705 research outputs found

    Pathfinder autonomous rendezvous and docking project

    Get PDF
    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements

    Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    Get PDF
    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better

    Safe Spacecraft Rendezvous and Proximity Operations via Reachability Analysis

    Get PDF
    The rapid expansion of the utilization of space by nations and industry has presented new challenges and opportunities to operate efficiently and responsibly. Reachability analysis is the process of computing the set of states that can be reached given all admissible controls and can be a valuable component in an autonomous mission planning system if conducted efficiently. In the current research, reachability analysis is used with several relative motion models to show that all ranges of orbits can be computed in milliseconds, and that it is a feasible approach for on-board autonomous mission planning. Reachability analysis is then combined with an Artificial Potential Function (APF) derived guidance control law to conduct safe spacecraft rendezvous between a deputy in a Natural Motion Circumnavigation (NMC) relative orbit around a chief while avoiding obstacles. While the APF employed in this research requires improvements for trajectory computation, this research demonstrates the feasibility of combining reachability analysis with an APF for safe, on-board, autonomous mission planning

    Docking Manoeuvre Control for CubeSats

    Get PDF
    Rendezvous and Docking missions of small satellites are opening new scenarios to accomplish unprecedented in-obit operations. These missions impose to win the new technical challenges that enable the possibility to successfully perform complex and safety-critical manoeuvres. The disturbance forces and torques due to the hostile space environment, the uncertainties introduced by the onboard technologies and the safety constraints and reliability requirements lead to select advanced control systems. The paper proposes a control strategy based on Model Predictive Control for trajectory control and Sliding Mode Control for attitude control of the chaser in last meters before the docking. The control performances are verified in a dedicated simulation environment in which a non-linear six Degrees of Freedom and coupled dynamics, uncertainties on sensors and actuators responses are included. A set of 300 Monte Carlo Simulation with this Non-Linear system are carried out, demonstrating the capabilities of the proposed control system to achieve the final docking point with the required accuracy

    Design and verification of a safe autonomous satellite rendezvous maneuver

    Get PDF
    A fundamental maneuver in autonomous space operations is known as rendezvous, where an active spacecraft navigates towards and maneuvers within close proximity of a free-flying passive spacecraft. Any mistake during autonomous space flight can be extremely costly, yet these systems are difficult to verify due to limitations of testing spacecraft. In this thesis, we present a benchmark model formulation for the rendezvous mission, two control solutions to achieve this mission, and a rigorous method to demonstrate that the resulting system’s behavior remains safe. The benchmark model provides both a nonlinear description of the spacecraft’s motion and a linearized approximation, and the mission objectives, or equivalently, our set of safety properties. We present a set of control solutions, which includes a hybrid, or switched, version of linear quadratic regulator (LQR)—a fundamental approach in the theory of optimal control for linear systems. We formulate a novel hybrid controller, dubbed state-dependent linear quadratic (SDLQ) control, which extends the former controller in a way that may improve its ability to generate only safe trajectories. With these choices of dynamical models and controllers, we obtain a collection of models that are shown to robustly achieve safety properties of interest using a suite of hybrid verification tools. We utilize several existing tools, each developed for different classes of hybrid models, and we implement a new tool called SDVTool which improves upon one of the former tools. We present experimental results that illustrate the promise (and ongoing challenges) of this approach; that is, applying a class of simulation-based verification algorithms to our proposed set of benchmark models and safety requirements to design and rigorously demonstrate safety of the autonomous satellite maneuver. We will demonstrate both successful, safe scenarios and incomplete or unsafe examples

    An Offline-Sampling SMPC Framework with Application to Automated Space Maneuvers

    Get PDF
    In this paper, a sampling-based Stochastic Model Predictive Control algorithm is proposed for discrete-time linear systems subject to both parametric uncertainties and additive disturbances. One of the main drivers for the development of the proposed control strategy is the need of real-time implementability of guidance and control strategies for automated rendezvous and proximity operations between spacecraft. The paper presents considers the validation of the proposed control algorithm on an experimental testbed, showing how it may indeed be implemented in a realistic framework. Parametric uncertainties due to the mass variations during operations, linearization errors, and disturbances due to external space environment are simultaneously considered. The approach enables to suitably tighten the constraints to guarantee robust recursive feasibility when bounds on the uncertain variables are provided, and under mild assumptions, asymptotic stability in probability of the origin can be established. The offline sampling approach in the control design phase is shown to reduce the computational cost, which usually constitutes the main limit for the adoption of Stochastic Model Predictive Control schemes, especially for low-cost on-board hardware. These characteristics are demonstrated both through simulations and by means of experimental results

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    Ground verification of the feasibility of telepresent on-orbit servicing

    Get PDF
    In an ideal case telepresence achieves a state in which a human operator can no longer differentiate between an interaction with a real environment and a technical mediated one. This state is called transparent telepresence. The applicability of telepresence to on-orbit servicing (OOS), i.e., an unmanned servicing operation in space, teleoperated from ground in real time, is verified in this paper. For this purpose, a communication test environment was set up on the ground, which involved the Institute of Astronautics (LRT) ground station in Garching, Germany, and the European Space Agency (ESA) ground station in Redu, Belgium. Both were connected via the geostationary ESA data relay satellite ARTEMIS. Utilizing the data relay satellite, a teleoperation was accomplished in which the human operator as well as the (space) teleoperator was located on the ground. The feasibility of telepresent OOS was evaluated, using an OOS test bed at the Institute of Mechatronics and Robotics at the German Aerospace Center (DLR). The manipulation task was representative for OOS and supported real-time feedback from the haptic-visual workspace. The tests showed that complex manipulation tasks can be fulfilled by utilizing geostationary data relay satellites. For verifying the feasibility of telepresent OOS, different evaluation methods were used. The properties of the space link were measured and related to subjective perceptions of participants, who had to fulfill manipulation tasks. An evaluation of the transparency of the system, including the data relay satellite, was accomplished as well
    • …
    corecore