, then we color x_{1} with 1 (observe that all colored neighbors of x_{1} are colored with k). Assume $d\left(x_{1}\right)=k+2$. If the color 1 appears at least twice on the y_{j}^{i}, then we color x_{1} with k and with 1 otherwise. We do the same for x_{2}. Finally, if an identical color appears three times in the neighborhood of x, then we color x properly. Otherwise we color x with k (followed by recoloring x_{3} if necessary). This gives an extension of c to the whole graph G, a contradiction.

An edge $x y$ is soft if one of the following holds:

- $d(x)=k+2$ while y is light, i.e. is a 2-vertex or a weak vertex, or
- x is a minor vertex while $d(y)=2$.

The vertex x is called the good end of the soft edge $x y$.
A soft component SC is a subgraph of G such that:

- $\Delta(S C) \leq k+2$;
- each edge joining $S C$ to $G \backslash S C$ is soft and each good end of the soft edges belongs to $S C$;
- in addition, a 2-vertex having its two neighbors in SC is in SC.

Claim 5. G does not contain soft components.
Proof. Assume that G contains a soft component S. By minimality of G, the graph $G-V(S)$ has a $(k, 1)$-coloring c. We will show that we can extend c to the whole graph G, a contradiction. First, for each edge $x y$ with $x \in S$ and $y \notin S$, we will recolor (if necessary) the vertex y such that the choice of any color for x will not create any problem on y. If y is a 2 -vertex, then we just recolor y properly. Assume now that y is a weak vertex with degree at least 3 . We first consider successively all the weak vertices y having a neighbor colored with 1 : if y is colored with 1 , then we recolor y with k (followed by recoloring iteratively the neighbors of y colored with k which are surrounded by $k+1$ neighbors colored with k). We then consider all the weak vertices y having k neighbors colored with k : we recolor all such y with color 1 . Observe that if x is later colored with 1 or k, then that will not create a conflict for y. Now we extend the coloring c to the whole graph G as follows: we choose a coloring ϕ of S that minimizes $\sigma=k \cdot E_{11}+E_{k k}$ where $E_{i i}$ denotes the number of edges whose both ends are colored with i in G. Clearly, such a coloring exists. Moreover we will show that c and ϕ is a $(k, 1)$-coloring to the whole graph G. Assume that the coloring ϕ of S and c of $G-V(S)$ is not a $(k, 1)$-coloring of G. So suppose that there exists a vertex u of S colored with 1 that has two neighbors colored with 1 . We just recolor u with k and obtain a coloring with a smaller σ which contradicts the choice of ϕ. Similarly, assume that there exists a vertex v of S colored with k that has $k+1$ neighbors colored with k. We just recolor v with 1 and obtain a coloring with a smaller σ, which contradicts the choice of ϕ.

Corollary 2. No $(k+2)$-vertex can be adjacent to $k+2$ light vertices.

3.2. Discharging procedure when $k \geq 5$

Set $\alpha=\frac{3 k+1}{2(k+1)}, \gamma=\frac{k-1}{k+1}, \epsilon=\frac{k-5}{2(k+1)}$. Note that $2-\alpha=\frac{k+3}{2(k+1)}$. When $k \geq 5$, we have:

$$
0 \leq \epsilon<\frac{1}{2}<2-\alpha \leq \frac{2}{3} \leq \gamma<1 \quad \text { and } \quad \frac{4}{3} \leq \alpha<\frac{3}{2} .
$$

Our rules of discharging are as follows:
R1. Every d-vertex with $3 \leq d \leq k+1$ gives $2-\alpha$ to each adjacent 2 -vertex.
R2. Every weak vertex gets α from its adjacent senior vertex.
R3. Every non-weak 2-vertex gets 1 from each neighbor.
R4. Every minor non-light vertex gets γ from each non-soft adjacent ($k+2$)-vertex, ϵ from each soft adjacent ($k+2$)-vertex and $2-\alpha$ from each adjacent $(k+3)^{+}$-vertex.

