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Abstract
We present Topaz, a new task-based language for computations that
execute on approximate computing platforms that may occasion-
ally produce arbitrarily inaccurate results. The Topaz implementa-
tion maps approximate tasks onto the approximate machine and in-
tegrates the approximate results into the main computation, deploy-
ing a novel outlier detection and reliable reexecution mechanism to
prevent unacceptably inaccurate results from corrupting the overall
computation. Topaz therefore provides the developers of approxi-
mate hardware with substantial freedom in producing designs with
little or no precision or accuracy guarantees. Experimental results
from our set of benchmark applications demonstrate the effective-
ness of Topaz and the Topaz implementation in enabling developers
to productively exploit emerging approximate hardware platforms.

1. Introduction
The increasing prominence of energy consumption as a first-order
concern in contemporary computing systems has motivated the de-
sign of energy-efficient approximate computing platforms [1, 11,
13, 18, 21, 25, 29, 42, 48]. These computing platforms feature
energy-efficient computing mechanisms such as components that
may occasionally produce incorrect results. For approximate com-
putations that can acceptably tolerate the resulting loss of accuracy,
these platforms can provide a compelling alternative to standard
precise hardware platforms. Examples of approximate computa-
tions that can potentially exploit approximate hardware platforms
include many financial, scientific, engineering, multimedia, infor-
mation retrieval, and data analysis applications [2, 5, 29, 37, 40,
47].

1.1 Topaz
We present a new language, Topaz, for developing approximate
software for approximate computing platforms. Topaz supports a
task-based model of computation with a main computation (which
executes reliably) that generates approximate tasks. Each approxi-
mate task is given a set of parameters from the main computation.
The approximate tasks execute on approximate computing plat-
forms to produce approximate results, which are then integrated
back into the main computation to produce the final result.

1.2 Outlier Detection and Reexecution
Topaz is designed to work with computational platforms that usu-
ally produce correct results but occasionally produce arbitrarily in-
accurate results. If such inaccurate results are integrated into the
main computation, they can easily cause the main computation to
produce unacceptably inaccurate results. Topaz therefore deploys
an outlier detector that is designed to detect overly inaccurate re-
sults that would otherwise unacceptably skew the results that the
main computation produces.

When the outlier detector rejects a task, Topaz does not sim-
ply discard the task — it instead reexecutes the task on the reliable

platform that executes the main computation. It then integrates the
correct result from this reliable reexecution into the main computa-
tion. This reexecution mechanism has several benefits:

• Correcting Incorrect Outliers: When the approximate hard-
ware produces an incorrect outlier, outlier detection plus reex-
ecution ensures that Topaz discards the incorrect result, com-
putes the correct result, and includes that correct result into the
main computation.

• Including Correct Outliers: When the approximate hardware
produces a correct result that the outlier detector rejects, reexe-
cution enables Topaz to recognize that the result is correct (even
though it is an outlier) and include that correct result into the
main computation.

• More Conservative Outlier Detection: Because reexecution
enables Topaz to recognize and include correct outlier tasks,
Topaz can use a more conservative outlier detector that detects
more incorrect tasks (in comparison with an outlier detector that
simply discards outlier tasks).

The drawback of reexecution, of course, is the energy required
to reexecute the task. Topaz must therefore reexecute few enough
tasks to deliver significant energy savings.

1.3 Outlier Detector Adaptive Control
The current Topaz implementation works with a range-based out-
lier detector that maintains a minimum and maximum value for
each component of the results that the tasks produce. The detec-
tor accepts results that fall within these values and rejects results
that fall outside these values. Larger ranges reexecute fewer cor-
rect tasks but accept more incorrect results; smaller ranges accept
fewer incorrect results but reexecute more incorrect tasks. The fact
that Topaz has no a priori information about the values that cor-
rect tasks produce complicates its discovery of an effective outlier
range.

Topaz uses an adaptive feedback control algorithm [35] to ob-
tain an effective outlier detector. This algorithm is given a target
reexecution rate for correct tasks and dynamically adjusts the mini-
mum and maximum outlier detector values to obtain a detector that
delivers this target rate. To obtain a responsive controller that can
lock on to the target rate quickly while avoiding phenomema such
as overshoot and oscillation, Topaz uses a proportional-integral-
derivative (PID) control algorithm [35].

Our current implementation uses a benchmark-specific target
task reexecution rate, which is divided equally across the compo-
nents that a task produces (so if our target reexecution rate is 1%
and each task produces three numbers, the target rate for each of
these numbers is 0.333 percent). Topaz maintains one outlier de-
tector for each component that the task produces and controls each
correct task reexecution rate separately for each outlier detector.
Results from our set of benchmark applications indicate that this
approach delivers the desirable combination of negligible reexe-



cution energy loss and few accepted incorrect results (and as de-
scribed further below, even these accepted incorrect results come
with probabilistic error bounds).

1.4 Probabilistic Error Bounds
Topaz uses a hardware fault model and task characteristics (such as
the number of potentially faulty operations that the tasks perform)
to probabilistically bound the number of incorrect tasks in a given
taskset. Subtracting off the number of directly observed incorrect
tasks (i.e., rejected tasks whose reliable reexecution produces a dif-
ferent correct result) provides a probabilistic bound on the num-
ber of accepted incorrect tasks whose results are integrated into the
main computation.

With outlier detection and reexecution, any error in the com-
putation is caused only these accepted incorrect tasks (whose re-
sults fall within the outlier detector range). It is possible to com-
pute the likelihood that the (not computed and not used) correct
results from these accepted incorrect tasks fall inside the minimum
and maximum observed results from correct tasks (Topaz observes
such minimum and maximum results when it reexecutes correct
outlier tasks). For our set of benchmark applications this likelihood
is close to certain (because the ratio of correct to incorrect tasks
is very high). Topaz therefore combines 1) the probabilistic bound
on the number of accepted incorrect tasks and 2) the difference be-
tween the minimum and maximum observed correct results to com-
pute, for each taskset, a probabilistic bound on the approximation
error caused by accepting incorrect results from incorrect tasks.

