2,485 research outputs found

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach

    3D Mesh Simplification. A survey of algorithms and CAD model simplification tests

    Get PDF
    Simplification of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simplification, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simplified models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simplification algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simplification algorithms that have not been surveyed in previous mesh simplification reviews.Siirretty Doriast

    A Comparative Study on Polygonal Mesh Simplification Algorithms

    Get PDF
    Polygonal meshes are a common way of representing three dimensional surface models in many different areas of computer graphics and geometry processing. However, with the evolution of the technology, polygonal models are becoming more and more complex. As the complexity of the models increase, the visual approximation to the real world objects get better but there is a trade-off between the cost of processing these models and better visual approximation. In order to reduce this cost, the number of polygons in a model can be reduced by mesh simplification algorithms. These algorithms are widely used such that nearly all of the popular mesh editing libraries include at least one of them. In this work, polygonal simplification algorithms that are embedded in open source libraries: CGAL, VTK and OpenMesh are compared with the Metro geometric error measuring tool. By this way we try to supply a guidance for developers for publicly available mesh libraries in order to implement polygonal mesh simplification
    corecore