We now show that $\mu^{*}(v) \geq 0$ for all v in $V(G)$. Let v be a d-vertex, where $d \geq 2$. Set

$$
\mu_{d}=\frac{3(k+3)}{2(k+1)} d-\frac{5 k+11}{k+1}
$$

In particular, $\mu_{2}=-2, \mu_{3}=\frac{-k+5}{2(k+1)}=-\epsilon$, and $-\frac{1}{2}<\mu_{3} \leq 0$.
Case 1. $d \geq k+3$.
Claim 6. If $d \geq k+3$, then $\mu_{d} \geq \alpha(d-2)+2$; in particular, $\mu_{k+3}=\alpha(k+1)+2$.
Proof.

$$
\begin{aligned}
\mu_{d}-\alpha(d-2)-2 & =\frac{3(k+3)}{2(k+1)} d-\frac{5 k+11}{k+1}-\frac{3 k+1}{2(k+1)}(d-2)-2 \\
& =\frac{4(d-(k+3))}{k+1} \geq 0
\end{aligned}
$$

By Claim 3, v is adjacent to at most $d-1$ weak vertices. If v is adjacent to at most $d-2$ weak vertices, then $\mu^{*}(v) \geq \mu_{d}-\alpha(d-2)-2 \times 1 \geq 0$ by R1-R4, due to Claim 6 . Suppose now that v is adjacent to exactly $d-1$ weak vertices. By Claim 3, v is adjacent to a non-light vertex. So we have $\mu^{*}(v) \geq \mu_{d}-\alpha(d-1)-(2-\alpha) \geq 0$ by R1-R4, due to Claim 6.

Case 2. $d=k+2$.
By Corollary 2, the vertex v is adjacent to at most $k+1$ light vertices. By Claim 6, we have:

$$
\begin{aligned}
\mu_{k+2} & =\mu_{k+3}-\frac{3(k+3)}{2(k+1)} \\
& =\alpha(k+1)+2-\frac{3(k+3)}{2(k+1)} \\
& =\alpha k+2 \gamma
\end{aligned}
$$

If v is adjacent to at most k light vertices, then $\mu^{*}(v) \geq \mu_{k+2}-k \alpha-2 \gamma \geq 0$ by R1-R4.
If v is adjacent to exactly $k+1$ light vertices, then v is soft. By Claim 3 and R1-R4, we have $\mu^{*}(v) \geq \mu_{k+2}-\alpha(k+1)-\epsilon=$ $2 \gamma-\alpha-\epsilon=0$.
Case $3.2 \leq d \leq k+1$.
By Claim 1, a 2-vertex is adjacent to 3^{+}-vertices. By Claim 2, a d-vertex with $3 \leq d \leq k+1$ is adjacent to at most $d-1$ vertices of degree 2 , each of which gets $2-\alpha$ from v by R1.

Subcase 3.1. v is weak.
If $d=2$, then $\mu^{*}(v)=-2+(2-\alpha)+\alpha=0$ by R1 and R2. Suppose $d \geq 3$.
Claim 7. For each $d \geq 3$, it holds that $\mu_{d}-(d-1)(2-\alpha)+\alpha=\frac{(k+3)(d-3)}{k+1}$.
Proof.

$$
\begin{aligned}
\mu_{d}-(d-1)(2-\alpha)+\alpha & =\frac{3(k+3)}{2(k+1)} d-\frac{5 k+11}{k+1}-(d-1) \frac{k+3}{2(k+1)}+\frac{3 k+1}{2(k+1)} \\
& =\frac{(k+3)(d-3)}{k+1}
\end{aligned}
$$

The vertex v is weak. By R2, it gets α from its adjacent senior vertex and gives $2-\alpha$ to at most $d-1$ adjacent 2 -vertices, it follows from Claim 7 that $\mu^{*}(v) \geq \frac{(k+3)(d-3)}{k+1} \geq 0$, when $d \geq 3$.

