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Abstract

The rapid expansion of the utilization of space by nations and industry has pre-

sented new challenges and opportunities to operate efficiently and responsibly. Many

current and future operations require precise and safe rendezvous and proximity oper-

ations (RPO) with a guarantee of the feasibility of the rendezvous maneuver. Reach-

ability analysis is the process of computing the set of states that can be reached given

all admissible controls and can be a valuable component in an autonomous mission

planning system if conducted efficiently. In the current research, reachability analysis

is used with several relative motion models to show that all ranges of orbits can be

computed in milliseconds, and that it is a feasible approach for on-board autonomous

mission planning. Reachability analysis is then combined with an Artificial Potential

Function (APF) derived guidance control law to conduct safe spacecraft rendezvous

between a deputy in a Natural Motion Circumnavigation (NMC) relative orbit around

a chief while avoiding obstacles. While the APF employed in this research requires

improvements for trajectory computation, this research demonstrates the feasibility of

combining reachability analysis with an APF for safe, on-board, autonomous mission

planning.

iv



To my grandparents, whose kindness, generosity, and laughter live on.

v



Acknowledgements

I would foremost like to express my gratitude to my advisor, Major Costantinos

Zagaris for your support and guidance throughout the entire process and as my re-

search goals evolved considerably along the way. I would also like to thank Major

Joshuah Hess for his enthusiastic love for all RPO related topics. Your dedication

and willingness to join our video calls at midnight on Saturdays to offer help with

our work goes above and beyond. My appreciation extends as well to Lt Col Kirk

Johnson for serving on my committee and providing valuable insights to refine this

research.

I owe much of my affinity for engineering to Mr. K, mentor and friend, who has

shown me from a young age how any problem can be tackled with a bit of resource-

fulness, ingenuity, duct tape, and perseverance. Thank you to my “quaranteam” who

helped keep me relatively sane through a pandemic and Master’s program.

Of course, thank you to Mom, Dad, and my brothers, whose love and support

is endless and energizing. Lastly, to my wife, for always believing in me and never

giving up on encouraging me, and to my cats and dog for always keeping me company

as I worked late into the night.

Paul A. Grossi

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Research Scope and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Spacecraft Relative Motion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The Keplerian Two-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Relative Orbital Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Linearized Relative Equations of Motion . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Clohessy-Wiltshire Relative Motion Model . . . . . . . . . . . . . . . . . . . 15
2.1.6 Schweighart-Sedwick Relative Motion Model . . . . . . . . . . . . . . . . . 18
2.1.7 Yamanaka-Ankersen Relative Motion Model . . . . . . . . . . . . . . . . . . 20
2.1.8 Gim-Alfriend Relative Motion Model . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.9 Relative Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Control Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Impulsive Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Artificial Potential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

III. Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 State Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The State Ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 The Control Ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Computing the Reach Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



Page

3.3 Evaluating Reach Sets With Different Relative Motion
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Artificial Potential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Reach/APF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

IV. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Reach Set Variation Between Relative Motion Models . . . . . . . . . . . . . . . 50
4.1.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Reach Set Comparison at LEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Reach Set Comparison at GEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Trajectory Planning using Reachability Analysis with
APFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Case 1: Strong Attractive Potential Function . . . . . . . . . . . . . . . . . 75
4.2.3 Case 2: Weak Attractive Potential Function . . . . . . . . . . . . . . . . . . 80
4.2.4 Case 3: Obstacles moving on an NMC orbit . . . . . . . . . . . . . . . . . . 86

V. Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Tuning via Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Potential Functions and Control Laws . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



List of Figures

Figure Page

1.1 Flow chart of guidance methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Earth-Centered Inertial (ECI) reference frame with
position r and velocity v vectors shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Local-Vertical, Local-Horizontal (LVLH) reference frame
with position r and velocity v vectors shown . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Parameterizations of chief and deputy inertial and
relative orbits [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Planar projection of relative motion trajectory with
ROE labeled [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Construction of an Artifical Potential Function . . . . . . . . . . . . . . . . . . . . . 31

2.6 Notional representations of forward and backward reach
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Illustration of computational complexity of HJB
reachability (reproduced from Chen [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Research methodology flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Flow chart of guidance methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Reach set with all models overlaid in LEO (e = 0); Top:
1 min interval, Bottom: 10 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Reach set with all models overlaid in LEO (e = 0.1);
Top: 1 min interval, Bottom: 10 min interval . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Reach set with all models overlaid in LEO (e = 0.7);
Top: 1 min interval, Bottom: 10 min interval . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Euler angle of reach set ellipsoid semi-major axis
(LEO); Top: 1 min interval, Bottom: 10 min interval . . . . . . . . . . . . . . . . 56

4.5 Volume of reach set ellipsoid (LEO); Top: 1 min
interval, Bottom: 10 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Trace of reach set ellipsoid (LEO); Top: 1 min interval,
Bottom: 10 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



Figure Page

4.7 Reach set computation time (LEO); Top: 1 min
interval, Bottom: 10 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Euler angle of reach set ellipsoid semi-major axis for
various time intervals (LEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . 60

4.9 Volume of reach set ellipsoid for various time intervals
(LEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Trace of reach set ellipsoid for various time intervals
(LEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 Reach set computation time for various time intervals
(LEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Reach set with all models overlaid in GEO (e = 0); Top:
10 min interval, Bottom: 100 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.13 Reach set with all models overlaid in GEO (e = 0.1);
Top: 10 min interval, Bottom: 100 min interval . . . . . . . . . . . . . . . . . . . . . 64

4.14 Reach set with all models overlaid in GEO (e = 0.7);
Top: 10 min interval, Bottom: 100 min interval . . . . . . . . . . . . . . . . . . . . . 65

4.15 Euler angle of reach set ellipsoid semi-major axis
(GEO); Top: 10 min interval, Bottom: 100 min interval . . . . . . . . . . . . . . 67

4.16 Volume of reach set ellipsoid (GEO); Top: 10 min
interval, Bottom: 100 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.17 Trace of reach set ellipsoid (GEO); Top: 10 min
interval, Bottom: 100 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.18 Reach set computation time (GEO); Top: 10 min
interval, Bottom: 100 min interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.19 Euler angle of reach set ellipsoid semi-major axis for
various time intervals (GEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . 72

4.20 Volume of reach set ellipsoid for various time intervals
(GEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.21 Trace of reach set ellipsoid for various time intervals
(GEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

x



Figure Page

4.22 Reach set computation time for various time intervals
(GEO); Left: e = 0, Right: e = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.23 APF with a strong attractive potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.24 Trajectory with a strong attractive potential . . . . . . . . . . . . . . . . . . . . . . . 77

4.25 State histories with a strong attractive potential . . . . . . . . . . . . . . . . . . . . 78

4.26 Control histories with a strong attractive potential . . . . . . . . . . . . . . . . . . 79

4.27 Computation time at each step with a strong attractive
potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.28 APF with a weak attractive potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.29 Trajectory with a weak attractive potential . . . . . . . . . . . . . . . . . . . . . . . . 83

4.30 State histories with a weak attractive potential . . . . . . . . . . . . . . . . . . . . . 84

4.31 Control histories with a weak attractive potential . . . . . . . . . . . . . . . . . . . 85

4.32 Computation time at each step with a weak attractive
potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.33 RPO attempt with 10 obstacles in NMC orbits; (10 min
interval) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.34 RPO attempt with 20 obstacles in NMC orbits; (60 min
interval) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xi



List of Tables

Table Page

3.1 Assumptions of each relative motion model . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Classical orbital elements of the reference orbit (reach
set variation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Classical orbital elements of the reference orbit
(trajectory planning) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



SAFE SPACECRAFT RENDEZVOUS AND PROXIMITY OPERATIONS VIA

REACHABILITY ANALYSIS

I. Introduction

1.1 Motivation and Background

Spaceflight has long relied on spacecraft rendezvous and proximity operations

(RPO) to perform docking, servicing, and inspection between spacecraft [4, 5]. Mis-

sions are being executed in increasingly complex, congested, and competitive envi-

ronments. Mission planning for RPO requires the system to know information about

its current states, operational constraints, and destination (final condition). Space-

craft have limited maneuverability based on orbit, available fuel, control thrusters,

mission requirements, and required or available time to maneuver. Conventionally,

human-in-the-loop mission planning consists of calculating and validating a required

maneuver while considering all the applicable mission constraints [6]. For systems

commanded and controlled from planners on the ground, the newly planned mis-

sion is then transmitted to the spacecraft to be performed in an open loop system.

For manned missions, the maneuver is carried out manually. Although the Russian

Space Agency developed an automated rendezvous and docking capability early on,

the United States did not have this capability even through the Space Shuttle mis-

sions. At least as late as 1998, NASA did not have a serious program in progress to

develop automated rendezvous capability [6]. In the space environment of the preced-

ing decades, where orbits were less congested, large maneuvering operations were less

prominent because spacecraft were parked in their mission orbits that were simple to

1



maintain throughout their lifecycle.

Increased maneuverability, along with evolving strategies for operating in space,

are enabling the transferring of spacecraft between orbits [7, 5], performing rendezvous

operations, performing inspection missions within a certain proximity of the inspected

spacecraft, avoiding conjunctions with other spacecraft or debris, or refueling vehi-

cles that would otherwise be nearing end-of-life due to lack of available fuel [8, 9].

Today’s congested and dynamic environment is driving the need for autonomous mis-

sion planning and execution with cooperative (i.e. stabilized), noncooperative (i.e.

nonstabilized), and uncooperative (i.e. evasive) targets [6].

1.2 Problem Statement

This research implements a system to drive a deputy spacecraft from an initial con-

dition to rendezvous with a chief spacecraft while safely navigating around obstacles

or keep-out zones (KOZ) to be adaptable as a safe, on-board, autonomous controller.

On-board, autonomous rendezvous operations require knowledge of the physical space

surrounding the spacecraft, a target state, and a controller to navigate the spacecraft

from its current state to the target state while avoiding all non-permissible states. In

a dynamic environment where all variables are not necessarily controllable or known,

such as spacecraft in orbit, a spacecraft may have sensors to search its surrounding

area for obstacles it must avoid. The safety aspect of the methodology developed in

this research refers to collision and KOZ avoidance.

Given control limitations, disturbances, and a deterministic period of time, it

is logical that a spacecraft can only reach a certain set of states from its current

state, known as a “reach set”. Reachability analysis is used to calculate such a reach

set. Reachability analysis is useful in spacecraft mission planning as a means to

verify the target positions can be reached within the required mission limits, such as

2



maneuvering time or fuel consumption [10]. In this research, reachability analysis is

used to eliminate an assumption that all obstacles and KOZs are known a priori and

must be discovered in real time. The reach set computed is useful for determining

how far spacecraft sensors must look to identify obstacles. Only obstacles detected

within the reach set a posteriori are activated in the guidance planning computation.

The reach set calculation also provides a method to verify that the planned trajectory

is feasible. For these benefits to be trustworthy and valid, a degree of confidence in

the accuracy of the reach set must be established depending on the method used to

calculate the reach set. As such, several relative motion dynamics models are tested

with reachability analysis and analyzed for validity.

While the reach set identifies the nearest obstacles and feasible future states, an

artificial potential function (APF) is utilized to calculate the control required for

the rendezvous mission. An attractive APF is designed as a paraboloid with the

global minimum residing at the target location, in this case the chief spacecraft. A

repulsive APF is used for the obstacles, where a large spike located at each obstacle

is intended to drive the spacecraft away from that location. The combined attractive

and repulsive APF drives the deputy towards the rendezvous location at the global

minimum while avoiding the known obstacles.

1.2.1 Research Questions

The following questions are posed in this research to address the problem state-

ment:

1. How do relative motion models impact the reach set solution?

2. How can reachability analysis be utilized to support safe, on-board, autonomous

mission planning?
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Figure 1.1. Flow chart of guidance methodology

3. Is the speed of detecting obstacles a posteriori with reachability analysis viable

to support mission planning while considering obstacle and KOZ avoidance?

1.2.2 Research Scope and Assumptions

The following tasks are defined to support achieving the research objectives:

1. Conduct a survey of relative motion models comparing reach sets.

2. Implement reachability analysis and identify nearest obstacles.

3. Formulate APF to achieve guidance algorithm.

The first task aims at identifying the impact various relative motion models have

on the reach set solution. Reachability analysis is conducted and compared across

a range of orbits for several relative motion models. The second task implements a

methodology for ensuring safe autonomous guidance in the presence of obstacles or

keep-out zones. This helps define the APF in the third task which is used, in this

research, for guiding a deputy spacecraft to rendezvous with a chief spacecraft.
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The main assumptions that apply in this research are:

1. Unless otherwise noted, the orbital motion of the chief and deputy spacecraft

and obstacles are defined as Keplerian restricted two-body motion, whereby they

are modeled as point masses and perturbing forces and torques are ignored.