For each executed taskset we obtain 1) the percentage of re-
jected incorrect tasks, 2) a probabilistic bound on the number of
accepted incorrect tasks, and 3) a probabilistic bound on the total
error integrated into the main computation from the accepted incor-
rect tasks. These numbers can help a Topaz user better understand
the accuracy consequences of the incorrect tasks and the overall
acceptability of the resulting approximate computation.

1.5 Evaluation
We evaluate Topaz by developing a set of approximate benchmark
programs in Topaz, then executing these programs on a (simu-
lated) approximate computing platform. The approximate comput-
ing platform provides two processors, an accurate processor that
executes the main computation and an approximate processor that
executes the Topaz tasks. The approximate processor features an
unreliable but energy-efficient cache for floating point numbers
(this memory may, with some probability, deliver an incorrect value
for a fetched floating point number) [42].

The two relevant metrics are accuracy and energy consumption.
Our results show that Topaz can deliver good energy savings (de-
pending on the benchmark application, from 9 to 13 percent out of
a maximum possible savings of 14 percent) and acceptably accu-
rate results. We note that, for all of our benchmark applications, the
Topaz outlier detector is required for Topaz for produce acceptably
accurate results. See Section 5 for more details.

1.6 Contributions
This paper makes the following contributions:

• Topaz: It presents Topaz, a task-based language for approxi-
mate computation. Topaz supports a reliable main computation
and approximate tasks that can execute on energy-efficient ap-
proximate computing platforms. Each Topaz task takes parame-
ters from the main computation, executes its approximate com-
putation, and returns the results to the main computation. If the
results are acceptably accurate, the main computation integrates
the results into the final results that it produces.

• Outlier Detection: Approximate computations must deliver
acceptably accurate results. To enable Topaz tasks to execute on
approximate platforms that may produce arbitrarily inaccurate
results, the Topaz implementation uses an outlier detector to
ensure that unacceptably inaccurate results are not integrated
into the main computation.
The outlier detector enables Topaz to work with approximate
computation platforms that may occasionally produce arbitrar-
ily inaccurate results. The goal is to give the hardware designer
maximum flexibility when designing hardware that trades ac-
curacy for energy.

• Reliable Reexecution: Instead of simply discarding outlier
tasks, Topaz reliably reexecutes outliers and integrates the re-
sulting correct results into the computation. Reexecution en-
ables Topaz to detect and correct incorrect outliers, include
correct outliers into the main computation, and use more con-
servative outlier detectors that detect and correct more incorrect
results.

• Adaptive Control: Because Topaz has no a priori information
about the values that correct tasks produce, it uses an adaptive
outlier detector that, given a target correct task reexecution
rate, produces a range that delivers that target rate. To avoid
overshooting and oscillation, Topaz deploys a proportional-
integral-derivative controller [35] that uses feedback from the
observed correct task reexecution rate to appropriately adjust
the outlier detector range.

• Probabilistic Error Bounds: For each taskset, we probabilis-
tically bound the number of incorrect results integrated into the
main computation and the total error associated with these in-
correct results. These numbers can help Topaz users better un-
derstand the accuracy consequences of the Topaz approxima-
tion and the resulting overall acceptability of the Topaz compu-
tation.

• Experimental Evaluation: We evaluate Topaz with a set of
benchmark Topaz programs executing on an approximate com-
puting platform. This platform features a reliable processor and
an approximate processor. The approximate processor uses an
unreliable floating-point cache to execute floating-point inten-
sive tasks more energy-efficently than the reliable processor.
Our results show that Topaz enables our benchmark computa-
tions to effectively exploit the approximate computing platfom,
consume less energy, and produce acceptably accurate results.

2. Example
We next present an example that illustrates the use of Topaz in
expressing an approximate computation and how Topaz programs
execute on approximate hardware platforms.

2.1 Example Topaz Program
Figure 1 presents an example Topaz program. This program com-
putes the sum from 0 to n-1 of f(i,v), where n and v are pa-
rameters of the compute function. The Topaz taskset construct
(we have implemented Topaz as an extension to C; the taskset
construct is the only additional construct) creates n tasks, each of
which computes one of the values f(i,v).

In general, each Topaz task has a list of in parameters. In our
example, each task takes a single in parameter d, which is set to v
when the task is created. Each task also has a list of out parameters.
In our example, each task has a single out parameter result,
which is set to the computed value of f(i,d).

When the task finishes, its combine block executes to incorpo-
rate the results from the out parameters into the main Topaz com-



double compute(int n, double v) {
double sum = 0.0;
taskset add(int i = 0; i < n; i++) {

compute
in (double d = v)
out (double result)

{
result = f(i,d);

}
combine
{
sum += result;

}
}
return sum;

}

Figure 1: Example Topaz Program

putation. In our example the combine blocks simply compute the
sum of the results from the tasks. The compute function returns
this sum.

2.2 Approximate Execution
Topaz works with a model of computation with a precise main
Topaz computation (which executes fully reliably) and approximate
tasks. When a Topaz task executes, it may execute on an approx-
imate processor that may produce only an approximation of the
precise result. So in our example, the results returned from the
approximate tasks and therefore the final sum returned from the
compute function may only approximate the actual precise sum.

Topaz is designed to work with approximate computation plat-
forms that may occasionally produce arbitrarily inaccurate results.
A potential issue is that such arbitrarily inaccurate results may be-
come integrated into the main computation so that a result of the
main computation (for example, the value of sum returned from
compute) may also become unacceptably inaccurate.

2.3 Adaptive Outlier Detection
Topaz therefore deploys an outlier detector that is designed to de-
tect tasks that produce very inaccurate results. The outlier detector
operates under the principle that the majority of the accurate exe-
cutions will produce results within a range that the outlier detector
can adaptively lock on to, while inaccurate executions will tend to
produce results that are outside that range. An ideal outlier detec-
tor would accept all correct results and reject all incorrect results.
In practice this is infeasible because the ranges of correct and in-
correct results overlap. The outlier detector must therefore strike
a balance between rejecting too many correct tasks and accepting
too many incorrect tasks. One complication is that, at the start of
the execution, the outlier detector has no information about what a
reasonable range might be.