Subcase 3.2. v is not weak.
The vertex v is adjacent to two senior vertices.
If $d=2$, then $\mu^{*}(v)=-2+2 \cdot 1=0$ by R3.
If $d=3$, then $\mu_{3}=\frac{5-k}{2(k+1)}$. If v is adjacent to a 2-vertex, then v gives $2-\alpha$ by R1. By Claim 4, v is adjacent to a non soft $(k+2)^{+}$-vertex. Note that $\gamma \geq 2-\alpha>\epsilon$. By R1 and R4, we have $\mu^{*}(v) \geq \mu_{3}-(2-\alpha)+2-\alpha+\epsilon=0$. On the other hand, if v is not adjacent to a 2-vertex, then $\mu^{*}(v) \geq \mu_{3}+2 \epsilon=\epsilon \geq 0$.

If $d \geq 4$, then by R1, $\mu^{*}(v) \geq \mu_{d}-(d-2)(2-\alpha)=\frac{k(d-4)+3 d-\overline{8}}{k+1} \geq 0$.

3.3. Discharging procedure when $2 \leq k \leq 4$

3.3.1. Preliminaries

A weak edge between vertices x and y is either an ordinary edge $x y$ or a path $x z y$ with $3 \leq d(z) \leq k+1$, where z is called the intermediate vertex of the weak edge $x y$. A feeding area, abbreviated to $F A$, is a maximal subgraph of G consisting of ($k+2$)-vertices mutually accessible from each other along weak edges and of the intermediate vertices of the weak edges of the feeding area. An edge $x y$ with $x \in F A$ and $y \notin F A$ is a link. By Claim 5, at least one of the links for $F A$ is not soft; such links will be called rigid. An FA is a weak feeding area, denoted by WFA, if it has just one rigid link $x y$; in this case, the vertex y is called the sponsor of WFA. See Fig. 2. Sometimes a WFA with $d(x)=i$ will be denoted by $W F A(i)$, where $3 \leq i \leq k+2$. An $F A$ with at least two rigid links is strong and denoted by SFA. By definition (more precisely by maximality), no $W F A(k+2)$ can be joined by its rigid link to an $F A$, and no $W F A\left((k+1)^{-}\right)$can be joined by its rigid link to a $(k+2)$-vertex in an $F A$. An immediate consequence of Claim 5 is that no two $\operatorname{WFA}\left((k+1)^{-}\right)$can be joined by their rigid link.
3.3.2. Discharging for $2 \leq k \leq 4$ and its consequences

Set $\alpha=\frac{3 k+1}{2(k+1)}, \gamma=\frac{k-1}{k+1}, \beta=\frac{5-k}{2(k+1)}$. Observe that $2-\alpha=\frac{k+3}{2(k+1)}$. We have:

k	2	3	4
α	$7 / 6$	$5 / 4$	$13 / 10$
γ	$1 / 3$	$1 / 2$	$3 / 5$
β	$1 / 2$	$1 / 4$	$1 / 10$
$2-\alpha$	$5 / 6$	$3 / 4$	$7 / 10$

Fig. 2. Examples of feeding areas for $k=2$.

$$
\alpha>1>2-\alpha>\beta \quad \text { and } \quad 2-\alpha \geq \gamma .
$$

Moreover, $\mu_{2}=-2$ and $\mu_{3}=\beta$.
A 3*-vertex is a 3 -vertex adjacent to exactly one minor vertex.
The discharging rules for $2 \leq k \leq 4$ are almost the same as for $k \geq 5$. Our rules of discharging are as follows:
R1. Every d-vertex with $3 \leq d \leq k+1$ gives $2-\alpha$ to each adjacent 2 -vertex.
R2. Every weak vertex gets α from its adjacent senior vertex.
R3. Every non-weak 2-vertex gets 1 from each neighbor.
R4. Every 3^{*}-vertex gets $2-\alpha$ from each adjacent $(k+3)^{+}$-vertex.
R5. Every WFA gets β along the rigid link from its sponsor.
$B y$ the definition of $F A$, a minor vertex can belong to at most one feeding area. We cannot prove that each vertex v belonging to an $F A$ has $\mu^{*}(v) \geq 0$; however, it turns out that the total new charge $\mu^{*}(F A)$ of a feeding area $F A$ is nonnegative (see Lemma 1). This is also a way to arrive at a contradiction with (1).

