3,652 research outputs found

    Entropy of unimodular Lattice Triangulations

    Full text link
    Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where its entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achive excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is C=2.196(3)C=2.196(3) consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.Comment: 6 pages, 7 figure

    Crumpled triangulations and critical points in 4D simplicial quantum gravity

    Get PDF
    This is an expanded and revised version of our geometrical analysis of the strong coupling phase of 4D simplicial quantum gravity. The main differences with respect to the former version is a full discussion of singular triangulations with singular vertices connected by a subsingular edge. In particular we provide analytical arguments which characterize the entropical properties of triangulations with a singular edge connecting two singular vertices. The analytical estimate of the location of the critical coupling at k_2\simeq 1.3093 is presented in more details. Finally we also provide a model for pseudo-criticality at finite N_4(S^4).Comment: 44 page

    There are 174 Subdivisions of the Hexahedron into Tetrahedra

    Full text link
    This article answers an important theoretical question: How many different subdivisions of the hexahedron into tetrahedra are there? It is well known that the cube has five subdivisions into 6 tetrahedra and one subdivision into 5 tetrahedra. However, all hexahedra are not cubes and moving the vertex positions increases the number of subdivisions. Recent hexahedral dominant meshing methods try to take these configurations into account for combining tetrahedra into hexahedra, but fail to enumerate them all: they use only a set of 10 subdivisions among the 174 we found in this article. The enumeration of these 174 subdivisions of the hexahedron into tetrahedra is our combinatorial result. Each of the 174 subdivisions has between 5 and 15 tetrahedra and is actually a class of 2 to 48 equivalent instances which are identical up to vertex relabeling. We further show that exactly 171 of these subdivisions have a geometrical realization, i.e. there exist coordinates of the eight hexahedron vertices in a three-dimensional space such that the geometrical tetrahedral mesh is valid. We exhibit the tetrahedral meshes for these configurations and show in particular subdivisions of hexahedra with 15 tetrahedra that have a strictly positive Jacobian

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Volumes of Polytopes Without Triangulations

    Full text link
    The geometry of the dual amplituhedron is generally described in reference to a particular triangulation. A given triangulation manifests only certain aspects of the underlying space while obscuring others, therefore understanding this geometry without reference to a particular triangulation is desirable. In this note we introduce a new formalism for computing the volumes of general polytopes in any dimension. We define new "vertex objects" and introduce a calculus for expressing volumes of polytopes in terms of them. These expressions are unique, independent of any triangulation, manifestly depend only on the vertices of the underlying polytope, and can be used to easily derive identities amongst different triangulations. As one application of this formalism, we obtain new expressions for the volume of the tree-level, nn-point NMHV dual amplituhedron.Comment: 32 pages, 12 figure

    New higher-order transition in causal dynamical triangulations

    Get PDF
    We reinvestigate the recently discovered bifurcation phase transition in Causal Dynamical Triangulations (CDT) and provide further evidence that it is a higher order transition. We also investigate the impact of introducing matter in the form of massless scalar fields to CDT. We discuss the impact of scalar fields on the measured spatial volumes and fluctuation profiles in addition to analysing how the scalar fields influence the position of the bifurcation transition.Comment: 15 pages, 11 figures. Conforms with version accepted for publication in Phys. Rev.

    Signature Change of the Metric in CDT Quantum Gravity?

    Get PDF
    We study the effective transfer matrix within the semiclassical and bifurcation phases of CDT quantum gravity. We find that for sufficiently large lattice volumes the kinetic term of the effective transfer matrix has a different sign in each of the two phases. We argue that this sign change can be viewed as a Wick rotation of the metric. We discuss the likely microscopic mechanism responsible for the bifurcation phase transition, and propose an order parameter that can potentially be used to determine the precise location and order of the transition. Using the effective transfer matrix we approximately locate the position of the bifurcation transition in some region of coupling constant space, allowing us to present an updated version of the CDT phase diagram.Comment: 16 pages, 9 figure
    corecore