211 research outputs found

    Versatile and declarative dynamic programming using pair algebras

    Get PDF
    BACKGROUND: Dynamic programming is a widely used programming technique in bioinformatics. In sharp contrast to the simplicity of textbook examples, implementing a dynamic programming algorithm for a novel and non-trivial application is a tedious and error prone task. The algebraic dynamic programming approach seeks to alleviate this situation by clearly separating the dynamic programming recurrences and scoring schemes. RESULTS: Based on this programming style, we introduce a generic product operation of scoring schemes. This leads to a remarkable variety of applications, allowing us to achieve optimizations under multiple objective functions, alternative solutions and backtracing, holistic search space analysis, ambiguity checking, and more, without additional programming effort. We demonstrate the method on several applications for RNA secondary structure prediction. CONCLUSION: The product operation as introduced here adds a significant amount of flexibility to dynamic programming. It provides a versatile testbed for the development of new algorithmic ideas, which can immediately be put to practice

    Versatile event correlation with algebraic effects

    Get PDF
    We present the first language design to uniformly express variants of n -way joins over asynchronous event streams from different domains, e.g., stream-relational algebra, event processing, reactive and concurrent programming. We model asynchronous reactive programs and joins in direct style, on top of algebraic effects and handlers. Effect handlers act as modular interpreters of event notifications, enabling fine-grained control abstractions and customizable event matching. Join variants can be considered as cartesian product computations with ”degenerate” control flow, such that unnecessary tuples are not materialized a priori. Based on this computational interpretation, we decompose joins into a generic, naive enumeration procedure of the cartesian product, plus variant-specific extensions, represented in terms of user-supplied effect handlers. Our microbenchmarks validate that this extensible design avoids needless materialization. Alongside a formal semantics for joining and prototypes in Koka and multicore OCaml, we contribute a systematic comparison of the covered domains and features. ERC, Advanced Grant No. 321217 ERC, Consolidator Grant No. 617805 DFG, SFB 1053 DFG, SA 2918/2-

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Programmiersprachen und Rechenkonzepte

    Get PDF
    Die GI-Fachgruppe 2.1.4 "Programmiersprachen und Rechenkonzepte" veranstaltete vom 3. bis 5. Mai 2004 im Physikzentrum Bad Honnef ihren jährlichen Workshop. Dieser Bericht enthält eine Zusammenstellung der Beiträge. Das Treffen diente wie in jedem Jahr gegenseitigem Kennenlernen, der Vertiefung gegenseitiger Kontakte, der Vorstellung neuer Arbeiten und Ergebnisse und vor allem der intensiven Diskussion. Ein breites Spektrum von Beiträgen, von theoretischen Grundlagen über Programmentwicklung, Sprachdesign, Softwaretechnik und Objektorientierung bis hin zur überraschend langen Geschichte der Rechenautomaten seit der Antike bildete ein interessantes und abwechlungsreiches Programm. Unter anderem waren imperative, funktionale und funktional-logische Sprachen, Software/Hardware-Codesign, Semantik, Web-Programmierung und Softwaretechnik, generative Programmierung, Aspekte und formale Testunterstützung Thema. Interessante Beiträge zu diesen und weiteren Themen gaben Anlaß zu Erfahrungsaustausch und Fachgesprächen auch mit den Teilnehmern des zeitgleich im Physikzentrum Bad Honnef stattfindenden Workshops "Reengineering". Allen Teilnehmern möchte ich dafür danken, daß sie mit ihren Vorträgen und konstruktiven Diskussionsbeiträgen zum Gelingen des Workshops beigetragen haben. Dank für die Vielfalt und Qualität der Beiträge gebührt den Autoren. Ein Wort des Dankes gebührt ebenso den Mitarbeitern und der Leitung des Physikzentrums Bad Honnef für die gewohnte angenehme und anregende Atmosphäre und umfassende Betreuung

    Compiling a domain specific language for dynamic programming

    Get PDF
    Steffen P. Compiling a domain specific language for dynamic programming. Bielefeld (Germany): Bielefeld University; 2006

    Structural analysis of aligned RNAs

    Get PDF
    The knowledge about classes of non-coding RNAs (ncRNAs) is growing very fast and it is mainly the structure which is the common characteristic property shared by members of the same class. For correct characterization of such classes it is therefore of great importance to analyse the structural features in great detail. In this manuscript I present RNAlishapes which combines various secondary structure analysis methods, such as suboptimal folding and shape abstraction, with a comparative approach known as RNA alignment folding. RNAlishapes makes use of an extended thermodynamic model and covariance scoring, which allows to reward covariation of paired bases. Applying the algorithm to a set of bacterial trp-operon leaders using shape abstraction it was able to identify the two alternating conformations of this attenuator. Besides providing in-depth analysis methods for aligned RNAs, the tool also shows a fairly well prediction accuracy. Therefore, RNAlishapes provides the community with a powerful tool for structural analysis of classes of RNAs and is also a reasonable method for consensus structure prediction based on sequence alignments. RNAlishapes is available for online use and download at

    Pareto optimization in algebraic dynamic programming

    Get PDF
    Saule C, Giegerich R. Pareto optimization in algebraic dynamic programming. Algorithms for Molecular Biology. 2015;10(1): 22.Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator ∗Par on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme A∗ParB correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined
    corecore