82 research outputs found

    Energy-Efficient Approximate Computation in Topaz

    Get PDF
    We present Topaz, a new task-based language for computations that execute on approximate computing platforms that may occasionally produce arbitrarily inaccurate results. The Topaz implementation maps approximate tasks onto the approximate machine and integrates the approximate results into the main computation, deploying a novel outlier detection and reliable reexecution mechanism to prevent unacceptably inaccurate results from corrupting the overall computation. Topaz therefore provides the developers of approximate hardware with substantial freedom in producing designs with little or no precision or accuracy guarantees. Experimental results from our set of benchmark applications demonstrate the effectiveness of Topaz and the Topaz implementation in enabling developers to productively exploit emerging approximate hardware platforms

    Communication Efficient Checking of Big Data Operations

    Get PDF
    We propose fast probabilistic algorithms with low (i.e., sublinear in the input size) communication volume to check the correctness of operations in Big Data processing frameworks and distributed databases. Our checkers cover many of the commonly used operations, including sum, average, median, and minimum aggregation, as well as sorting, union, merge, and zip. An experimental evaluation of our implementation in Thrill (Bingmann et al., 2016) confirms the low overhead and high failure detection rate predicted by theoretical analysis

    Non-Cooperative Rational Interactive Proofs

    Get PDF
    Interactive-proof games model the scenario where an honest party interacts with powerful but strategic provers, to elicit from them the correct answer to a computational question. Interactive proofs are increasingly used as a framework to design protocols for computation outsourcing. Existing interactive-proof games largely fall into two categories: either as games of cooperation such as multi-prover interactive proofs and cooperative rational proofs, where the provers work together as a team; or as games of conflict such as refereed games, where the provers directly compete with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of service providers in outsourcing applications. How to design and analyze non-cooperative interactive proofs is an important open problem. In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-proof model in which the provers are rational and non-cooperative - they act to maximize their expected utility given others\u27 strategies. We define a strong notion of backwards induction as our solution concept to analyze the resulting extensive-form game with imperfect information. We fully characterize the complexity of our proof system under different utility gap guarantees. (At a high level, a utility gap of u means that the protocol is robust against provers that may not care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational interactive proofs with a polynomial utility gap is exactly equal to the complexity class P^{NEXP}
    • …
    corecore