The outlier detector therefore operates with a target correct task
rejection rate and dynamically adapts the range to meet that rate.
The goal is to obtain a tight range that accepts typical correct results
but rejects extreme correct results so that it can also reject and
correct extreme incorrect results. The basic principle behind the
adaptation is as follows. If the detector is rejecting too many results
below the minimum, it decreases the minimum to accept more of
these results (and similarly for the maximum). If, on the other hand,
it is accepting too many correct results, it increases the minimum
to reject more results (and similarly for the maximum). To obtain
a detector that locks on to the target rate quickly while avoiding
overshoot and oscillation, the outlier detector uses a proportional-

integral-derivative (PID) control algorithm [35] (see Section 4.4 for
more details).

In our example, the outlier detector starts with the minimum
and maximum of its range set to zero. It then dynamically adapts
the minimum and maximum in response to the correct results
that it observes, initially reexecuting many tasks until it finds a
range that places the correct task reexecution rate under control.
When the task reexecution rate is under control, the outlier detector
reexecutes 1% of the correct tasks.

2.4 Reliable Reexecution
When the detector rejects a task, the current Topaz implementa-
tion reliably reexecutes the task to obtain the correct results and
integrate these results into the main computation. This mechanism
ensures that the outlier detector adaptation algorithm works only
with correct results. It also maximizes the accuracy of the overall
computation and enables the outlier detector to use a tight range
that rejects both extreme correct and incorrect results (because the
reexecution will ensure that these extreme correct values are inte-
grated into the main computation).

3. The Topaz Language
We have implemented Topaz as an extension to C. Topaz adds a
single construct, the taskset construct. When a taskset construct ex-
ecutes, it creates a set of approximate tasks that execute to produce
results that are eventually combined back into the main computa-
tion. Figure 2 presents the general form of this construct.

taskset name(int i = l; i < u; i++) {
compute in (d1 = e1; ... dn = en)

out (o1; ... om) {
<task body>

}
combine { <combine body> }

}

Figure 2: Topaz Taskset Construct

Each taskset construct creates an indexed set of tasks. Refer-
ring to Figure 2, the tasks are indexed by i, which ranges from
l to u-1. Each task uses an in clause to specify a set of in pa-
rameters x1 through xn, each declared in corresponding declara-
tions d1 through dn. Topaz supports scalar declarations of the form
double x, float x, and int x, as well as array declarations of
the form double x[N], float x[N], and int x[N], where N is a
compile-time constant. The value of each in parameter xi is given
by the corresponding expression ei from the in clause.

Each task also uses an out clause to specify a set of out parame-
ters y1 through ym, each declared in corresponding declarations o1
through om. As for in parameters, out parameters can be scalar or
array variables.

Topaz imposes the requirement that the in and out parameters
are disjoint and distinct from the variables in the scope surround-
ing the taskset construct. Task bodies have no externally visible
side effects — they write all of their results into the out param-
eters (which are then integrated into the computation via the ex-
ecution of the combine body). All of the task bodies for a given
taskset are therefore independent and can, in theory (although not
in our current Topaz implementation) execute in parallel — only
the combine bodies may have dependences. More importantly for
our current implementation, the absence of externally visible side
effects enables the transparent Topaz task reexecution mechanism
(which increases the accuracy of the computation by transparently
reexecuting outlier tasks to obtain guaranteed correct results).



3.1 Conceptual Execution Model
We next present the conceptual execution model for the taskset
construct. The taskset construct iterates over all of the values of
the task index i from l to u-1. At each iteration it creates a new
task, evaluates the in expressions e1 through en for that task, and
copies the values of the in expressions into the corresponding in
variables x1 through xn. It then creates the naming context for the
task, which includes the task index i, the in variables x1 through
xn, and the out variables y1 through ym.

The task then executes the task body. When the task body
finishes, the out variables may be set to arbitrary values (although,
in practice, the Topaz implementation attempts to deliver values
that are identical or close to the values that the task body would
have generated had it executed precisely).

The next step is to optionally execute the combine body — in
other words, the combine body may or may not execute. In prac-
tice, of course, Topaz implementations should make a best-effort
attempt to obtain reasonable values and execute the combine body
for every task. The current Topaz implementation executes the
combine body for every task — if the outlier detector accepts the
approximate result, it executes the combine body with that result,
otherwise it reexecutes the task precisely and executes the combine
body with the resulting correct result.

Unlike the task body, the combine body executes precisely.
The naming context for the combine body includes the nam-
ing context surrounding the taskset construct augmented with
the task index i and the out parameters y1 through ym. The
combine body integrates the results from the task into the main
computation, typically by combining the results into a data struc-
ture within the main computation.

3.2 Design Rationale
Topaz is designed to support a computational pattern that is in our
experience characteristic of many approximate computations [17,
37–39, 47]. This computational pattern consists of multiple inde-
pendent tasks that generate contributions that are then combined
to obtain the final result (in Topaz the out variables contain these
contributions). In this pattern, the operation that combines the con-
tributions into the final result is typically relatively simple, with
the vast majority of the computation taking place in the tasks. By
exposing the structure present in this computational pattern to the
Topaz implementation, Topaz enables the implementation to iden-
tify and exploit the approximation opportunities inherently present
in the application.

We note that in many aspects, the basic Topaz execution model
more closely resembles a networking API specification (no guaran-
tees, best-efforts execution) than a standard precise programming
language semantics. Indeed, Topaz and standard networking APIs
share a common motivation — they are both designed to work
with underlying hardware platforms (networks and approximate
computation platforms) that can typically offer few, if any, precise
performance or quality guarantees. The Topaz best efforts execu-
tion model is therefore designed to give the Topaz implementation
the freedom it needs to execute Topaz programs successfully on
emerging and future approximate computing platforms. This flexi-
ble model of computation also gives the Topaz implementation the
freedom it needs to apply techniques (such as outlier detection and
reexecution, see Section 4.4) that enhance the accuracy of results
that the bare approximate hardware provides.