2. The deputy spacecraft has complete knowledge of its relative state, the chief’s

orbit, and the size and states of identified obstacles.

3. The deputy’s relative orbital motion is modeled with linear relative motion

models with assumptions unique to each model, as described in Sections 2.1.5

through 2.1.8.

4. The reach sets are ellipsoidal in 3-D subspace.

Additional assumptions apply to specific parts of this research and are detailed in

later sections, as appropriate.

1.3 Organization of the Thesis

This thesis investigates methods for enabling on-board, autonomous rendezvous

and proximity operations (RPO) with collision avoidance techniques for maneuvering

spacecraft. This chapter has introduced the research motivation, some background

on various RPO methods, and defines the research hypothesis. Chapter II presents

a survey of literature on spacecraft relative motion models, methods for conducting

reachability analysis, and artificial potential functions. Chapter III details the de-

velopment of the reachability analysis method used, how the reach sets of various

relative motion models will be compared, the development of the APF, and how the

reach set and the APF are integrated to create a controller capable of collision avoid-

ance and guidance. Chapter IV presents the results of the principles from Chapter III
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applied to a spacecraft maneuvering and rendezvousing with another spacecraft with

collision avoidance measures employed. Conclusions on the accuracy and viability of

this method are discussed in Chapter V.

Math notation in this research utilizes bold text for vectors and matrices, and non-

bolded variables are scalars. Dot notation above a variable represents time derivatives.
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II. Literature Review

Limited on-board computational power of spacecraft necessitates efficient, accu-

rate, and safe computational techniques. Automated spacecraft RPO will need to

balance the precision of a computationally expensive exact relative motion model

with the speed and efficiency offered by simpler, linearized relative motion models

that have limitations to their range of applicability. This chapter details the existing

relevant literature on various approaches to autonomous spacecraft RPO and maneu-

vering. The concluding sections of this chapter explain the various applications of

the foundational concepts utilized in this research: reachability analysis and artificial

potential functions.

2.1 Spacecraft Relative Motion Models

2.1.1 Reference Frames

Orbital characteristics can be defined by several different coordinate systems. Al-

friend, et al. [11] provide definitions for the following inertial and relative coordinate

systems often relevant in orbital mechanics. Inertial reference frames are useful for an

object’s position and velocity. A heliocentric coordinate system is an inertial reference

frame centered at the Sun and may be useful in defining the Earth’s position in its

orbit or compared to other bodies orbiting the Sun. The x̂ unit vector is positioned

from the center of the Sun along the vernal equinox, which is the date that marks

the first day of spring where daytime and nighttime are the same length. Celestially,

this is where the Sun crosses the equatorial plane of the Earth moving northward.

The ẑ unit vector is defined normal to the ecliptic plane, which is the mean plane

made by the Earth’s orbit around the Sun, and points towards celestial north. The

ŷ unit vector is positioned to complete the right-handed coordinate system. Shown
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in Figure 2.1, the Earth-Centered Inertial (ECI), or geocentric coordinate system, is

an inertial reference frame often used when describing the position of a spacecraft.

The ECI reference frame also defines the x̂ unit vector along the vernal equinox. The

ẑ unit vector is defined normal to the Earth’s equatorial plane pointing towards the

geographic north pole. The ŷ unit vector is positioned to complete the right-handed

coordinate system. The ECI reference frame is the foundation of the orbital regimes

studied in this research.

A relative reference frame is convenient when defining the motion of a spacecraft

with respect to another spacecraft. This research employs a local-vertical, local-

horizontal (LVLH) relative reference frame which is centered at a defined spacecraft

and rotates with the spacecraft’s orbital motion shown in Figure 2.2. This relative

reference frame is also referred to as the relative Hill frame [12]. The spacecraft used to

define center of the reference frame is called the chief. The x̂ unit vector is positioned

radially outward from center of the Earth through the chief and is aptly referred to as

the radial direction. The ẑ unit vector is perpendicular to the fundamental plane of

the chief’s orbit where the positive direction is the instantaneous angular momentum

vector, and is referred to as the cross-track direction. The ŷ unit vector is positioned

to complete the right-handed coordinate system, and is referred to as the in-track

direction. Other spacecraft in proximity to the chief and defined in the relative Hill

frame are called deputies in this research.

Accurately describing the motion of a spacecraft can be a challenging endeavour.

The Nonlinear Equations of Relative Motion (NERMs), about to be described in

Sections 2.1.2 and 2.1.3 from Alfriend, et al. [11, 13], are a 10-dimensional system of

nonlinear differential equations typically solved with numerical integration.
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Figure 2.1. Earth-Centered Inertial (ECI) reference frame with position r and velocity
v vectors shown

Figure 2.2. Local-Vertical, Local-Horizontal (LVLH) reference frame with position r
and velocity v vectors shown
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2.1.2 The Keplerian Two-Body Problem

The Keplerian two-body problem describes the effect of the gravitational forces

two bodies exert on each other. This system is also known as the restricted two-body

problem because the shape of the bodies are neglected such that no gravitational

torques are imposed on the bodies by the inter-gravitational forces. Several assump-

tions apply to this system [11]:

1. Gravity is the only force, internal or external, exerted on the bodies.

2. Both bodies are spherical or point masses.

3. The orbiting body’s mass (m) is much smaller compared to the primary body’s

mass (M).

4. Gravitational forces are Newtonian, thus directly proportional to the masses of

the objects and inversely proportional to the square of the distance between the

objects.

From these assumptions, the Keplerian two-body inertial equations of motion for

a spacecraft are

r̈ +
µ

r3
r = 0 (2.1)

where

µ = G(M +m) (2.2)

and r is the position vector of the objects in the inertial reference frame.

From the third assumption above, the mass of the spacecraft is negligible, thus

Equation 2.2 is reduced to Earth’s gravitational constant (G) multiplied by Earth’s

mass (M) to produce Earth’s gravitational parameter, µ = 398600.4418 km3/s2. The
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magnitude of the position vector, or orbital radius r, is defined by the classical orbital

elements (COE) in Equations 2.3 and 2.4, respectively, where a is the semi-major axis

of the orbit, e is the eccentricity, and ν is the true anomaly. The subscript c refers to

the chief spacecraft and the subscript d refers to the deputy spacecraft.

rc = ||rc|| =
ac(1− e2

c)

1 + ec cos νc
(2.3)

rd = ||rd|| =
ad(1− e2

d)

1 + ed cos νd
(2.4)

2.1.3 Relative Orbital Dynamics

Describing relative orbits may be more useful and intuitive than trying to interpret

inertial orbit parameters. Defining the relative position between spacecraft is as

simple as taking the difference of the inertial position vectors from Equations 2.3 and

2.4

ρ = rd − rc . (2.5)

With the orbital position vectors of the chief (rc) and deputy (rd) being defined in

the inertial frame, the relative acceleration can be calculated by directly differentiating

the inertial position vectors twice and expanded with the inertial equations of motion

from Equation 2.1 to produce

ρ̈ = r̈d − r̈c

= − µ
r3
d

rd +
µ

r3
c

rc

= − µ

||rc + ρ||3
(rc + ρ) +

µ

r3
c

rc .

(2.6)

These inertial equations of motion, expressed in the ECI reference frame, provide
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Figure 2.3. Parameterizations of chief and deputy inertial and relative orbits [1]

limited usefulness when analyzing the relative motion of two bodies such as a deputy

to a chief. Resolving Equation 2.6 in the relative Hill frame allow the calculation of

the relative position and velocity of the deputy spacecraft with respect to the chief

spacecraft throughout the entire orbit. The conversion from the ECI reference frame

(I) to the relative Hill frame (L) requires a rotation matrix [RLI ] and the transport

theorem.

Recall from Section 2.1.1, the radial x̂ unit vector in the relative Hill frame (ôr in

Figure 2.3) is a positive vector from the center of the inertial reference frame to the

chief spacecraft, the cross-track ẑ unit vector in the relative Hill frame (ôh in Figure

2.3) is in the direction of the instantaneous angular momentum, and the in-track ŷ

unit vector completes the right-handed orthonormal coordinate system (ôθ in Figure

2.3). Therefore, the rotation matrix [RLI ] can be built from Equation 2.7,

[RLI ] =

[
x̂ ŷ ẑ

]T
(2.7)

where

x̂ =
rc
||rc||

ẑ =
hc
||hc||

ŷ = ẑ × x̂
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hc =
rc × vc
||rc × vc||

.

Therefore, the relative position vector of the deputy with respect to the chief

resolved in the relative Hill frame is shown in Equation 2.8 where the pre-superscripts

denote the coordinate frames for which each variable is resolved: I is the inertial

reference frame and L is the relative Hill frame,

Lρ = [RLI ] Iρ . (2.8)

To obtain the relative acceleration, the inertial relative position Iρ is differentiated

with respect to time twice while taking care to employ the transport theorem since

it shall be expressed in the non-inertial relative Hill reference frame to obtain the

relative acceleration represented in the inertial frame,

Iρ̈ = Lρ̈+ 2ωLI × Lρ̇+ ω̇LI × Lρ+ ωLI × (ωLI × Lρ) (2.9)

where

ωLI =

[
0 0 θ̇c

]T
Lρ =

[
x y z

]T
,

ωLI is the angular velocity vector of the relative Hill frame L relative to the ECI

reference frame I, θ̇c = ω̇ + ν̇ and is the argument of true latitude time rate of

change, ω̇ is the time rate of change of the argument of perigee, ν̇ is the time rate of

change of the true anomaly, and x, y, and z are the radial, in-track, and cross-track

positions expressed in the relative Hill frame. The chief’s relative position can be

expressed in the relative Hill frame as

rc =

[
rc 0 0

]T
. (2.10)

Substituting Equation 2.6 into Equation 2.9 gives rise to of the 10-dimensional
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nonlinear equations of relative motion, referred to as the NERMs.

ẍ− 2θ̇cẏ − θ̈cy − θ̇2
cx = −µ(rc + x)

r3
d

+
µ

r2
c

+ ax

ÿ − 2θ̇cẋ+ θ̈cx− θ̇2
cy = −µy

r3
d

+ ay

z̈ = −µz
r3
d

+ az

(2.11)

where

pc = ac(1− e2
c)

ṙc = θ̇c
pcec sin θc

(1 + ec cos θc)2

r̈c = rcθ̇c
2 − µ

r2
c

θ̇c =

√
µpc

r2
c

θ̈c = −2ṙcθ̇c
rc

rd =
√

(rc + x)2 + y2 + z2

The NERMs describe the exact relative motion of a deputy spacecraft with respect

to a chief spacecraft for an unperturbed orbit. The terms ax, ay, and az are additional

accelerations that can model control forces or disturbances.

2.1.4 Linearized Relative Equations of Motion

In the pursuit of advancing spacecraft maneuverability models, many models have

been developed that offer degrees of efficiency and accuracy in predicting spacecraft

position and velocity through its orbit. These models are linearized versions of the

NERMs derived in Section 2.1.3 employing various assumptions with regard to orbital

eccentricity, perturbations, and the dynamical state representation [14]. These models

offer a simpler and computationally efficient way to propagate the relative motion

dynamics compared to numerical integration of the NERMs [14].
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Sullivan [14] provides a survey of spacecraft relative motion dynamics models and

demonstrates the error produced by several linearized dynamics models for a variety of

orbital setups. Among the dynamics models evaluated are Clohessy-Wiltshire (CW)

[12], Schweighart-Sedwick (SS) [15], Yamanaka-Ankersen (YA) [16], and Gim-Alfriend

(GA) [17]. Sullivan demonstrates the effects of eccentricity and perturbations on the

orbital trajectory computed by each algorithm and provides a relative state error

estimate compared to the nonlinear equations of relative motion.