We now prove $\mu^{*}(v) \geq 0$ assuming that v is not in an $F A$.
Case 1. $d=d(v) \geq k+3$.
By Claim 3, the vertex v is adjacent to at most $d-1$ weak vertices. If v is adjacent to exactly $d-1$ weak vertices z_{1}, \ldots, z_{d-1}, then its d th neighbor z_{d} (which is not a 2 -vertex by Claim 3) may be a 3^{*}-vertex or a vertex belonging to a WFA. Hence v gives α to each adjacent weak vertex by R2 and may give $2-\alpha$ by R4, or β by R5 ($2-\alpha>\beta$); it follows that $\mu^{*}(v) \geq \mu_{d}-(d-1) \alpha-(2-\alpha)=\mu_{d}-(d-2) \alpha-2 \geq 0$ (see Claim 6). Now if v is adjacent to at most $d-2$ weak vertices, then its two last neighbors may be 2-vertices and so $\mu^{*}(v) \geq \mu_{d}-(d-2) \alpha-2 \geq 0$ by R2-R5 ($\alpha>1>2-\alpha>\beta$).
Case 2. $d=k+2$.
Since every $(k+2)$-vertex belongs to an $F A$ by definition, this case does not occur.
Case $3.2 \leq d \leq k+1$.
We consider two cases depending on whether or not v is weak.
Subcase 3.1. v is weak.
If $d=2$, then by R1 and R2, v receives $2-\alpha$ from its minor neighbor and α from its senior neighbor, so $\mu^{*}(v)=$ $-2+2-\alpha+\alpha=0$.

Suppose that $d \geq 3$. The vertex v is adjacent to $d-1$ minor vertices, say z_{1}, \ldots, z_{d-1}, and to a senior vertex, say z_{d}. By Claim 5, the edge $v z_{d}$ cannot be the rigid link of a $W F A$. By R2, v receives α from z_{d}. Now, each edge $v z_{i}$ may lead to a 2 -vertex, and in this case, v gives $2-\alpha$ to z_{i}, or may lead to a l-vertex with $3 \leq l \leq k+1$ belonging to a $W F A$ ($v z_{i}$ is a rigid link), and in this case, v gives β to the corresponding WFA. Since $2-\alpha>\beta$, it follows that $\mu^{*}(v) \geq \mu_{d}-(d-1)(2-\alpha)+\alpha \geq 0$ (see Claim 7).

Subcase 3.2. v is not weak.
If $d=2$, then $\mu^{*}(v)=-2+2 \cdot 1=0$ by R3.
Assume that $d \geq 3$. Observe that v is adjacent to at least two senior vertices (v is not weak) and at most one of them belongs to an $F A$ (otherwise, v would belong to an $F A$, contradicting our assumption).

Suppose $d=3$. If v is not a 3^{*}-vertex, then v is adjacent to three senior vertices and $\mu^{*}(v) \geq \mu_{3}-\beta=0$ by R5. If v is a 3^{*}-vertex, then v is adjacent to a $(k+3)^{+}$-vertex which gives $2-\alpha$ to v by R4. Hence, $\mu^{*}(v) \geq \mu_{3}-(2-\alpha)-\beta+(2-\alpha)=0$ by R1, R4, and R5 $(2-\alpha>\beta)$.

Suppose $d \geq 4$. By R1 and R5, v gives nothing to at least one $(k+3)^{+}$-vertex; hence $\mu^{*}(v) \geq \mu_{d}-(d-2)(2-\alpha)-\beta=$ $\frac{(2 d-7)(k+3)}{2(k+1)} \geq 0$ when $d \geq 4$.