4. Topaz Implementation
We next discuss the current Topaz implementation. The Topaz front
end translates Topaz programs into C programs that invoke the
featherweight Topaz runtime APIs. The Topaz runtime provides

the support required to execute Topaz programs on the underlying
target approximate computing platform. The Topaz outlier detector
prevents unacceptably inaccurate results from corrupting the results
that the Topaz main computation produces.

4.1 Target Topaz Approximate Computing Platform
The current Topaz implementation is designed to run on an ap-
proximate computing platform with at least one precise processor
and at least one approximate processor. The precise processor ex-
ecutes the main Topaz computation, which maps the Topaz tasks
onto the approximate processors for execution. The current Topaz
implementation assumes a distributed model of computation with
separate processes running on the precise and approximate proces-
sors. The current Topaz implementation uses MPI [23] as the com-
munication substrate that enables these separate processes to inter-
act. The lifetime of a Topaz task therefore comprises the following
events:

• Creation: The main Topaz computation executing on a precise
processor creates the task.

• Approximate Processor Assignment: The Topaz implementa-
tion assigns the Topaz task to an approximate processor for ex-
ecution. It sends an MPI message from the precise processor to
the approximate processor that will execute the task. This mes-
sage contains the in parameters and other information required
to execute the task.

• Execution: The approximate processor receives the task infor-
mation and executes the task to produce the results.

• Return Results: The approximate processor sends an MPI
message back to the precise processor running the Topaz main
computation. This message contains the (potentially arbitrarily
inaccurate) results that the approximate execution of the Topaz
task produced.

• Outlier Detection and Optional Reexecution: The precise
processor runs the outlier detector. If any of the return values
is an outlier, the Topaz implementation reexecutes the task on
the precise processor to obtain correct results. If all of the
return values are not outliers, the Topaz implementation accepts
the result from the approximate execution. The current Topaz
implementation maintains a separate outlier detector for each
return value.

• Result Integration: The precise processor running the main
Topaz computation executes the combine block of the task.
This combine block integrates the results from the task into
the results that the main Topaz computation will produce.

4.2 Topaz Front End
As is standard in implementations of task-based languages that
are designed to run on distributed computing platforms [39], the
Topaz implementation contains a front end that translates the Topaz
taskset construct into API calls inside the Topaz runtime that
marshall the in parameters, the task index i, and other information
(such as the identifier of the function that implements the Topaz
task) required to execute the task. The front end also generates the
code required to marshall the task results and send them back to the
processor running the main Topaz computation.

4.3 Topaz Runtime
The Topaz runtime is a featherweight library that provides a data
marshalling API and coordinates the movement of tasks and results
between the precise processor running the main Topaz implemen-
tation and the approximate processor that runs the Topaz tasks. It
also contains the task dispatch and management code required to



coordinate the transfer of tasks and data between the precise and
approximate processors.

4.4 Outlier Detection Control Algorithm
The Topaz outlier detector works with a target task reexecution rate
r for each taskset. All tasks in the taskset return a result with the
same number of components m. There is an outlier detector for
each of the m components, with the target correct task reexecution
rate for each component set to rtarg = r/m. The goal of the outlier
detector for each component is to reject exactly rtarg% of the values
that correct tasks return in that component.

Each outlier detector maintains three values: µ, l, and r. It ini-
tializes these values by reliably reexecuting the first 10 tasks (this
number is configurable) and computing the mean µ, minimum l,
and maximum r of the observed values for the component that
the outlier detector is responsible for. The values l and r are con-
trolled by two distinct PID control systems Cright and Cleft ; µ is
unchanged throughout the remaining computation.

The outlier detector rejects a task if the value of its component
falls outside the range [µ − l, µ + r]. The control system Cleft

is responsible for rejecting tasks that fall to the left µ; Cright is
responsible for rejecting tasks that fall to the right µ. Each control
system is given a target reexecution rate of rtarg for the subset of
tasks that it controls. The two control systems, working together,
therefore have a target reexecution rate of rtarg for all of the tasks,
with the percentage of rejected tasks split between the two control
systems in proportion to the number of tasks that fall to the left and
right of the outlier detector’s range. Given a value v for a given
component, Cleft is updated when v < µ, Cright is updated when
v > µ.

We formalize the control system Cleft as follows (Cright is
formalized symmetrically):
Control System State:

• n: number of tasks that have been executed.
• rleft : number of tasks rejected by outlier detector.
• e∗left : The exponentially decayed sum (with decay D=.99) of all

previous observed reexecution rate errors.
• eleft : The last reexecution rate error

• e′left =
rleft

n
− rtarg : The error between the target reexecution

rate and the current reexecution rate.

The outlier detector uses the following PID equation to update
the bound l:

u(t) = Kpres ·eleft +Kint ·(e′left +D ·e∗left)+Kder ·(e′left−eleft)
Here we determine the constants Kpres ,Kint ,Kder empirically.

Updating the Control System
We discuss two algorithms for updating the control system — one
when the system reexecutes outliers to obtain the correct value, and
one when the system simply discards outliers.
The next state of the control system is calculated as follows:

With Reexecution: Given a value v for its component, Cleft is
updated under the following circumstances:

• value v ∈ [µ− l, µ], accepted→
rleft = rleft + 1, n = n+ 1, l = l + u(t).

• value v < µ− l, rejected, is verified correct on re-execution→
n = n+ 1, l = l + u(t).