The orbits studied by Sullivan are in low Earth orbit (LEO) with a 750 km al-

titude, with eccentricities varying from 0.0001 to 0.7, and with interspacecraft sep-

aration varying from 2 m to 250 km. LEO is chosen to demonstrate the influence

J2 perturbation has on each model’s ability to accurately propagate the relative mo-

tion. Similarly, ranging the eccentricity from nearly circular (0.0001) to highly el-

liptical (0.7) adequately demonstrates each model’s ability to accurately propagate

the relative motion. The interspacecraft separation challenges each model’s appli-

cable linearization region based on its simplifying assumptions and relative motion

state parameterization methodology. Depending on the parameterization method-

ology, many linearized relative motion models experience singularities based on the

position, shape or applied time horizon. Sullivan’s research shows some models can

vary by orders of magnitude between each other and the truth model. It demonstrates

the importance of understanding the orbital environment, the accuracy or precision

requirements, and the duration for which the relative motion dynamics are being

studied [14].

2.1.5 Clohessy-Wiltshire Relative Motion Model

The Clohessy-Wilshire (CW) relative motion model [12] is a set of first-order

relative motion equations that has been broadly used for modeling spacecraft RPO
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[14, 18]. The National Aeronautics and Space Administration (NASA) has demon-

strated RPO stemming from the CW model with missions ranging from Gemini [19]

to the Space Shuttle [20], and with its Automated Rendezvous and Capture (AR&C)

capability development program that began around the early 2000s [21]. The CW

model is valid for spacecraft operating in close-proximity about circular reference or-

bits and can be expressed in many forms, making it a flexible and often used model

for modeling relative motion dynamics. The CW model is comprised of a set of ordi-

nary differential equations (ODEs) that yield a closed-form solution. The closed-form

solution can be expressed as a state transition matrix (STM), which is utilized for

the computation in this research.

The main assumptions made by the CW model are: the chief reference orbit is

circular, there are no perturbations on the orbital motion, and the orbital relative

coordinates (i.e. the distances x, y, and z from the chief reference orbit expressed

in the relative Hill frame) are small compared to the chief radius rc. Applying these

assumptions to the NERMs expressed in Equation 2.11, the forced relative motion

dynamics are given in terms of x, y, and z in the relative Hill frame, the control or

disturbance accelerations dynamics ax, ay, and az, and the mean motion n of the

chief reference orbit, [12]

ẍ = 2nẏ + 3n2x+ ax

ÿ = −2nẋ+ ay

z̈ = −n2z + az

(2.12)

where

n =

√
µ

a3
c

. (2.13)

For the unforced equations of motion, where there are no external forces on the

deputy spacecraft, ax = ay = az = 0. It should be noted that the cross-track dynamics
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(z) are decoupled from the radial (x) and in-track (y) dynamics. Non-zero cross-track

motion is considered out-of-plane motion while zero cross-track motion is considered

in-plane motion [22]. The unforced motion, closed-form solution is [12]

x(t) =

[
4x0 +

2ẏ0

n

]
+
ẋ0

n
sin (nt)−

[
3x0 +

2ẏ0

n

]
cos (nt)

y(t) =

(
− [6nx0 + 3ẏ0] t+

[
y0 −

2ẋ0

n

])
+

[
6x0 +

4ẏ0

n

]
sin (nt) +

2ẋ0

n
cos (nt)

z(t) =
ż0

n
sin (nt) + z0 cos (nt)

ẋ(t) = ẋ0 cosnt+ [3x0n+ 2ẏ0] sinnt

ẏ(t) = − [6nx0 + 3ẏ0] + [6x0n+ 4ẏ0] cosnt− 2ẋ0 sinnt

ż(t) = ż0 cosnt− z0n sinnt .

(2.14)

The CW equations of motion in Equation 2.12 can be written in state-space rep-

resentation as [23]

ẋ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


x (2.15)

where x is composed of the relative position and relative velocity components, x =

[x y z ẋ ẏ ż]T .

The state transition matrix form propagates the unforced current relative position

forward a predetermined time ∆t [23],
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x(t) = Φ(∆t)x(t0), x = [x y z ẋ ẏ ż]T (2.16)

where

Φ(t) =



4− 3 cosnt 0 0 1
n

sinnt 2
n
(1− cosnt) 0

6(sinnt− nt) 1 0 2
n
(cosnt− 1) 1

n
(4 sinnt− 3nt) 0

0 0 cosnt 0 0 1
n

sinnt

3n sinnt 0 0 cosnt 2 sinnt 0

6n(cosnt− 1) 0 0 −2 sinnt 4 cosnt− 3 0

0 0 −n sinnt 0 0 cosnt


.

The efficiency and vast applicability of the CW equations offer a strong foundation

for the development of mission planning tools or on-board guidance capabilities [9].

2.1.6 Schweighart-Sedwick Relative Motion Model

The Schweighart-Sedwick (SS) relative motion model is an extension of the CW

model with the addition of the J2 perturbative force [24], which is the force that

accounts for the fact that the Earth is not perfectly spherical. Instead, the Earth is

oblate, or flattened at the north and south poles [25]. The SS model is an effective and

efficient system of linear, constant coefficient, differential equations that can be solved

analytically to describe the relative motion of spacecraft [24] while incorporating the

effects of J2 perturbative force.

The governing assumptions applied to the derivation of the SS model are the use

of the time averaged effect of the gradient of the J2 potential, ∇J2rref , for the in-

track motion and mean variations in orbital elements for the cross-track motion [15].

Other assumptions employed are

• A constant radius reference orbit linearizes the gravitational terms with respect
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to the reference orbit.

• Equal period of the chief and deputy orbits eliminates in-track secular drift.

• The normal component of the J2 potential is solely responsible for drift in the

right ascension of the ascending node (RAAN) which eliminates nodal drift.

• Within a cluster of spacecraft, there are small differences in RAAN for each

spacecraft, therefore higher order terms describing the intersection of orbital

planes can be omitted.

• The J2 potential is symmetric at the equator, therefore the system is initialized

t0 when crossing the equator.

The SS ordinary differential equations of motion are [15]

ẍ− 2(nc)ẏ − (5c2 − 2)n2x = −3n2J2
R2
e

rref

×
[

1

2
− 3 sin2 (kt)

2
− 1 + 3 cos (2iref )

8

]
ÿ + 2(nc)ẋ = −3n2J2

R2
e

rref
sin2 (iref ) sin (kt) cos (kt)

z̈ + q2z = 2lq cos (qt+ φ)

(2.17)

where s, c, n, k, q, and l are defined in [15].

The following closed-form solution of the SS equations of motion can be formulated

when specific initial conditions ẋ0 and ẏ0 are chosen to remove any secular motion or

constant offset terms [15]

x = (x0 − α) cos (nt
√

1− s) +

√
1− s

2
√

1 + s
y0 sin (nt

√
1− s) + α cos (2kt)

y = −2
√

1 + s√
1− s

(x0 − α) sin (nt
√

1− s) + y0 cos (nt
√

1− s) + β sin (2kt)

z = (lt+m) sin (qt+ φ)

(2.18)
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where α, β, ẋ0, and ẏ0 are defined in [15].

Similarly to the CW model, the cross-track motion of the SS model is decoupled

from the radial and in-track motion. Instead, the motion described is a tumbling

effect around the ẑ axis [15]. The SS model is able to incorporate the J2, thereby

allowing for longer applicability, as there is no unbounded linearization error from

assuming no perturbations that exists in the CW model.

2.1.7 Yamanaka-Ankersen Relative Motion Model

The CW and SS models are both limited by their linearization assumptions to

circular reference orbit applications. However, spacecraft orbits are not limited to

circular orbits, therefore a relative motion model is required to provide accurate RPO

capabilities for elliptical orbits. The Yamanaka-Ankersen (YA) relative motion model

provides a state transition matrix valid for all orbital eccentricities 0 ≤ e < 1 [16].

The YA relative motion model makes the assumption that the distance between

the chief and deputy spacecraft is much smaller than the chief’s orbital radius. How-

ever, YA differs from CW and SS in that instead of using time t as the indepen-

dent variable for state propagation, the true anomaly ν of the chief spacecraft is

used [16]. The YA model, derived from Tschauner-Hempel [26], also does not suffer

from singularities, such as the singularity for circular orbits e = 0 that hampers the

Tschauner-Hempel solution.

The YA model begins with the Tschauner-Hempel equations,

x̃′′ − 2ỹ′ − 3

1 + e cos ν
x̃ = 0

ỹ′′ + 2x̃′ = 0

z̃′′ + z̃′ = 0

(2.19)

where the primes indicate derivatives with respect to true anomaly ν and e is the
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chief’s orbital eccentricity [27]. In solving the homogeneous second-order differential

equation, the YA model introduces an integral J(t),

J(t) =

∫ ν

ν0

dτ

p(τ)2
= k2(t− t0) (2.20)

where p ≡ 1 + e cos ν and k ≡ µ/h3/2 [16], which is responsible for eliminating the

singularity exhibited at e = 0 by the Tschauner-Hempel equations [28].

For the full derivation of the YA relative motion model STM, the reader is en-

couraged to explore the original paper by Yamanaka and Ankersen [16]. Interestingly,

when e = 0 in the YA STM, the CW equations can be recovered, therefore the CW

model can be viewed as a special case of the YA model [16, 28].

2.1.8 Gim-Alfriend Relative Motion Model

Combining the benefits of the SS model, which can accurately represent relative

motion with J2 perturbations, and the YA model, which can accurately represent the

relative motion of elliptical reference orbits, has been the focus of much research. The

Gim-Alfriend (GA) model achieves this in a form for directly propagating the relative

states via an STM instead of solving complex relative motion differential equations

[17]. The GA model has been employed by NASA in several proximity operations

demonstrations [14].

Despite requiring nine pages of appendices in Gim and Alfriend’s original paper

detailing the relative motion model, the STM can be solved analytically with both

mean and osculating elements [17]. The model is a geometric method to propagate

relative motion dynamics that can be both eccentric and subject to J2 perturbations.

The element set e = [a θ i q1 q2 Ω]T is used, where a is the semi-major axis, i is

the orbital inclination, θ is the argument of latitude, q1 = e cosω, q2 = e sinω, Ω

is the RAAN, e is the eccentricity, and ω is the argument of perigee. This element
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set avoids singularities during circular orbits, where true anomaly and argument of

perigee are undefined [29].

The implementation of the GA model starts with a state in the relative Hill

reference frame. First, the relative Hill frame states are transformed to mean orbital

elements followed by a transformation to relative osculating elements, the states are

propagated from time t0 to t, then the osculating states are transformed back to the

relative Hill reference frame [17]. Expressed in the unforced STM form,

x(t) = Φ(t, t0)x(t0)

x(t) = {A(t) + αB(t)}D(t)φ̄ē(t, t0)D−1(t0) {A(t0) + αB(t0)}−1 x(t0)

(2.21)

where {A(t0) + αB(t0)}−1 transforms the relative Hill states to mean orbital element

differences, D−1(t0) transforms to relative osculating elements, φ̄ē(t, t0) propogates

the state forward, D(t) transforms from osculating elements back to the mean orbital

elements, and {A(t) + αB(t)} transforms back to the relative Hill states.

The GA model assumptions require close proximity between the chief and deputy

spacecrafts and the J2 potential is the only perturbation on the system [29], however

the GA model is adaptable for other perturbations [17].

2.1.9 Relative Orbital Elements

The CW equations are parameterized in the relative Hill reference frame based

on the orbital mean motion n, relative radial x, in-track y, and cross-track z position

and velocities, and the time t from some epoch time t0. In 2004, Lovell [2] introduced

relative orbit elements (ROE) that describe the geometry of a deputy’s relative orbit

in the relative Hill reference frame, shown in Figure 2.4, based on the relative orbit

radius ae, radial displacement xd, in-track displacement yd, angle from the relative

orbit perigee β, maximum out-of-plane simple harmonic oscillation displacement zmax,
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and phase angle Ψ.

The unforced relative position and velocity components of the deputy in the rel-

ative Hill reference frame expressed in terms of the ROEs is

x = −ae
2

cos β + xd

y = ae sin β + yd

z = zmax sin Ψ

ẋ =
ae
2
n sin β

ẏ = aen cos β − 3

2
nxd

ż = zmaxn cos Ψ .

(2.22)

Lovell [2] also expressed the ROEs in a form that allows for evolution with time,

ae = ae0

xd = xd0

yd = yd0 −
3

2
nxd0t = yd0 −

3

2
nxdt

β = β0 + nt

zmax = zmax0

Ψ = Ψ0 + nt .