Hence we proved that for every vertex v not in an $F A, \mu^{*}(v) \geq 0$. Since the $F A$'s in G are disjoint, to complete the proof of Theorem 1 it suffices to prove the following:

Lemma 1. For each FA in G,

$$
\mu^{*}(F A)=\sum_{v \in V(F A)} \mu^{*}(v) \geq 0
$$

Proof. Consider a feeding area F and let v be a vertex of F. Let $f(v)$ be the number of neighbors of v in $F, s(v)$ the number of rigid links incident with v over that v does not send charge by R5, and $r(v)$ the number of all other rigid links incident with v.

Suppose first v has degree $k+2$. By maximality of the feeding area, v does not send charge by R5. It follows that $r(v)=0$. Hence v sends charge only by R2 and R3 to adjacent light vertices (the charge is sent only over incident soft edges). The final charge of v is at least

$$
\mu(v)-(k+2-f(v)-s(v)-r(v)) \alpha=(f(v)+s(v)+r(v)) \alpha-2(2-\alpha) .
$$

Observe that this charge is non-negative if $s(v)+r(v) \geq 2$. If $s(v)+r(v)=1$, then the charge is equal to $-\beta$, but, in that case, F is a weak feeding area containing only v, and receives β by R5. Hence $\mu^{*}(F) \geq 0$. Thus we can assume that F has more than one vertex.

Suppose now that $3 \leq d(v) \leq k+1$. Vertex v sends charge over soft edges by R1 and over rigid links by R5, and its charge becomes at least

$$
\mu(v)-(d(v)-f(v)-s(v)-r(v))(2-\alpha)-r(v) \beta=(2-\alpha)(2 d(v)+f(v)+s(v))+\gamma r(v)-\frac{5 k+11}{k+1} .
$$

Since $d(v) \geq 3$, we have $(2-\alpha) 2 d(v)-\frac{5 k+11}{k+1} \geq-2$. The final charge of v is at least

$$
(2-\alpha)(f(v)+s(v))+\gamma r(v)-2 .
$$

Let $s=\sum_{v \in V(F)} s(v)$ and $r=\sum_{v \in V(F)} r(v)$. For a vertex $v \in F$, let us define $w(v)=\alpha$ if $d(v)=k+2$ and $w(v)=2-\alpha$ otherwise. Let n_{1} be the number of vertices of F of degree $k+2$ and n_{2} the number of minor vertices of F. Summing the estimates obtained in the previous two paragraphs, we conclude that the total charge of the vertices of F is at least

$$
\begin{equation*}
(2-\alpha) s+\gamma r-2(2-\alpha) n_{1}-2 n_{2}+\sum_{v \in V(F)} w(v) f(v) \tag{2}
\end{equation*}
$$

For an edge $e=u v$ of F, let us define $w(e)=w(u)+w(v)$. Observe that $\sum_{v \in V(F)} w(v) f(v)=\sum_{e \in E(F)} w(e)$. Let an edge of F be good if at least one of its incident vertices has degree $k+2$. We have $w(e) \geq 2$ if e is good and $w(e)=2(2-\alpha)$ otherwise. Let m be the number of good edges of F. Since F contains a spanning tree consisting of only good edges, we have $m \geq n_{1}+n_{2}-1$. Let $\delta=m-\left(n_{1}+n_{2}-1\right)$.

Observe that if F is weak, then F has a unique rigid edge (by definition) and by R5 a charge β is transferred inside F along this edge. If F is strong, then at least one rigid link does not lead to a weak feeding area by Claim 5 , and no charge is transferred along this link by R5. Hence $s \geq 1$. Applying these inequalities, we conclude that the total charge of the vertices of F is at least

$$
(2-\alpha-\gamma)+\gamma(r+s)-2(2-\alpha) n_{1}-2 n_{2}+2\left(n_{1}+n_{2}-1+\delta\right)=\beta+\gamma(r+s)+\gamma n_{1}-2+2 \delta .
$$