The outlier detector also maintains the observed minimum vmin

and maximum vmax values for its component. When it updates l

and r, the reexecution outlier detection system imposes the addi-
tional constraint that:
vmin >= µ− l
vmax <= µ+ r

If the value v is accepted, the outlier detector updates the mean
µ and adjusts the l,r bounds to account for the change in µ. This
process occurs as follows:

1. if value v ∈ [µ− l, µ], accepted→
µ′ = µ← v, the mean with v incorperated.
l = l + (µ′ − µ), r = r − (µ′ − µ), µ = µ′

With Discard: Cleft is updated under the following circumstances:

1. value v ∈ [µ− l, µ], accepted→
rleft = rleft + 1, n = n+ 1, l = l + u(t)

2. value v < µ− l, rejected→
n = n+ 1, l = l + u(t)

4.5 Probabilistic Accuracy Bounds
We next discuss how we obtain probabilistic bounds on the num-
ber of accepted incorrect tasks and the size of the total error that
these tasks induce. We assume we have a count of the number of
potentially faulty operations performed during the computation of
a taskset. Our experimental results in Section 5 work with approx-
imate hardware in which floating point loads and stores may be
faulty. We assume that the approximate processor comes with stan-
dard hardware event counters that provide the total number of ex-
ecuted floating point loads and stores. If such information is not
available the task execution time can be used to estimate the num-
ber of potentially faulty operations. Our formalism works with the
following parameters:

• esram = 1 · 10−5, 1 · 10−3: probability of read/write error
occurring for a given floating point load or store. When enacting
our formalization, we choose one of the two cache error rates
listed above.

On average, there are nfp
sram · esram erroneous tasks in the taskset.

Assuming an even distribution of floating point load and store op-
erations across the tasks, we predict there are etask =

nfp
sram·esram

ntask

erroneous operations per task. We use the inverse Poisson distribu-
tion with λ = etask to determine the lowest frequency of errors that
may occur with probability q:

e′task = Poiss−1(q, λ = etask )

We then determine the corresponding bound on the total number of
erroneous tasks in the taskset as:

nerr
task ′ = ntask · e′task

Recall nerr
rej is available at runtime since rejected tasks are re-

executed. We compute the bound on the number of accepted er-
roneous tasks as:

nerr
acc′ = nerr

task ′ − nerr
rej

The outlier detector tracks the observed minimum and maximum
values bounds [vmin, vmax] for each task component. We estimate
the maximum error from each accepted erroneous task as:

fmax − fmin

The corresponding bound on the total error is:

ēout = (fmax − fmin) · n
err
acc′
ntask



% Target Reject % Accepted % Rejected % Accepted % Rejected Reject
Benchmark Rate Correct Correct Error Error Rate
blackscholes 3.0% 96.989% 2.852% 0.048% 0.111% 2.964%

scale 4.0% 96.714% 0.564% 0.255% 2.466% 3.031%
barnes 3.0% 86.813% 1.797% 9.233% 2.157% 3.955%

water interf 5.9% 94.564% 4.984% 0.211% 0.241% 5.225%
water poteng 5.9% 96.061% 3.675% 0.118% 0.146% 3.822%

search 3.6% 97.223% 1.639% 0.562% 0.576% 2.215%

Table 1: Overall Outlier Detector Effectiveness

5. Experimental Results
We present experimental results for Topaz implementations of our
set of five benchmark computations:

• Scale: A computation that scales an image using bilinear inter-
polation [11].

• BlackScholes: A financial analysis application that solves a
partial differential equation to compute the price of a portfo-
lio of European options [47]. As is standard when using this
application as a benchmark, we run the computation multiple
times.

• Water: A computation that simulates liquid water [37].
• Barnes-Hut: A computation that simulates a system of N in-

teracting bodies (such as molecules, stars, or galaxies). At each
step of the simulation, the computation computes the forces act-
ing on each body, then uses these forces to update the positions,
velocities, and accelerations of the bodies [6, 36].

• Search: A computation that uses a Monte-Carlo technique to
simulate the interaction of an electron beam with a solid at
different energy levels. The result is used to measure the match
between an empirical equation for electron scattering and a full
expansion of the wave equation.

5.1 Experimental Setup
We perform our experiments on a computational platform with one
precise processor, which runs the main Topaz computation, and one
approximate processor, which runs the approximate Topaz tasks.
Given a Topaz program, the Topaz compiler produces two binary
executables: a reliable executable that runs the main Topaz compu-
tation on the precise processor and an approximate executable that
runs the approximate Topaz tasks on the approximate processor.
The two executables run in separate processes, with the processes
communicating via MPI as discussed in Section 4.

In our experiments we run both processes under the control of
the Pin [30] binary instrumentation system. For the main Topaz
process Pin does not affect the semantics. For the approximate
process, we use Pin to simulate an approximate processor with
two caches: a reliable cache that holds integer data and a more
energy-efficient but unreliable cache that holds floating point data.
The integer and floating point caches are the same size. For the
unreliable floating point cache we use the Medium cache model and
Aggressive cache model in [42], Table 2. The Medium cache writes
an incorrect result (for a floating point number) with probability
1∗10−4.94 and reads an incorrect result with probability 1∗10−7.4.
This cache yields energy savings of 80% over a fully reliable cache.
Together, the two caches consume 35% of the total CPU energy.
The approximate processor therefore consumes (.8*.35%)/2 = 14%
less energy than the precise processor.

1

1 Our experiments conservatively use the higher write error rate for reads in
the Medium cache from [42].

The Aggressive cache reads and writes an incorrect result (for
a floating point number) with probability 0.5 ∗ 10−3 and energy
savings of 90% over a fully reliable cache. Together, the two caches
consume 35% of the total CPU energy. The approximate processor
therefore consumes (.9*.35%)/2 = 15.75% less energy than the
precise processor.

For the MPI communication layer that the Topaz implementa-
tion uses, each communication incurs a fixed cost plus a variable
cost per byte. To amortize the fixed cost, our experiments work with
batched tasks — instead of sending single tasks from the main pro-
cessor to the approximate processor, Topaz sends a batch of tasks
for each communication. When the batch of tasks finishes, Topaz
sends all of the results from the approximate processor back to the
main processor with a single batched message. For our benchmark
set of applications, this approach successfully amortizes the com-
munication overhead.