(2.23)

Equation 2.23 is analogous to the unforced motion, closed-form solution expressed

in Equation 2.14. The relative orbit representation in terms of the ROE provides in-

sight into the geometrical features of a deputy’s relative orbit around a chief that can

be valuable when conducting formation design. Notably, the relative motion of the

deputy with respect to the chief at any time is, when projected in-plane, an instanta-

neous 2× 1 ellipse centered at (xd, yd, 0) drifting in the in-track direction at the rate

of −3
2
nxd. When xd > 0, the deputy will drift in the negative in-track direction. This
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Figure 2.4. Planar projection of relative motion trajectory with ROE labeled [2]

drift can be negated with y0 = −2nx0, producing Natural Motion Circumnavigation

(NMC), and is the scenario applied in this research. β = 0 corresponds to the perigee

location of the chief orbit. Finally, the projection of the relative orbit onto the chief’s

orbital plane creates a 2× 1 ellipse.

2.2 Control Methodologies

There are many approaches available to calculate control laws for RPO missions

such as impulsive control approximation with linearized relative motion models, op-

timal control through Linear Quadratic Regulator, nonlinear control, impulsive, and

robust control [30, 31]. For spacecraft with missions requiring formations, formation

maintenance is necessary to correct for atmospheric drag, J2 perturbations, or other

disturbances. Control methodologies can be continuous, such as a linear quadratic

regulator, while others involve impulsive control thrusts that are assumed instanta-

neous and must occur at precise timing and magnitude to effectively maneuver the
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spacecraft as desired. Minimizing fuel consumption, limitations in control authority

such as the amount and direction of thrusters, frequency and duration of control

thrusts, and mission objectives must all be considered when determining a particular

control approach [31].

2.2.1 Impulsive Maneuvers

Impulsive control input are assumed to occur instantaneously. The impulsive

maneuver assumption is useful and valid for longer maneuvers, such as transferring

spacecraft between orbits using the Hohmann transfer [32] method. The Hohmann

transfer is the energy optimal way to perform transfers between coplanar orbits when

assuming a long maneuver and impulsive thrusts [33], where thrusters produce high

thrust for a short duration and then coast for a long time.

For close proximity impulsive maneuvering, the relative Hill frame can be useful

for targeting [23]. Utilizing the Clohessy-Wiltshire relative orbital dynamics model

from Section 2.1.5, this method calculates the required velocity change (∆v) to ma-

neuver the spacecraft to a specific future state. This control technique is impulsive

and requires the control input to be applied at specific times to achieve the desired

maneuver [31]. CW targeting can be effective for modeling interceptions, where only a

specific position is desired and thus an initial burn is conducted to put the spacecraft

on a trajectory to reach that position. Two burns, one burn ∆v1 at the beginning

to target a desired position, and a second burn ∆v2 can be conducted at the final

destination to match velocities for a rendezvous operation. This is referred to as a

two-impulse linear rendezvous [23].

From the STM form of the CW equations in Equation 2.16, x can be expressed
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as x = [r v]T and Φ(t) can be divided into the subpartitions

Φ(t) =

Φrr Φrv

Φvr Φvv

 (2.24)

therefore the relative dynamics can be represented as

r(t)

v(t)

 =

Φrr Φrv

Φvr Φvv


r(t0)

v(t0)

 . (2.25)

With a burn ∆v1 applied at t0, v(t0) becomes v(t0) + ∆v1, thus Equation 2.25

can be written in algebraic form

r(t) = Φrrr(t0) + Φrv(v(t0) + ∆v1)

v(t) = Φvrr(t0) + Φvv(v(t0) + ∆v1)

(2.26)

and the change in velocity required for the burn can now be calculated by re-arranging

r(t), where r(t) is the desired position vector, as [33]

∆v1 = Φ−1
rv [r(t)−Φrrr(t0)]− v(t0) . (2.27)

∆v1 will target a desired position in order to intercept the object at that position.

For rendezvous operations, collisions are undesirable so the relative velocity must be

nullified such that v(t) + ∆v2 = 0. Therefore, by substituting v(t) + ∆v2 = 0 into

v(t) from Equation 2.26 and solving for ∆v2, the change in velocity required is

∆v2 = − [Φvrr(t0) + Φvv(v(t0) + ∆v1] , (2.28)

where ∆v1 is given by Equation 2.27.
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It should be noted that there exist times where the subpartition Φrv in the CW

STM is not invertible, thus making it impossible to calculate the maneuver burns

required to accomplish the targeting mission with the CW STM [34].

2.2.2 Optimal Control

Optimization has applications relevant to nearly any field and spacecraft maneu-

vering is no exception. Optimization problems entail minimizing or maximizing a

given cost functional to achieve a desired requirement. For control problems, cost

functionals often require minimizing maneuvering time or control effort. Optimal

control is applied in an open-loop system where there are decision variables the solver

adjusts in order to minimize the cost functional. A notional representation of a cost

functional is below, where x is the system states, t0 and tf are the initial and final

times, respectively, u is the system control input, J represents the terminal cost of

optimization problem, and L is the running cost of the optimization problem, [35]

min
t0,tf ,x(t),u(t)

J(t0, tf ,x(t0),x(tf )) +

∫ tf

t0

L(τ,x(τ),u(τ))dτ (2.29)

subject to the system dynamics

ẋ(t) = f(t,x(t),u(t)) (2.30)

subject to the path constraints

h(t,x(t),u(t)) ≤ 0 (2.31)

subject to the boundary constraints

g(t0, tf ,x(t0),x(tf )) ≤ 0 (2.32)
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and with bounds on the states, control, time, and initial and final conditions

xmin ≤x(t) ≤ xmax

umin ≤u(t) ≤ umax

tmin ≤ t0 < tf ≤ tmax

x0,min ≤x(t0) ≤ x0,max

xf,min ≤x(tf ) ≤ xf,max .

(2.33)

These equations are for a continuous system; however they can easily be adapted

for a discrete system. An optimal control policy for RPO missions would utilize

the NERMs as the system dynamics for the translational motion. Examples of path

constraints may be a specific rendezvous approach vector, a particular path required

for inspecting another object, KOZs around other objects, or avoiding the sun vector.

Boundary requirements are limits of acceptable values for each condition such as not

exceeding a 100 m radius around the initial condition. The remaining bounds on

state, control, time, and initial and final conditions are specific to the mission and

spacecraft capabilities. Real world optimal control problems are difficult or impossible

to solve analytically if employing non-linear dynamics and constraints, but they can

be solved numerically with approximation methods, however non-convex optimization

problems may be susceptible to local minima.

Walsh and Peck provide a survey of methods for control-optimizing orbital trans-

fer maneuvers [36]. Among the methods, Lawden provided an early approach for

optimal control based orbital maneuvering in 1953 with the “Primer Vector” that

provided minimum control in two and three dimensions [37, 36]. Prussing mini-

mized the Hamiltonian that is deduced from Pontryagin’s Maximum Principle for

fixed final time optimal control problems [38]. In 2006, Palmer presented an an-

alytic approach for optimal transfers between orbits for spacecraft formations [39].
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Ortolano [40] developed an optimal control algorithm utilizing convex optimization

theory for RPO trajectory planning and ensuring global optimality. Irvin compared

the performance of optimal control policies with discrete trajectory solutions versus

continuous-thrust solutions, concluding that there is a high dependence on the ini-

tial and final conditions of the optimal control problem for discrete trajectories to

outperform continuous-control trajectories [41]. George [22] utilized optimal control

theory in combination with reinforcement learning for fuel-optimal trajectory gen-

eration and demonstrated potential for creating robust controllers for autonomous

spacecraft using neural networks.

The linear quadratic regulator (LQR) method is a special case of optimal control

that computes the state feedback control gain matrix for minimum control optimiza-

tion problems with full state feedback [42]. The general form of the quadratic cost

function is

J =

∫ ∞
0

(xTQx+ uTRu)dt (2.34)

subject to linear system dynamics

ẋ(t) = f(t,x(t),u(t)) (2.35)

where the feedback control law is

u = −Kx (2.36)

where the objective is, through chosen gain matrices Q (positive-definite or positive

semi-definite) and R (positive definite), to minimize the cost function by finding the

optimal feedback matrix K where [42]

K = R−1BP (2.37)
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and is computed by the stabilizing solution of the Algebraic Riccati Equation (ARE)

PA+ATP − PBR−1BTP +Q = 0 . (2.38)

The gain matrix Q determines the weighting of the state regulation error while

gain matrix R determines the weighting of the control effort. That is, a larger Q will

yield a faster convergence to the goal with more control expenditure because mini-

mizing the error in the feedback state is more important. A larger R will emphasize

control efficiency and result in a longer convergence time to the goal. Given the alge-

braic computation of the LQR, it is quite efficient when compared to other optimal

control methods [43]. LQR controllers, however, are only valid for linear systems.

Real-world systems are typically non-linear and must be linearized when applying

LQR controllers. Additionally, the gain matrices Q and R require tuning to achieve

the desired result such as more control and faster convergence, or vice versa. Since

LQR is a feedback controller, the states must be measurable in order to minimize the

phase error in the feedback loop.

For some spacecraft rendezvous problems, the above constraints of LQR con-

trollers can be met. Yang [44] showed LQR’s usefulness compared to a proportional-

derivative control design for attitude control of spacecraft. Bevilacqua [45] utilized

the LQR in conjunction with an artifical potential function for multiple spacecraft

control where the LQR optimized fuel consumption and the artificial potential func-

tion was employed for collision avoidance measures while accounting for local minima

traps. Guarnaccia, et al. [46] demonstrated a real time, LQR-based sub-optimal

approach for combined translational and rotational spacecraft control.
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2.2.3 Artificial Potential Functions

Artificial potential functions (APFs) are widely used in autonomous vehicles such

as robotics and spacecraft, often implemented to target a desired location while avoid-

ing undesirable locations [47, 45, 48, 49]. When APFs are utilized for an object, such

as a spacecraft, it behaves as if it is in a “field of forces”, as it was described by

Khatib [47], who first introduced the use of artificial potential functions in robotics.

An attractive force is located at the target location, “pulling” the spacecraft towards

the target following the gradient of the gravitational potential, while repulsive forces

represent any obstacles that must be avoided, such as other spacecraft or keep-out

zones, “push” the spacecraft away from those locations with larger gravitational po-

tentials. The combination of these forces produce the APF with a global minimum

at the target which the spacecraft will follow to achieve its target location while

maintaining collision avoidance requirements, shown in Figure 2.5.

Computational simplicity is where APFs thrive. The attractive and repulsive

functions are analytical expressions that yield a scalar and are described in further

detail in Chapter III. Thus, they can be computed easily. This attribute allows for

real-time computation of the potential field from information known a priori, as first

introduced for spacecraft applications by Lopez and McInnes [50], or gathered real-

Figure 2.5. Construction of an Artifical Potential Function
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time from on-board sensors [51].

A drawback to implementing APFs for deriving guidance control laws is the exis-

tence of local minima. Local minima are created when obstacles are in close proximity

to each other. The high potential areas created by the obstacles can combine to trap

the spacecraft in the local minima. Several methods, such as applying “escape forces”

[52, 53], have been explored to overcome the local minima problem. Defining obsta-

cle repulsive functions as sharp spires instead of wide rolling hills is one method to

mitigate this local minima problem.

Applications of APFs for autonomous maneuvering have been extensively re-

searched. In 2007, Badawy and McInnes introduced a method of robotic path plan-

ning that leverages a hyperboloid potential function, in contrast to a parabolic poten-

tial function. The hyperboloid potential function provides the benefit of a constant

gradient far from the global minimum that incorporates a parabolic shape at the

global minimum to avoid a singularity [54]. Muñoz applied APFs in the spacecraft

RPO domain in 2011, where various methodologies were applied for improving the

convergence likelihood of close-range rendezvous operations [55]. Fields developed

a continuous control APF by relating the system’s velocity to the negative of the

potential function’s gradient and explored methods of increasing optimality by utiliz-

ing the control law derived from the continuous control APF as the cost function to

be minimized in the optimal control problem. However, the computational expense

proved non-advantageous compared to more traditional optimal control approaches

[49].

In this research, an APF is utilized to generate the control law based on the

computed reach set to maneuver a deputy spacecraft in an NMC orbit to a rendezvous

with the chief spacecraft at the origin of the relative orbit while avoiding obstacles.
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2.3 Reachability Analysis

Reachability analysis can be a valuable component in the autonomous mission

planning system if conducted efficiently. Reachability analysis is the process of com-

puting the set of states that can be reached given all possible controls. Forward

reachability consists of computing all possible end states in a finite time interval

given a known initial condition. Forward reachability analysis can be defined as,

adapted from [56, 10],

The set of final states xf achievable in time tf or less by a dynamical
system, in the form of a differential equation

ẋ = f(x, v) ,

starting at an initial state x0 at t0, with a set of admissible m-dimensional
control input u(t) ∈ U ⊂ Rm.