Recall that F contains at least two vertices. Hence $n_{1} \geq 2$.
Let us first consider the case $r+s=1$, i.e. F is weak. Then F receives β by R5 and its final charge is at least

$$
\beta+\gamma+\gamma n_{1}-2+2 \delta+\beta \geq 3 \gamma+2 \beta-2 \geq 0
$$

Consider now the case $r+s \geq 2$. The charge of F is at least $\beta+2 \gamma+\gamma n_{1}-2+2 \delta$, which is only negative if $k=2, n_{1}=2$, and $\delta=0$ (in this case, the charge is at least $\beta+4 \gamma-2$). Since $\delta=0, F$ contains at most one minor vertex, and since $k=2$, such a vertex has degree 3 and can be incident with at most one rigid link. Therefore, at least one vertex of degree $k+2$ is incident with a rigid link. However, this rigid link contributes α to the charge of F instead of $2-\alpha$ that we accounted for it in (2). Therefore, the charge of F is by $2(\alpha-1)$ greater than we estimated, and thus the final total charge of F is $\beta+4 \gamma-2+2(\alpha-1) \geq 0$.

This completes the proofs of Lemma 1 and Theorem 1.

Acknowledgments

The authors are thankful to Douglas West and the referees for numerous remarks on improving the presentation, and especially to one of the referees for suggesting a short proof for Lemma 1.

The first and second authors were supported by grants 09-01-00244 and 08-01-00673 of the Russian Foundation for Basic Research, the second author was also supported by the President of Russia grant for young scientists MK-2302.2008.1. The third author was supported by the ANR Project GRATOS ANR-09-JCJC-0041-01 The fourth author was supported by the ANR Project IDEA ANR-08-EMER-007.

References

[1] K. Appel, W. Haken, Every planar map is four colorable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.
[2] K. Appel, W. Haken, Every planar map is four colorable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567.
[3] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185.
[4] O.V. Borodin, S.G. Hartke, A.O. Ivanova, A.V. Kostochka, D.B. West, (5, 2)-coloring of sparse graphs, Sib. Elektron. Mat. Izv. 5 (2008) 417-426, http://semr.math.nsc.ru.
[5] O.V. Borodin, A.O. Ivanova, Near proper 2-coloring the vertices of sparse graphs, Diskretn. Anal. Issled. Oper. 16 (2) (2009) 16-20.
[6] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Oriented vertex 5-coloring of sparse graphs, Diskretn. Anal. Issled. Oper. 13 (1) (2006) 16-32 (in Russian).
[7] O.V. Borodin, A.O. Ivanova, M. Montassier, P. Ochem, A. Raspaud, Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k, J. Graph Theory 65 (2) (2010) 83-93.
[8] O.V. Borodin, A.O. Ivanova, T.K. Neustroeva, List 2-distance $(\Delta+1)$-coloring of planar graphs with given girth, Diskretn. Anal. Issled. Oper. 14 (3) (2007) 13-30 (in Russian).
[9] O.V. Borodin, A.V. Kostochka, Vertex partitions of sparse graphs into an independent vertex set and subgraph of maximum degree at most one, Sibirsk. Mat. Zh. 52 (5) (2011) 1004-1010 (in Russian).
[10] L.J. Cowen, R.H. Cowen, D.R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (2) (1986) 187-195.
[11] N. Eaton, T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 79-87.
[12] A.N. Glebov, D.Zh. Zambalaeva, Path partitions of planar graphs, Sib. Elektron. Mat. Izv. 4 (2007) 450-459, http://semr.math.nsc.ru (in Russian).
[13] F. Havet, J.-S. Sereni, Improper choosability of graphs and maximum average degree, J. Graph Theory 52 (2006) 181-199.
[14] R. Škrekovski, List improper coloring of planar graphs, Combin. Probab. Comput. 8 (1999) 293-299.

[^0]: * Corresponding author.

 E-mail address: montassi@labri.fr (M. Montassier).