5.2 Benchmark Executions
We present experimental results that characterize the accuracy and
energy consumption of the Topaz benchmarks under a variety of
scenarios. We perform the following executions:

• Precise: We execute the entire computation, Topaz tasks in-
cluded, on the precise processor. This execution provides the
fully accurate results that we use as a baseline for evaluating
the accuracy and energy savings of the approximate executions
(in which the Topaz tasks execute on the approximate proces-
sor).

• Full Computation Approximate: We attempt to execute the
full computation, main Topaz computation included, on the ap-
proximate processor. For Scale, BlackScholes, Barnes, Water,
and Search, this computation terminates with a segmentation
violation.

• Full Reexecution: We execute the Topaz main computation on
the precise processor and the Topaz tasks on the approximate
processor with outlier detection as described in Section 4. In-
stead of reliably reexecuting only outlier tasks, we reliably reex-
ecute all tasks. This enables us to classify each task as either 1)
Accepted Correct, 2) Rejected Correct, 3) Accepted Error, or 4)
Rejected Error. For each benchmark, we specify a computation-
specific target reexecution rate.

• No Outlier Detection: We execute the Topaz main computation
on the precise processor and the Topaz tasks on the approximate
processor with no outlier detection. We integrate all of the
results from approximate tasks into the main computation.

• Outlier Detection With Reexecution: We execute the Topaz
main computation on the precise processor and the Topaz tasks
on the approximate processor with outlier detection and reexe-
cution as described in Section 4.

• Outlier Detection With Discard: We execute the Topaz main
computation on the precise processor and the Topaz tasks on
the approximate processor with outlier detection. Instead of



reexecuting outliers and including the resulting correct results
in the computation, we discard outliers.

Benchmark Target Observed
Benchmark Reexecution Rate Reexecution Rate

scale
1.333% 1.5988%
1.333% 1.4938%
1.333% 1.4297%

blackscholes 3.00% 2.9927%

barnes

0.375% 0.463$
0.375% 0.454%
0.375% 0.494%
0.375% 0.414%
0.375% 0.411%
0.375% 0.448%
0.375% 0.000%
0.375% 3.03 %

water [inter mol]

0.28% 0.28%
0.28% 0.43%
0.28% 0.32%
0.28% 0.28%
0.28% 0.30%
0.28% 0.31%
0.28% 0.29%
0.28% 0.33%
0.28% 0.29%
0.28% 0.28%
0.28% 0.33%
0.28% 0.30%
0.28% 0.28%
0.28% 0.31%
0.28% 0.32%
0.28% 0.30%
0.28% 0.43%
0.28% 0.32%
0.28% 0.35%
0.28% 0.13%
0.28% 0.28%

water [pot eng]
1.97% 0.0017 %
1.97% 1.97%
1.97% 1.98%

search

0.720% 0.721%
0.720% 0.768%
0.720% 0.934%
0.720% 0.720%
0.720% 0.719%

Table 2: Individual Outlier Detector Reexecution Rates.

5.3 Outlier Detector Effectiveness
We evaluate the effectiveness of the outlier detector using results
from the Full Reexecution runs. Table 1 presents the results from
these runs. There is a row for each benchmark application. The first
column (Benchmark) is the name of the benchmark. The second
column (Target Reject Rate) are the benchmark-specific target re-
execution rates we will use for our experiments. The third column
(Accepted Correct) is the percentage of correct tasks that the outlier
detector accepts. The fourth column (Rejected Correct) is the per-
centage of correct tasks that the outlier detector rejects. The fifth
column (Accepted Error) is the percentage of error tasks that the
outlier detector accepts. The sixth column (Reject Rate) is the ac-
tual percentage of reexecuted tasks. These tasks are the only source
of error in the computation. The number of such tasks is small and,

because the results fall within the outlier detector range, the intro-
duced error is bounded with high likelihood. The fifth column (Re-
jected Error) is the percentage of error tasks that the outlier detector
rejects. The final column (Reexecuted) is the percentage of tasks
that are reexecuted (this column is the sum of Rejected Correct and
Rejected Error). These numbers highlight the overall effectiveness
of the outlier detector. The vast majority of tasks integrated into the
main computation are correct; there are few reexecutions and few
incorrect tasks.

To evaluate how well the Topaz control algorithm is able to de-
liver the target task reexecution rates for each result component, we
next consider the effectiveness of the individual outlier detectors.
Table 2 presents the task reexecution rates for each outlier detector
in each application. Recall from 4 that there is a separate outlier de-
tector for each output component that the tasks produce, where the
target task reexecution rate is evenly distributed across these outlier
detectors.

If the value of any result component falls outside the range of its
outlier detector, the entire task is rejected. If each task had at most
one component that fell outside the range, the Rejected Correct
number from Table 1 would equal the sum of the number of tasks
that each individual outlier detector rejected. In practice, multiple
outlier detectors may reject a single task, so the Rejected Correct
percentage from Table 1 provides a lower bound on the sum of the
individual outlier detector reexecution percentages.

• Scale: Scale has one taskset; the tasks in this taskset return three
numbers (the RGB values for each pixel). This taskset therefore
has three outlier detectors, each with a target correct task reex-
ecution rate of 1.333%. The results show that the Topaz control
algorithm is able to hit this target rate for each outlier detector.
The sum of the reexecution rates for the individual outlier de-
tectors is 4.5223%, and the percentage of rejected tasks (Reject
Rate) from Table 1 is 3.031%. We attribute the difference be-
tween the two values to the fact that a non-negligible fraction
of the tasks are rejected by multiple outlier detectors.

• BlackScholes: BlackScholes has a single taskset with a single
return value and therefore a single outlier detector. The reexe-
cution rate for this outlier detector is therefore the Reject Rate
from Table 1.