Backward reachability consists of computing all possible initial conditions that

can reach a particular end state or states given a finite time interval.

The set of initial states x0 that in time tf or less by a dynamical system,
in the form of a differential equation

ẋ = f(x, v) ,

can reach a final state xf at tf , with a set of admissible m-dimensional
control input u(t) ∈ U ⊂ Rm.

From the mission planning and verification perspective, reachability analysis can

provide the reach sets for spacecraft under continuous thrust maneuvers with long

intervals between observations [57]. This can be helpful for recovering position track-

ing of a spacecraft if it is being tracked but the tracking capability is lost, because a

known reach set region becomes the search area for re-acquisition. With formations,
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Figure 2.6. Notional representations of forward and backward reach sets

reachability analysis can aid in modeling the extent to which a formation geometry

can be changed given time and control constraints [57]. Collision avoidance has also

been demonstrated in the case of an air traffic control differential game [58]. Imple-

menting autonomous guidance, navigation, and control algorithms can be aided by

first identifying whether a certain maneuver is feasible or not, that is ensuring it can

actually be accomplished given the system constraints [10].

Exact reachability analysis entails solving a Hamilton-Jacobi-Bellman (HJB) par-

tial differential equation (PDE) with non-linear dynamics and is often intractable for

real-world systems. Exact reachability analysis suffers from the “curse of dimension-

ality.” HJB reachability computational complexity scales exponentially with respect

to the number of dimensions, as shown in Figure 2.7. 1D and 2D reach sets can be

computed very quickly with little random access memory (RAM) usage. 3D reach

sets can take minutes to hours while 4D reach sets can take many hours with many

gigabytes of RAM usage. At 5D and 6D, computational and space complexity make

the computation intractable [3].

In a robotics application, “warm starting” the reachability analysis has demon-

strated significant computational improvement in compute time by initializing the
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Figure 2.7. Illustration of computational complexity of HJB reachability (reproduced
from Chen [3])

next reachability computation with the previous time step’s solution and only per-

forming the computation on the new positions within an agent’s sensor [59]. The

Parallel Interval Reachability Kernel (PIRK) is a tool to efficiently compute approx-

imate reach sets by leveraging parallel computing on high-performance computing

platforms which can support state dimensions up to 4 billion [60].

Geometric approximation is another method employed to conduct reachability

analysis on higher dimensional systems without the computational and space com-

plexity of exact reachability analysis. Many analytical approaches have been devel-

oped that leverage geometric polytopes or ellipsoids to approximate the reach set

[61, 62]. These methods are readily leveraged in problems such as safety verification

or trajectory verification as they over-approximate the reach set, thus ensuring all

safe trajectories are accounted for [62].

Reachability analysis has been applied to collision avoidance or control verification

problems for robotics, autonomous cars, and unmanned aerial vehicles [63, 64, 65, 66,

67]. In the space domain, in 2021, Marsillach applied reachability analysis in the form

of ellipsoidal approximation for the purposes of telescope tasking [68]. Reachability
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analysis is used to compute the reach set of states within a specified amount of time in

order to pair spacecraft with telescopes via a tasking algorithm. Allen, et al. utilized

a classification machine learning algorithm to identify reach states for a deep-space

spacecraft, however misclassifications may occur which may not be acceptable for a

specific mission [69].

Reachability analysis is being leveraged more recently for spacecraft RPO tra-

jectory planning. Reachability analysis was studied for Space Domain Awareness in

2007 by Holzinger and Scheeres in RPO and formation flying missions for consider-

ations regarding control authority characterization, correlating object detection with

trajectory planning, and “stuck” thrusters in 2 degrees of freedom dynamics where

cross-track motion was ignored [70]. Holzinger and Sheeres found approximating the

reach set with ellipsoidal reach set approximation diverges from the exact reach set

solution after a period of time. Zagaris and Romano performed reachability analysis

for a RPO and docking of a deputy spacecraft to a tumbling object, where the feasibil-

ity of docking was analyzed given variations in the rotational velocity of the tumbling

object [10, 71, 72]. A stochastic reachability method was developed for spacecraft

RPO with an open-loop controller, as a constrained optimization problem, however

they were unsuccessful implementing a state-based feedback controller [73]. Recently,

Zagaris and Hess demonstrated a computationally efficient method for computing

reach sets for spacecraft relative motion given single impulse maneuvers utilizing an

analytical STM to propagate relative motion and ellipsoidal reach set approximation

[74].

The ellipsoidal reach set approximation approach was published by Kurzhan-

skiy and Varaiya [61] and implemented as a MATLAB® toolbox. Kurzhanskiy and

Varaiya’s method implements ellipsoidal calculus [75] for continuous-time, discrete-

time, and linear systems with disturbances on both open- and closed-loop reach sets.
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Ellipsoidal reach set approximation provides several benefits compared to other meth-

ods, such as the exact HJB computational method:

• Computational complexity grows quadratically by state dimensionality and lin-

early by number of time steps.

• The exact reach set can be represented by computing the intersections of exter-

nal and internal ellipsoids.

• Specific external or internal ellipsoids can be extracted if beneficial, such as a

particular volume, diameter, or ellipsoid eigenvectors, etc.

• The control can be modeled as simple analytical expressions.

The ellipsoid, as defined by Kurzhanskiy and Varaiya [61], has a center q and a

positive definite or positive semi-definite shape matrix Q,

E(q,Q) = {x ∈ Rn|〈(x− q),Q−1(x− q)〉 ≤ 1} . (2.39)

The process of calculating an ellipsoidal approximation of a reach set utilizes the

following operations on ellipsoids that are integral to ellipsoidal calculus:

• Affine transformation

• Geometric sums of a finite number of ellipsoids

• Geometric difference of two ellipsoids

• Intersections of a finite number of ellipsoids

The methods used for affine transformations, geometric sums, and intersections

of ellipsoids are detailed here for their direct relation to the methodology described

in Section 3.2 for computing reach set approximations in this research.
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Affine transformations are useful for projections, where a higher dimensional sys-

tem such as a three-dimensional ellipsoid is projected onto two dimensions. For higher

dimensional systems, such as a six state relative motion model (x = [x y z ẋ ẏ ż]T ),

it may be useful to project the resulting ellipsoid into two or three dimensions for

visualizations on plots. Affine transformations preserve the ellipsoidal geometry.

Geometric sum operations on ellipsoids generally do not yield an ellipsoid. How-

ever, the geometric sum of the two ellipsoids can be approximated as an ellipsoid.

An external ellipsoidal approximation completely contains the geometric sum of each

ellipsoid 1 · · · k, defined as

E(q1,Q1)⊕ · · · ⊕ E(qk,Qk) ⊆ E(q,Q+
l ) (2.40)

and with support functions

ρ(±l | E(q1,Q1))⊕ · · · ⊕ ρ(±l|E(qk,Qk)) = ρ(±l | E(q,Q+
l )) (2.41)

where l is a nonzero vector in Rn, and center q is q1 + · · ·+ qk. The shape matrix of

the external approximation of the geometric sum of ellipsoids is

Q+
l =

(
〈l,Q1l〉

1
2 + · · ·+ 〈l,Qkl〉

1
2

)( 1

〈l,Q1l〉
1
2

Q1 + · · ·+ 1

〈l,Qkl〉
1
2

Qk

)
(2.42)

where l is the direction along which the approximation is tight.

Like the geometric sum of ellipsoids, the intersection of ellipsoids is also gener-

ally not an ellipsoid. The intersection can be approximated as an ellipsoid via the

optimization methodology described in [74].

This research is motivated by the need for a computationally efficient method for

verifying object detection for guidance planning in spacecraft RPO applications and
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utilizes the approach in [74] for computing reach sets to support collision avoidance.
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III. Solution Methodology

This research analyzes reach set solutions computed by different relative motion

models. Each model has specific assumptions that determine its applicability to

various orbits. The reach sets from each model at a range of orbit sizes and shapes

will be compared with each other and analyzed for their accuracy and real-time, on-

board computational feasibility. Next, two methods are combined for implementing

safe, verifiable trajectories of spacecraft in relative orbit. The APF provides the

means for computing the control profile required to rendezvous a deputy spacecraft

with a chief spacecraft while avoiding collisions with obstacles. Reachability analysis

identifies the reach set such that all obstacles within the reach set can be activated

in the APF. This approach is such that the reach set can mimic spacecraft sensors

detecting spacecraft on-board and in real-time while also providing a verification that

the trajectory calculated by the APF is valid.

Figure 3.1. Research methodology flowchart
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3.1 State Dynamics

The unforced state transition matrix form of the relative motion dynamics, which

propagates the current relative state forward a predetermined time to a new state, is

defined by

x(t) = Φ(t)x(t0), x = [x y z ẋ ẏ ż]T . (3.1)

In order to model the forced equations of motion using the CW state matrix form,

an impulsive control ∆v[t] is added to the velocity such that the forced dynamics

become

r[t+ 1]

v[t+ 1]

 = Φ(∆t)

 r[t]

v[t] + ∆v[t]


r[t+ 1]

v[t+ 1]

 =

Φrr Φrv

Φvr Φvv


 r[t]

v[t] + ∆v[t]


r[t+ 1]

v[t+ 1]

 =

Φrr Φrv

Φvr Φvv


r[t]

v[t]

+

Φrv

Φvv

∆v[t]

x[t+ 1] =

Φrr Φrv

Φvr Φvv

x[t] +

Φrv

Φvv

u[t]

x[t+ 1] = Φ(∆t)x[t] + Φ(∆t)

0

I

u[t]

(3.2)

where Φ(t) is the STM of the particular relative motion model used to transfer the

states from an initial state to a final state over a specific period of time, and Φrr,

Φrv, Φvr, and Φvv are the sub-partitions of Φ(t).
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3.2 Reachability Analysis

In practical applications, all obstacles may not be known a priori, therefore a

spacecraft may employ sensors to identify obstacles that must be avoided during a

maneuver. Reachability analysis is employed as a means to identify the “field of view”

for which the obstacles are defined.

Relative motion models for spacecraft can be simplified to a 4D model but 6D

models can also be required. As previously mentioned, the computational complexity

of computing exact reach sets via solving the HJB PDE grows exponentially and

is impractical for 4D and intractable for 6D. Therefore, to avoid the computational

requirements of exact reach set solutions, reach set approximation via ellipsoidal

calculus is used here to compare the solutions of several linearized spacecraft relative

motion models. Ellipsoidal reach set approximations inherently over-approximate the

exact reach set, thereby ensuring no obstacle within the exact reach set is omitted

as a result of approximation [61]. Ellipsoidal reach set approximation is based on

the assumption that the reach set is approximately ellipsoidal when projected onto

3D-subspace.

From the Ellipsoidal Toolbox [61], an ellipsoid can be defined in Rn with a center

q and a shape matrix Q where

E(q,Q) = {x ∈ Rn|〈(x− q),Q−1(x− q)〉 ≤ 1} (3.3)

wherein q is the center of the ellipsoid and Q is a positive definite matrix that defines

the size and orientation of the ellipsoid.

Reach set approximation via ellipsoidal approximation requires an initial state

ellipsoid E(qx,Qx), control ellipsoid E(qzi,Qzi) and E(qzs,Qzs), system dynamics Φ,

and a time step t. The reach set approximation is only valid for a single initial impulse
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at the time which the reach set is computed.

3.2.1 The State Ellipsoid

For the deputy spacecraft, the center of the initial state ellipsoid qx is defined by

the initial state vector x = [x y z ẋ ẏ ż]T . The shape matrix Qx is defined by a 6x6

matrix where the position error and velocity error are on the diagonal

Qx =



x̃2
error 0 0 0 0 0

0 ỹ2
error 0 0 0 0

0 0 z̃2
error 0 0 0

0 0 0 ˙̃x2
error 0 0

0 0 0 0 ˙̃y2
error 0

0 0 0 0 0 ˙̃z2
error


. (3.4)

3.2.2 The Control Ellipsoid

The center of the control matrix is defined by the zero-input vector made by

qzi = Φrr(t, t0)r0 + Φrv(t, t0)v0 (3.5)

where r is the radial and in-track states, v is the radial and in-track velocities, and

Φrr and Φrv are two sub-partitions of Φ(t).

The shape of the control matrix is comprised of a geometric sum of the zero-input

ellipsoid and the zero-state ellipsoid. The zero-input ellipsoid is defined in Equation

3.6.

Qzi = AQxA
T (3.6)

43



where

A =

[
Φrr(t, t0) Φrv(t, t0)

]
(3.7)

and represents the ellipsoidal approximation of the reach set from the initial conditions

but without an initial input.

The zero-state ellipsoid is defined with the center qzs at the nominal initial state

x0, i.e. without uncertainty, and shape matrix Qzs defined as [74]

qzs = qzi

Qzs = Φrv(t, t0)Q∆vΦ
T
rv(t, t0)

(3.8)

where

Q∆v = u2
maxI (3.9)

and represents the ellipsoidal approximation of the reach set with the initial input.

3.2.3 Computing the Reach Set

For the scenario where a spacecraft cannot impart any control forces (umax = 0),

the total reach set ellipsoid QR is equal to the zero-input ellipsoid Qzi. When control

forces are non-zero, the zero-state ellipsoid is added to the zero-input ellipsoid via

geometric sum. The sum of two ellipsoids do not generally produce another ellipsoid,

so an ellipsoidal approximation of the geometric sum is produced as described in

Section 2.3. Therefore, the ellipsoidal reach set approximation for a relative motion

model with an impulsive control is

QR =
(
〈l,Qzil〉

1
2 + 〈l,Qzsl〉

1
2

)( 1

〈l,Qzil〉
1
2

Qzi +
1

〈l,Qzsl〉
1
2

Qzs

)
(3.10)
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where l is the eigenvector associated with the largest eigenvalue. This direction l is

chosen so that ellipsoidal approximation of the geometric sum of the state and input

ellipsoids is tight along that direction, thus enabling the best possible ellipsoidal

approximation of the geometric sum.

3.3 Evaluating Reach Sets With Different Relative Motion Models

This section aims towards answering the first question posed in this research from

Section 1.2.1: How do relative motion models impact the reach set solution? Approx-

imate reach set calculations are performed over a set time interval while predicting a

defined number of reach sets into the future. The impact of different relative motion

models on the reach set given a defined orbit is studied and quantified per the Figure

of Merit defined below. The scenario studied is a spacecraft in orbit that is the origin

of a relative Hill reference frame. Four relative motion models are used to model

the system dynamics and are chosen based on their range of assumptions for which

their solutions are valid. The Clohessy-Wiltshire, Schweighart-Sedwick, Yamanaka-

Ankersen, and Gim-Alfriend models are used in the closed form STM in Equation

3.11 where Φ(t, t0) represents the forced STM dynamics which transfers the system

from its current state x(t0) to the next state x(t),

x[t+ 1] = Φ(∆t)x[t] + Φ(∆t)

0

I

u[t] . (3.11)

The CW model is valid for relatively short distances, circular orbits, and does

not account for any disturbances or perturbations [12]. The SS model is valid for

relatively short distances, circular orbits, and accounts for J2 perturbations [15]. The

YA model is valid for relatively short distances, elliptic orbits, and does not account

for disturbances or perturbations [16]. The GA model is valid for relatively short
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distances, elliptic orbits, and accounts for J2 perturbations.

Table 3.1. Assumptions of each relative motion model

Model Range Eccentricity Perturbations
Clohessy-Wilshire (CW) Short distances Circular (e = 0) None

Schweighart-Sedwick (SS) Short distances Circular (e = 0) J2

Yamanaka-Ankersen (YA) Short distances Elliptic (0 ≤ e < 1) None
Gim-Alfriend (GA) Short distances Elliptic (0 ≤ e < 1) J2

Analysis of the reach sets will be conducted by comparing the size, shape, and

orientation of the reach sets computed for each relative motion model. These repre-

sentations of the reach sets are used as the Figure of Merit for the relative motion

model reach set evaluation. The metrics presented include the Euler angle of the

semi-major axis of the reach set ellipsoid, volume of the ellipsoid, and trace of the

ellipsoid. With computational efficiency being necessary for on-board autonomous

guidance planning, the computation time of each reach set for each relative motion

model is also presented and discussed. These metrics will support conclusions for the

first and third research questions posed in this work from Section 1.2.1.

3.4 Artificial Potential Function

Often, APFs act on the position of the spacecraft, xd = [xd, yd], with respect to

the chief’s location, xc = [xc, yc], and all i obstacles, xo,i = [xo,i, yo,i] [49].

The attractive potential function serves to provide a global minimum at the target

location such that the spacecraft follows the negative potential gradient towards the

global minimum. A quadratic attractive potential function is used and defined as

[55, 48]

Φa(x) =
ka
2
rTcfPrcf (3.12)

where ka is a strictly positive constant, rcf = xd−xc is the relative position between

the deputy and chief spacecrafts, and P is a symmetric positive-definite weighting
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matrix that shapes the potential function.

The repulsive functions serve as areas of large potential which create a positive

potential gradient surrounding the obstacles to be avoided. Since the APF controller

seeks to follow the negative gradient potential to reach the global minimum expe-

ditiously, these large potential areas defined in the repulsive function are avoided.

The repulsive function is defined using a Gaussian function that can accommodate

N obstacles [55, 48],

Φr(x) =
N∑
i=1

ψiexp

[
−
rTco,iNirco,i

σi

]
(3.13)

where rco,i = xd−xo,i is the relative position between the deputy and the ith obstacle,

ψi and σi are height and width parameters, respectively, and Ni is a symmetric

positive-definite weighting matrix that shapes the ith repulsive potential [55].

The total potential function is the sum of the attractive potential function and

the repulsive potential function,

Φtot = Φa + Φr . (3.14)

A continuous feedback control law is defined to provide finer control when in close

proximity to the terminal state at the chief spacecraft [49, 48],

u(rcf , rco,vcf ) = −B−1Ka(vcf + ∆xΦtot) , (3.15)

where Ka is a positive gain matrix, vcf is the relative velocity between the deputy

and the chief spacecrafts, B, from Equation 3.2, is

B = Φ(t)

0

I

 , (3.16)
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and ∆xΦtot is the gradient of the potential function given by [48],

∆xΦtot = kaPrcf −
N∑
i=1

2ψi
σi

exp

[
−
rTco,iNirco,i

σi

]
Nirco,i . (3.17)

3.5 Reach/APF Algorithm

The reach/APF algorithm initiates at time t0 and state x0 which, in this research,

resides on an NMC orbit around a chief spacecraft. When the maneuver is initiated,

the difference between the current location and the target is calculated, which helps

define the graident of the APF ∆Φtot.

The reach set is computed via the calculations described in Chapter 3.2 utilizing

the CW relative motion model.

Next, each obstacle that exists is modeled as an ellipsoid where qobs is the location

of the obstacle and Qobs is the shape matrix defined by the radius of the obstacle,

Qobs = r2
obsI . (3.18)

In order to identify the relevant obstacles at this time step, each obstacle ellipsoid

is checked for intersection with the reach set ellipsoid. If the obstacle intersects with

the reach set ellipsoid, that obstacle’s repulsive function is activated per Equation

3.13. If no intersection exists, Φr,i = 0. Calculating the intersection between ellipsoids

identifies which obstacles are reachable by the deputy spacecraft at that time step and

are accounted for in the repulsive function portion of the artificial potential function.

This intersection calculation is generally not an ellipsoid, however the intersection can

be approximated by an ellipsoid via the method described in [74]. For this research,

the actual shape of the intersection is not utilized, only a binary indication of an

intersection with an obstacle.
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With the attractive and repulsive functions calculated, the total artificial potential

function can be calculated. The continuous feedback control law is then calculated

from the gradient potential function ∇xΦtot. The resulting control u is applied to the

system dynamics from Equation 3.2 and the deputy spacecraft maneuvers to a new

position.

This process repeats at a set time interval for a set duration or until the deputy

spacecraft rendezvous with the chief.

Figure 3.2. Flow chart of guidance methodology

The Figure of Merit for the Reach/APF algorithm is defined by the time series of

the position histories, velocity histories, control histories, and a 2-D representation

of the trajectory of the deputy spacecraft as it attempts rendezvous with the chief.

Additionally, the computation time required to calculate the reach set, identify the

nearest obstacles, and propagate the deputy spacecraft’s position will be assessed for

feasibility in an on-board autonomous guidance planning application. These metrics

will support conclusions for the second and third research questions posed in this

work from Section 1.2.1.
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IV. Results and Analysis

This chapter details the scenarios designed to address the questions from Section

1.2.1 and the results from those experiments. The ellipsoidal reach set approxima-

tion method is applied in Section 4.1 using four relative motion models of various

orbits. Section 4.2 establishes the environment for which the reach set computation

is combined with the APF control method to compute the control authority required

to rendezvous a deputy spacecraft with a chief spacecraft while avoiding obstacles.

4.1 Reach Set Variation Between Relative Motion Models

4.1.1 Test Instances

The orbits studied are LEO and GEO. LEO is modeled as an orbit with perigee

of 700 km. GEO is modeled as an orbit with perigee of 35,786 km. The orbits are

defined by the perigee radius to ensure a valid orbit around the Earth for the high

eccentricity orbits. Orbital eccentricity is modeled starting at fully circular (e = 0)

up to highly elliptical (e = 0.7). While not of significant influence on the variation

in solutions generated by the various models, the remaining reference orbit Classical

Orbital Elements (COEs) are listed in Table 4.1.

At LEO, the reach sets with time horizons of 1 minute and 10 minutes are an-

alyzed, then the reach sets are analyzed at circular (e = 0) and highly elliptical

(e = 0.7) obits for time horizons from 1 minute to 51 minutes. At GEO, the reach

Table 4.1. Classical orbital elements of the reference orbit (reach set variation)

Orbital Element Symbol Value Unit
Inclination i 45 Degrees
Right Ascension of the Ascending Node Ω 20 Degrees
Argument of Perigee ω 30 Degrees
Mean Anomaly M0 20 Degrees
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sets with time horizons of 10 minutes and 100 minutes are analyzed, then the reach

sets are analyzed at circular (e = 0) and highly elliptical (e = 0.7) orbits for time

horizons from 1 minute to 501 minutes.

The four relative motion models analyzed are CW, SS, YA, and GA, which are

discussed in more detail in Chapter II. A “true” reach set was not computed but

would be a valuable addition as a benchmark for comparison. The CW model is valid

for spacecraft operating in close-proximity about circular reference orbits. The SS

motion model is an extension of the CW model with the addition of the J2 pertur-

bative force. The YA motion model provides a state transition matrix valid for all

orbital eccentricities. The GA model can accurately represent relative motion with J2

perturbations and can accurately represent the relative motion of elliptical reference

orbits.

4.1.2 Reach Set Comparison at LEO

The reach set ellipsoids of each relative motion model are shown overlaid in Figures

4.1 through 4.3. Relative trajectories, propagated by each relative motion model with

a random initial sample, are also shown in the figures. The shapes, volumes, and

orientations of the reach set ellipsoids are analyzed using the Figures of Merit from

Section 3.3, and are shown in Figures 4.4 through 4.6. The Euler angle of the semi-

major axis of the reach set ellipsoid is shown in Figure 4.4. The volume of the reach

set ellipsoid is shown in Figure 4.5. The trace of the reach set ellipsoid is shown in

Figure 4.6.

The CW and SS models do not account for orbital eccentricity, and as such it

is expected that the reach set ellipsoids do not change as the orbital eccentricity

increases. The Euler angle of the semi-major axis remains constant. While the Euler

angle for the SS model varies from the other models for the 1 minute interval case, the
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Figure 4.1. Reach set with all models overlaid in LEO (e = 0)
Top: 1 min interval, Bottom: 10 min interval
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Figure 4.2. Reach set with all models overlaid in LEO (e = 0.1)
Top: 1 min interval, Bottom: 10 min interval
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Figure 4.3. Reach set with all models overlaid in LEO (e = 0.7)
Top: 1 min interval, Bottom: 10 min interval
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trace value is very close for all the models, indicating the overall shape of the reach

sets are very similar. The volume of each model at the 1 minute interval supports

that the reach sets for all four models at a 1 minute interval at LEO are very similar.