• Barnes: Barnes has a single taskset with tasks that return eight
components. All outputs but the last one have reexecution rates
that are are sufficiently close to the target. The reexecution rate
for the seventh detector is zero because all tasks return a fixed
value for that component. The summation of the individual re-
execution rates is 5.71%, which exceeds the task reexecution
3.955%, suggesting that, in some scenarios, multiple outlier de-
tectors reject the same task. Notice the last output never reaches
the target reexecution rate. The eighth component grows consis-
tently throughout the execution of the application, so the out-
lier detector control algorithm can never lock on to an effective
range and must continually grow its range in response to the
new values that the tasks produce.

• Water: Water has two tasksets — the first has 21 components,
the second has three components. The Water outlier detectors
are all able to (essentially) hit their target rates. The reexecu-
tion rates of the outputs from the first task sum up to 6.18$,
which exceeds the observed task reexecution rate of 5.225 from
Table 1. Similarly, the reexecution rates of the outputs from
the second task sum up to 3.95%, which exceeds the observed
task reexecution rate of 3.822. Therefore, in both tasks, there
are some cases where multiple outlier detectors reject the same
task.



Accepted Actual

Benchmark Error Accepted
Task Error

Bound (95%)
scale 3.32% 0.258%

blackscholes 0.206% 0.087%
barnes 15.63% 9.23%

water [inter mol] 0.842% 0.2112%
water [pot eng] 0.642% 0.118%

search 1.691 % 0.5619%

Table 3: Probabilistic Error Bounds Results

Benchmark Percent
Silent
Errors

Scale 15.4%
Blackscholes 19.96%

Barnes 19%
Water [Inter Mol] 40.68%
Water [Pot Eng] 52.00%

Search 19.98%

Table 4: Probabilistic Error Bounds, Corrected for Silent Errors

• Search: Search has five outputs. The outlier detectors are able
to (essentially) hit their target re-execution rates. The individ-
ual re-execution rates sum up to 3.862, which is significantly
larger than the observed rejection rate of 2.215. Therefore, a
non-negligible portion of tasks are rejected by multiple outlier
detectors.

These numbers illustrate the overall general effectiveness of the
Topaz reexecution rate control algorithm for our set of benchmark
applications.

5.4 Probabilistic Error Bounds Analysis
Table 3 presents the results for the 95% error bounds analysis
described in Section 4.5. There is one row in the table for each
benchmark. The first column presents the name of the benchmark.
The second column (Accepted Error Task Bound (95%)) presents
the 95% bound on the predicted number of accepted error tasks.
As described above in Section 4.5, we compute this number based
on the number of potentially faulty operations in the taskset. For
our approximate computing platform these operations are floating
point cache loads and stores. In production these counts would be
supplied by standard hardware event counters; in our experiments
our Pin emulator provides these counts. We note that the number
of accepted tasks is, for all benchmarks, significantly below the
95% error bounds. There are two relevant factors: the first is the
overestimate required to obtain the 95% bound, the second is the
fact that a significant number of errors are silent (i.e., do not affect
the final result that the task produces). Table 4 presents the percent
silent errors for every benchmark.

5.5 End-to-End Application Accuracy
We next present end-to-end accuracy results from our benchmark
applications. For each application we obtain an appropriate end-to-
end accuracy metric: for Scale we report the PSNR of the scaled
image; for BlackScholes we report the percentage error of the
portfolio of options; for Water we report the error in the positions of
the Water molecules; for Barnes we report the error in the positions
of the bodies; for Search we report the error between optimal

Outlier Outlier
No No Outlier Detection Detection

Benchmark Topaz Detection With With
Discard Reexecute

blackscholes crash 6.04e34% 0.18% 0.03%
scale crash 24.7 19.3 47.3
barnes crash inf 1.54e-2% 4.29e-2%
water crash inf 1.46e-2% 6.13e-4%
search crash 43.25% 24.5% 2.5%

Table 5: End-to-end Application Accuracy Measurements. For
Scale, the table presents the PSNR for the output image. For PSNR,
a larger value indicates the generated image is closer to the so-
lution image. For BlackScholes the table presents the error as a
percentage of the total value of the option portfolio. For Water the
table presents the mean relative error in the positions of the Wa-
ter molecules (in comparison with the positions computed by the
precise execution). For Barnes the table presents the mean relative
error in the positions of the simulate bodies (in comparison with the
positions computed by the precise execution). For Search, the table
presents the percent parameter error (average percent error for each
parameter). For all other benchmarks (excluding scale), smaller er-
rors indicate better quality results.

parameter sets. For all the benchmark, the comparison points for the
percentage differences are the results from the Precise executions.

Table 5 presents these metrics for the No Outlier Detector, Out-
lier Detector with Reexecution, and Outlier Detector with Discard
runs. For Scale outlier detection with reexecution significantly in-
creases the PSNR from 24.7 to 47.3 (we use the image produced by
the Precise execution as the baseline to calculate this PSNR). The
discard PSNR is lower than the no outlier detection PSNR because
discarded tasks yield black pixels in the image, which degrade the
PSNR substantially.

For BlackScholes outlier detection is critical to obtaining ac-
ceptable accuracy — outlier detection reduces an otherwise enor-
mous error to reasonable size, with reexecution delivering an al-
most additional two orders of magnitude reduction in the relative
error in comparison with discarding outliers. For Water both out-
lier detection and reexecution are required to obtain acceptably
accurate results. Without outlier detection the molecule positions
quickly become not a number (nan). Reexecuting outliers (instead
of discarding outliers) delivers roughly a factor of one hundred in-
crease in accuracy. For Barnes outlier detection is also critical to
obtaining acceptable accuracy — without outlier detection, some of
the positions become so large (inf) that our Python data processing
script starts generating overflows when it attempts to calculate the
relative error. Reexecuting outliers (instead of discarding outliers)
delivers roughly a factor of three increase in accuracy. For Search
both outlier detection and re-execution are necessary to obtain a set
of parameters that is acceptably close to the correct result. Without
outlier detection, the average parameter error is almost 50%. With
reexecution, the average parameter error is 2.5% - 20x better than
the no outlier detection case. In fact, the percent error on the incor-
rect parameter is so small, it is within one adjustment of the correct
parameter (search makes adjustments by increasing, decreasing a
parameter by 20%). Discarding tasks yields a average parameter
error of 24.5%; a 2x improvement on no outlier detection, but still
10x worse than reexecution.