The YA and GA models can accurately model relative motion for elliptical or-

bits, thus the reach set ellipsoid is variate as the orbital eccentricity increases. GA,

however, also accounts for J2 perturbations. From the comparisons between the CW

and SS reach sets above where the J2 perturbation had little impact on the reach set,

it can be hypothesized that the YA and GA models will have very similar reach set

ellipsoids. Figures 4.4 through 4.6 support this hypothesis where the semi-major axis

Euler angle, ellipsoid volume, and ellipsoid trace are nearly identical between the YA

and GA models throughout all eccentricities. The semi-major axis Euler angles of

the GA model deviate in Figure 4.4, however this is due to numerical precision error.

Discounting the numerical precision error, the eigenvectors of the reach set ellipsoids

of the YA and GA models are nearly identical for all eccentricities, and thus the Euler

angles are also nearly identical.

Figure 4.7 shows the computation time required to calculate the reach set for

each relative motion model at each eccentricity. All computations are performed on

a Quad-Core Intel Core i5-6500 3.2 GHz processor with 16 GB 2133 MHz DDR4

memory. The computation time of the reach set for each model at both time horizons

is very low, mostly on the order of milliseconds. From eccentricities 0 to 0.1, each

model’s computation time is slightly higher and the GA model is significantly higher,

comparatively, up to 0.13 seconds. The reason for this increase is unclear and may

warrant further investigation depending on mission requirements. Overall, despite

the slight increases in computation time at eccentricities less than 0.1, the compu-

tation times demonstrate strong potential for use in on-board, real-time guidance

applications.
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Figure 4.4. Euler angle of reach set ellipsoid semi-major axis (LEO)
Top: 1 min interval, Bottom: 10 min interval
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Figure 4.5. Volume of reach set ellipsoid (LEO)
Top: 1 min interval, Bottom: 10 min interval
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Figure 4.6. Trace of reach set ellipsoid (LEO)
Top: 1 min interval, Bottom: 10 min interval
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Figure 4.7. Reach set computation time (LEO)
Top: 1 min interval, Bottom: 10 min interval
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Figures 4.8 through 4.11 show the reach set metrics when compared to the time

horizon for circular and highly elliptical orbits. All four models are linearized to

be applicable for a short time horizon, therefore it can be expected that as the time

horizon grows, the modeling error should grow. This is depicted at both eccentricities,

particularly beyond 30 minutes. For the highly elliptical orbit, the modeling error by

the CW and SS models, due to not accounting for eccentricity, becomes dramatically

apparent after 30 minutes where the CW and SS models underapproximate the reach

set as compared to the YA and GA models.

Computationally speaking, each of the four models presented here show strong

potential for on-board, real-time guidance application but the impact of the orbital

eccentricity on the reach set demonstrates a clear need to utilize an appropriate

relative motion model. The YA and GA models are valid for all eccentricities, 0 ≤

e < 1, therefore it is feasible to employ either of these models for applications in LEO

for any eccentricity and the system will have a computationally efficient method for

verifying object detection and control verification for guidance planning in spacecraft

RPO applications.

Contrarily, the CW and SS models do not provide an accurate representation of

the reach set ellipsoid for high eccentricities for longer time horizons. For short time

horizons, the differences between the reach set solutions may be small enough to

Figure 4.8. Euler angle of reach set ellipsoid semi-major axis for various time intervals (LEO)
Left: e = 0, Right: e = 0.7
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Figure 4.9. Volume of reach set ellipsoid for various time intervals (LEO)
Left: e = 0, Right: e = 0.7

Figure 4.10. Trace of reach set ellipsoid for various time intervals (LEO)
Left: e = 0, Right: e = 0.7

Figure 4.11. Reach set computation time for various time intervals (LEO)
Left: e = 0, Right: e = 0.7
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be negligible, allowing for some modeling trade space if computational resources are

extremely tight. At low eccentricities, the orientation of the CW and SS reach set

ellipsoids may be similar enough to the YA and GA model for certain applications,

but as the eccentricity increases, the orientation of the CW and SS reach set ellipsoids

deviate from the YA and GA models at an eccentricity of 0.7 and grows directly with

the time horizon. Although the orientation of the CW and SS reach set ellipsoids

may remain similar enough at low eccentricities for some applications, the CW and

SS models under-approximate the reach set compared to the YA and GA solutions

by volume. In order to encompass all possible final states and ensure proper control

verification or all nearby obstacles are accounted for, the reach set must be over-

approximated instead of under-approximated. For these reasons, the CW and SS

relative motion models are not suitable for approximating the reach set at higher

eccentricities at LEO unless the time horizon is sufficiently small.

4.1.3 Reach Set Comparison at GEO

The reach set ellipsoids of each relative motion model are shown overlaid in Figures

4.12 through 4.14. Relative trajectories, propagated by each relative motion model

with a random initial sample, is also shown in the figures. The shapes, volumes,

and orientations of the reach set ellipsoids are analyzed using the Figures of Merit

from Section 3.3, and are shown in Figures 4.15 through 4.17. The Euler angle of

the semi-major axis of the reach set ellipsoid is shown in Figure 4.15. The volume of

the reach set ellipsoid is shown in Figure 4.16. The trace of the reach set ellipsoid is

shown in Figure 4.17.

The CW and SS models do not account for orbital eccentricity, and as such, similar

to the case at LEO, it is expected that the reach set ellipsoids do not change as the

orbital eccentricity increases. The Euler angle of the semi-major axis, volume, and
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Figure 4.12. Reach set with all models overlaid in GEO (e = 0)
Top: 10 min interval, Bottom: 100 min interval
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Figure 4.13. Reach set with all models overlaid in GEO (e = 0.1)
Top: 10 min interval, Bottom: 100 min interval
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Figure 4.14. Reach set with all models overlaid in GEO (e = 0.7)
Top: 10 min interval, Bottom: 100 min interval
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trace of the reach set ellipsoids for the CW and SS models remain constant. The

differences shown in the figures between the CW and SS model reach set ellipsoids is

very small, down to the third and fourth decimal. The influence of J2 perturbations

at GEO are much smaller than at LEO, therefore it is expected that the CW and SS

models produce extremely similar reach set ellipsoids.

The YA and GA models can accurately model relative motion for elliptical orbits,

thus the reach set ellipsoid is variate as the orbital eccentricity increases. With

the influence of J2 perturbations having been concluded to be minimal, and with

J2 perturbations being much smaller at GEO, the reach set ellipsoid YA and GA

models have very similar reach set ellipsoids. Figures 4.15 through 4.17 support this

hypothesis where the semi-major axis Euler angle, ellipsoid volume, and ellipsoid trace

are nearly identical between the YA and GA models throughout all eccentricities.

The semi-major axis Euler angles of the GA model deviate in Figure 4.15 for all

eccentricities, however this is again due to numerical precision error. Discounting the

numerical precision error, the eigenvectors of the reach set ellipsoids of the YA and

GA models are nearly identical for all eccentricities, and thus the Euler angles are

also nearly identical. When evaluated over the time horizon of 10 minutes, the reach

sets of all four models are nearly identical. When calculated out to 100 minutes, the

error propagations begin to show as the CW and SS models underapproximate the

reach sets for higher eccentricities.

Figure 4.18 shows the computation time required to calculate the reach set for

each relative motion model at each eccentricity. All computations are performed on

a Quad-Core Intel Core i5-6500 3.2 GHz processor with 16 GB 2133 MHz DDR4

memory. As with the case of an orbit in LEO, the computation time of the reach set

for each model is very low, mostly on the order of milliseconds. From eccentricities

0 to 0.1, each model’s computation time is slightly higher and the GA model is
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Figure 4.15. Euler angle of reach set ellipsoid semi-major axis (GEO)
Top: 10 min interval, Bottom: 100 min interval
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Figure 4.16. Volume of reach set ellipsoid (GEO)
Top: 10 min interval, Bottom: 100 min interval
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Figure 4.17. Trace of reach set ellipsoid (GEO)
Top: 10 min interval, Bottom: 100 min interval
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significantly higher, comparatively, up to 0.12 seconds. Overall, despite the slight

increases in computation time at eccentricities less than 0.1, the computation times

demonstrate strong potential for use in on-board, real-time guidance applications.

Figures 4.19 through 4.22 show the reach set metrics when compared to the time

horizon for circular and highly elliptical orbits. All four models are linearized to be

applicable for a short time horizon, therefore it can be expected that as the time

horizon grows, the modeling error should grow. While this error is not apparent

over this time interval for the circular GEO orbit, this is depicted for the highly

elliptical GEO orbit, particularly beyond 300 minutes. For the highly elliptical orbit,

the modeling error by the CW and SS models due to not accounting for eccentricity

becomes apparent after 300 minutes where the CW and SS models underapproximate

the reach set as compared to the YA and GA models.

Similar to the case at LEO, computationally speaking, each of the four models

presented here show strong potential for on-board, real-time guidance application but

the impact of the orbital eccentricity on the reach set demonstrates a clear need to

utilize an appropriate relative motion model. The YA and GA models are valid for all

eccentricities, 0 ≤ e < 1, therefore it is feasible to employ either of these models for

applications in GEO for any eccentricity and the system will have a computationally

efficient method for verifying object detection and control verification for guidance

planning in spacecraft RPO applications.

Also similar to the case at LEO, the CW and SS models may provide an accurate

representation of the reach set ellipsoid even for high eccentricities only over shorter

time horizons. Although the orientation of the CW and SS reach set ellipsoids appear

to vary significantly, the volume and trace, as shown in Figures 4.16 and 4.17, vary

only to third decimal across all eccentricities. These values demonstrate that the

shape of the reach set ellipsoids are very similar. While the CW and SS models also
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Figure 4.18. Reach set computation time (GEO)
Top: 10 min interval, Bottom: 100 min interval
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Figure 4.19. Euler angle of reach set ellipsoid semi-major axis for various time intervals (GEO)
Left: e = 0, Right: e = 0.7

Figure 4.20. Volume of reach set ellipsoid for various time intervals (GEO)
Left: e = 0, Right: e = 0.7

Figure 4.21. Trace of reach set ellipsoid for various time intervals (GEO)
Left: e = 0, Right: e = 0.7

72



Figure 4.22. Reach set computation time for various time intervals (GEO)
Left: e = 0, Right: e = 0.7

underestimate the reach set compared to the YA and GA models over the 10 minute

time horizon, the difference is at most approximately 0.0001 km3 at eccentricity e =

0.7. The 100 minute time horizon shows greater deviation in the reach set between

the models, but the capability to rapidly compute the reach set for each model would

likely negate the necessity for such a large time horizon. Therefore, the CW and

SS models may be suitable for approximating the reach set at higher eccentricities

at GEO and provide a means for ensuring proper control verification or all nearby

obstacles are accounted for.

4.2 Trajectory Planning using Reachability Analysis with APFs

4.2.1 Test Instances

Several scenarios are simulated to demonstrate the feasibility of implementing

a trajectory planning algorithm that leverages reachability analysis with APFs for

collision avoidance. The ellipsoidal reach set approximations are computed utilizing

the CW relative motion model. While this algorithm can be applied for any target

location, the target destination for each scenario is the chief spacecraft at the origin

of the relative Hill reference frame. The deputy spacecraft is initiated in an NMC

orbit, depending on the scenario. Circular orbits at both LEO and GEO are explored

as well as the impact of the shape of the APF on the guidance solution. LEO is
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defined at an altitude of 700 km above the Earth and GEO is defined at an altitude

of 35786 km above the Earth. The orbital elements for both orbits are the same and

summarized in Table 4.2, and are arbitrary.

The three main cases studied are:

1. A strong attractive potential function with relatively static obstacles.

2. A weak attractive potential function with relatively static obstacles.

3. Obstacles moving on an NMC orbit.

In all cases, the cross-track motion is ignored since it is decoupled from the radial

and in-track motion in the CW relative motion model. Each simulation is run for a

maximum duration of two periods, that is, the deputy is given a maximum of two

periods to complete the rendezvous before the computation aborts. This limitation is

arbitrary, and is set for the purposes of this research. In real world applications, this

bound may be determined by mission constraints such as required time to rendezvous.

The maximum magnitude of control is bounded at 1 m/s. The size of the obstacles is

set to a diameter of 10 m and are initiated between 1/10th and 9/10th of the radius of

the deputy’s initial NMC orbit. The diameter of the obstacles serves as the keep-out

zone for the deputy spacecraft to avoid during the rendezvous operation. A position

error and velocity error is defined for the reachability analysis at 1 m and 0.5 m/s,

respectively.

Several other independent variables include the interval between calculations of

Table 4.2. Classical orbital elements of the reference orbit (trajectory planning)

Orbital Element Symbol Value Unit
Eccentricity e 0 Unitless
Inclination i 45 Degrees
Right Ascension of the Ascending Node Ω 20 Degrees
Mean Anomaly M0 20 Degrees
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the trajectory and control, the interval between calculations of the reach sets, the

number of obstacles, and whether the obstacles detected are static in the relative

reference frame or in an NMC orbit around the chief spacecraft. These variables are

defined for each case studied in the following sections.

For defining the artificial potential function, in Equations 3.12 and 3.13, P is set

per each scenario while ka = 0.002, ψi = 300, σi = 9/16r2
obs,i, and N is set to create

a circular obstacle keep-out zone with I2x2 [48].

All computations are performed on a Quad-Core Intel Core i5-6500 3.2 GHz pro-

cessor with 16 GB 2133 MHz DDR4 memory.

4.2.2 Case 1: Strong Attractive Potential Function

A strong attractive function with respect to the repulsive function is demonstrated

in GEO. The deputy spacecraft is initialized in a NMC relative orbit 100 m from the

chief spacecraft. The maneuver begins at β = 30◦ in the NMC orbit with nine

relatively static obstacles. The interval between trajectory calculations is 1 minute.

The reach set is calculated every 10th calculation, or every 10 minutes.

The shape of the attractive potential function is determined by the shaping matrix

P . Increasing the shape matrix P increases the height of the paraboloid, creating a

large paraboloid with a steep gradient.

The attractive potential shape matrix P is

P =

2× 104 0

0 2× 104

 (4.1)

which creates a tall attractive potential comparatively with respect to the repulsive

potential function, as shown in Figures 4.23.

Figure 4.24 shows the trajectory of the deputy spacecraft as it attempts to ren-
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Figure 4.23. APF with a strong attractive potential

dezvous with the chief spacecraft by following the gradient of the APF. The state and

control histories are shown in Figures 4.25 and 4.26. The trajectory and state history

plots show the spacecraft does not rendezvous with the chief. Instead, the trajectory

hops over or around the global minimum at the target destination. The algorithm is

halted early because a state solution exceeded an arbitrary position bound set by the

author of five times the initial starting distance from the chief spacecraft. Without

this, poorly tuned APFs tended to diverge further as the APF gradient grew larger

and larger the further from the origin the deputy spacecraft moved. The control his-
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tories in Figure 4.26 show that these maneuvers often require close to the maximum

available control input, 1 m/s, to be accomplished.

Figure 4.24. Trajectory with a strong attractive potential

Computation time is documented in Figure 4.27. To evaluate the feasibility of

computing reach sets and guidance planning together autonomously and in real-time,

it is required that the maneuver be calculated prior to the required maneuver time.

As mentioned, the trajectory and control is computed for every minute, therefore this

algorithm must be able to compute the trajectory in under 1 minute, including when

the reach sets are being calculated and the obstacles are being identified.

Figure 4.27 shows all computations are feasible, with zero calculations taking

longer to compute than the required one minute. The short computation times are

around 10-40 microseconds and correspond to scenarios where the reach set is not
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Figure 4.25. State histories with a strong attractive potential

computed. The longer computation times, around 0.75 seconds up to about 2.9

seconds, correspond to scenarios where obstacles are detected within the reach set.

The reach sets computation duration is directly related to the number of obstacles
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Figure 4.26. Control histories with a strong attractive potential

Figure 4.27. Computation time at each step with a strong attractive potential

found to be within the reach set.

This scenario demonstrates that performing reachability analysis, obstacle detec-
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tion, and state propagation via APF together can be feasible given the time between

computations remains longer than the computation time itself. However, while the

APF in this scenario allows the deputy spacecraft to utilize its full control author-

ity, the deputy is unable to rendezvous with the chief because its movements are too

large and it bounces around the global minimum. This can be mitigated by decreasing

the attractive potential by making the potential shape matrix P smaller, as shown

in 4.2.3. Additionally, the duration between computations can be decreased so the

deputy does not have to continually over-correct its previous move. In order to main-

tain the goal of being beneficial for on-board, autonomous guidance planning, this

interval would remain longer than the time it takes the on-board hardware to perform

the calculations. For the hardware used in this research, that period is approximately

three seconds.

4.2.3 Case 2: Weak Attractive Potential Function

A weak attractive function is demonstrated in GEO. The deputy spacecraft is

initialized in a NMC relative orbit 100 km from the chief spacecraft. The maneuver

begins at β = 30◦ in the NMC orbit with nine relatively static obstacles. The interval

between trajectory calculations is 1 minute. The reach set is calculated every 10th

calculation, or every 10 minutes.

The shape of the attractive potential function is determined by the shaping matrix

P . Increasing the shape matrix P increases the height of the paraboloid, creating a

large paraboloid with a steep gradient.

The attractive potential shape matrix P is

P =

2× 10−2 0

0 2× 10−2

 (4.2)
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which creates a tall repulsive potential comparatively with respect to the attractive

potential function, as shown in Figures 4.28.

The contour plot of the potential functions (second row of Figure 4.28) shows the

obstacles are strongly represented by the repulsive function because the height of the

repulsive function dominates the attractive potential function.

Figure 4.29 and 4.30 show the trajectory of the deputy spacecraft as it attempts

to rendezvous with the chief spacecraft by following the gradient of the APF. The

trajectory produced by the APF is validated by using the calculated controls with the

forced NERMs, shown in Figure 4.29. The state and control histories are shown in

Figures 4.30 and 4.31. The trajectory and state history plots show the spacecraft does

rendezvous with the chief, however it takes two full periods. The control histories in

Figure 4.31 show that these maneuvers require very small control input, often several

orders of magnitude below the maximum allowable control input 1 m/s, or zero, to

maneuver the spacecraft. A spike in control input occurs around 0.15 periods as the

deputy spacecraft maneuvers itself around the obstacles and then back towards the

chief spacecraft. Once around the obstacles, the spacecraft coasts the rest of the way

to the target.

Computation time is documented in Figure 4.32. To evaluate the feasibility of

computing reach sets and guidance planning together autonomously and in real-time,

it is required that the maneuver be calculated prior to the required maneuver time.

As mentioned, the trajectory and control is computed for every minute, therefore this

algorithm must be able to compute the trajectory in under 1 minute, including when

the reach sets are being calculated and the obstacles are being identified.

Figure 4.32 shows all computations are feasible, with zero calculations taking

longer to compute than the required one minute. The short computation times are

around 10-40 microseconds and correspond to scenarios where the reach set is not
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Figure 4.28. APF with a weak attractive potential

computed. The longer computation times, around 1.5 seconds up to about 2.9 sec-

onds, correspond to scenarios where obstacles are detected within the reach set. The

reach sets computation duration is directly related to the number of obstacles found

to be within the reach set.

This scenario further demonstrates that performing reachability analysis, obsta-

cle detection, and state propagation via APF together can be feasible given the time

between computations remains longer than the computation time itself. However,

the APF in this scenario makes the deputy expend very little control authority, thus
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Figure 4.29. Trajectory with a weak attractive potential

it takes a very long time to reach the target. This can be mitigated by increasing

the attractive potential by making the potential shape matrix P larger. Addition-

ally, applying different potential functions or a different method of computing the

continuous feedback control law, such as those developed by others and referenced in

Section 2.2.3, may help improve the maneuver performance.

Lastly, because computation time is directly related to the number of obstacles

found within the reach set, a deputy maneuvering through many obstacles will be

limited to the frequency at which it performs its reachability analysis, obstacle de-

tection, and state propagation compared to a scenario with fewer obstacles. Longer

times between computations may result in missing the detection of an obstacle and

colliding with it. If the deputy gets very near an obstacle before the next computa-

tion, it may be in a position that has a high potential from the repulsive function
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Figure 4.30. State histories with a weak attractive potential

which would veer the deputy far off course and delay or eliminate the possibility of

rendezvous.
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Figure 4.31. Control histories with a weak attractive potential

Figure 4.32. Computation time at each step with a weak attractive potential
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4.2.4 Case 3: Obstacles moving on an NMC orbit

Figures 4.33 and 4.34 show failed trajectories of the deputy as it attempts to

rendezvous with the chief while avoiding obstacles moving in their own NMC orbits.

Both figures show the deputy performing the rendezvous maneuver and Figure 4.34

initially shows successful avoidance of obstacles as they pass through the deputy’s path

toward the chief. However, both cases then show the deputy’s trajectory shoot far off

course due to its proximity to the obstacles. This scenario occurs because the time

interval between calculations is too large to maintain sufficient collision avoidance.

When the trajectories significantly veer off course, this is a result of the deputy being

too close to the obstacle, and thus in an area of high potential. This is undesirable

because, in a real-world scenario, this may result in a collision, near-collision, or a

failed rendezvous operation.

This scenario demonstrates the significance of the time interval at which the tra-

jectory and reach sets are computed, especially in dynamic environments. Rapid

computations are necessary to enable early detection of obstacles and finer control of

the deputy as it performs its rendezvous procedure.
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Figure 4.33. RPO attempt with 10 obstacles in NMC orbits; (10 min interval)

Figure 4.34. RPO attempt with 20 obstacles in NMC orbits; (60 min interval)
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V. Conclusions and Recommendations

5.1 Conclusions

This research explores leveraging reachability analysis to enable a computationally

efficient method for verifying object detection and control verification for guidance

planning in spacecraft RPO applications. Two problems were created to address

three research questions. First, several relative motion models were used to compute

approximate ellipsoidal reachable sets across a range of orbit configurations. Then,

ellipsoidal reachability analysis was combined with an APF controller to compute the

reach set of a given state, identify obstacles within that reach set, and propagate

the state towards the target location while avoiding the obstacles. The results from

both problems were analyzed for feasibility on-board and in real-time, and for accu-

racy in providing verification of object detection and control verification for guidance

planning.

The size, shape, and orientation of the CW and SS models’ reach set at LEO

is shown to be not suitable for elliptical orbits, but they may be sufficient over ex-

tremely short time horizons. The CW and SS models are both feasible for circular

orbits, but both under-estimate the reach set at higher eccentricities and are there-

fore unable to encompass all possible final states and ensure collision avoidance of all

reachable obstacles. The YA and GA models are shown to provide very similar reach

sets across the eccentricities tested. Furthermore, computation times for calculat-

ing the reach sets are demonstrated to have strong potential for on-board, real-time

guidance application. At GEO, all models produce reach sets that are suitable for all

eccentricities given that the time horizons where the reach sets deviate significantly

are likely beyond the necessary computation requirement.

The reach/APF algorithm show it is feasible to combine reachability analysis
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and an APF controller in a computationally efficient method for on-board, real-time

safe guidance planning. The APF controller is shown to be extremely sensitive to

the number of obstacles, potential function tuning parameters, time horizon between

computations, maneuver duration constraint, and the maximum allowable compu-

tation time constraint. However, the analytical nature of both ellipsoidal reach set

approximation and APFs enable rapid computation that is promising for on-board,

real-time implementation.

5.2 Recommendations for Future Work

5.2.1 Tuning via Linear Regression

Tuning the APF proved to be a challenging task. The number of obstacles, time

horizon between computations, size of the attractive potential, available control au-

thority, and maximum allowable computation time constraints make it difficult to find

the right combination of parameters to guide the deputy to the chief within required

mission constraints. Linear regression, gradient descent algorithms, or other machine

learning techniques may be useful for determining the best combination of the many

parameters available for tuning.

5.2.2 Potential Functions and Control Laws

The parabolic attractive potential implemented in this research was responsible

for the variable control input based on the distance from the chief spacecraft. Other

potential functions, such as a hyperboloid, as demonstrated in [54], may simplify the

tuning of the attractive potential. A hyperboloid or similar function may also allow

for steadier control throughout the maneuver.

Additionally, other control laws, such as those developed by Muñoz, Fields, and

McCamish, may provide an improved controller based on spacecraft constraints like
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its relative velocity [55, 49, 43].

5.2.3 Parallelization

The reachability analysis portion of the reach/APF controller is well suited for

parallelization. At each step, a computer can be performing parallel operations to

check all the obstacles for their proximity to the reach set. This can be especially ben-

eficial for scenarios with many obstacles or those requiring rapid maneuvering, and by

extension, a rapid time horizon for reach/APF computation. The parallel computing

could drastically reduce the computation time at each step, further improving the

feasibility of this approach for safe, on-board, autonomous mission planning.
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