5.6 Energy Model
We next present the energy model that we use to estimate the
amount of energy that we save through the use of our approximate
computing platform. We model the total energy consumed by the



Benchmark No Reexecute Reexecute
blackscholes 0.903 = 0.31 + 0.01 + 0.86 ∗ 0.679 0.902 = 0.31 + 0 + 0.86 ∗ 0.679
scale 0.894 = 0.37 + 0 + 0.845 ∗ 0.621 0.903 = 0.37 + 0.009 + 0.845 ∗ 0.621
barnes 0.865 = 0.04 + 0 + 0.86 ∗ 0.959 0.866 = 0.04 + 0.001 + 0.86 ∗ 0.959
water 0.856 = 0.16 + 0 + 0.86 ∗ 0.809 0.887 = 0.16 + 0.031 + 0.86 ∗ 0.809
search 0.872 = 0.12 + 0 + 0.86 ∗ 0.874 0.878 = 0.12 + 0.006 + 0.86 ∗ 0.874

Table 6: Energy Consumption Equations for Benchmarks

computation as the energy spent executing the main computation
and any reliable reexecutions on the precise processor plus the en-
ergy spent executing tasks on the approximate processor. We report
the total energy consumption for the Outlier Detection with Re-
execution runs normalized to energy consumption for the Precise
execution runs (which execute the entire computation reliably on
the precise processor). Our equation for the normalized total en-
ergy for the approximate execution is therefore M + Tr + F ∗ Tt,
where M is the proportion of instructions dedicated to the precise
execution of the main computation, Tt is the proportion of instruc-
tions dedicated to the approximate execution of Topaz tasks, Tr is
the proportion of instructions dedicated to the approximate reexe-
cution of Topaz tasks, and F reflects the reduced energy consump-
tion of the approximate processor. In the medium energy model, the
approximate processor consumes 14% less power than the precise
processor, and F = 0.86. In the aggressive energy model, the ap-
proximate processor consumes 15.75% less power than the precise
processor and F = 0.845. See Section 5.1 for details.

Benchmark Model Maximum No Reexecute Reexecute
blackscholes med 14.0% 9.641% 9.489%
scale agg 15.75% 9.984% 9.831%
barnes med 14.0% 13.44% 13.425%
water med 14.0% 11.726% 11.281%
search med 14.0% 12.38% 12.296%

Table 7: Energy Consumption Table. ’med’ is the medium energy
model, and ’agg’ is the aggressive energy model.

Table 6 presents the energy consumption equations for our set
of benchmark applications. There is one row for each application;
that row presents the energy consumption equation for that appli-
cation. The second column of Table 6 are the energy consumption
equations for outlier detection without reexecution. The third col-
umn of 6 are the energy consumption equations for outlier detec-
tion with reexecution. The approximate Scale execution, for exam-
ple, consumes 90% of the energy required to execute the precise
Scale computation — the approximate execution spends 37% of its
execution time in the main computation, spends 0.1% of the time
reexecuting, and spends 62% of its execution time in approximate
tasks for a total energy savings of 10% relative to the reliable ex-
ecution, and similarly for the other applications. Starting from a
maximum possible energy savings of 14% and 15.75% for medium
and aggressive energy models respectively, the applications exhibit
between a 13% and 9% energy savings.

Table 7 presents the energy savings in a condensed form. Each
benchmark has a corresponding row, labeled with the benchmark
name in the first column. The second column lists the energy
savings for each benchmark without re-execution, the third column
lists the energy savings with re-execution. Notice that the energy
overhead from re-executing tasks is relatively small.

6. Related Work
We discuss related work in software approximate computing, ap-
proximate memories, and approximate arithmetic operations for
energy-efficient hardware.

6.1 Software Approximate Computing
In recent years researchers have investigated various software
mechanisms that produce less accurate (but still acceptably ac-
curate) results in return for performance increases or reductions in
the energy required to execute the computation. Examples of these
mechanisms include skipping tasks [37], early termination of barri-
ers in parallel programs with load imbalances [28, 38], approximate
function memoization [16], loop perforation [34, 47], loop approxi-
mation and function approximation [5], randomized reduction sam-
pling and function selection [51], pattern-based approximate pro-
gram transformations [41], and autotuners that automatically select
combinations of algorithms and algorithm parameters to optimize
the tradeoff between performance and accuracy [2, 20, 50]. Re-
searchers have also developed static program analyses for approxi-
mate program transformations [10, 16, 33, 49, 51] and analyses for
computations that operate on uncertain inputs [7, 14–16, 19, 31,
44, 45]. It is also possible to improve performance by eliminating
synchronization in multithreaded programs, with the resulting data
races introducing only acceptable inaccuracy [32, 36].

Like task skipping [37] and early phase termination [38], Topaz
operates at the granularity of tasks and exploits the ability of ap-
proximate computations to tolerate inaccurate or missing approxi-
mate tasks. One unique and novel contribution of Topaz is its use
of outlier detection to identify outliers with obviously inaccurate
results. Unlike many outlier detectors, which simply discard out-
liers, Topaz replaces outliers with the mean of previously observed
results. This mechanism enables Topaz to salvage and incorporate
accurate results from tasks that produce multiple results when only
one or some of the produced results is an outlier.

Our experimental results show that outlier detection and re-
placement enables approximate computations to profitably use ap-
proximate computational platforms that may occasionally produce
arbitrarily inaccurate outputs. Topaz therefore supports a larger
range of approximate platforms and gives hardware designers sig-
nificantly more freedom to deploy aggressive energy-efficient de-
signs.

6.2 Approximate Memories
Researchers have previously exploited approximate memories for
energy savings in approximate computations. Empirically even ap-
proximate computations have state and computation that must exe-
cute exactly for the overall computation to produce acceptable re-
sults [11, 12, 29, 37, 42, 47]. Proposed architectures therefore pro-
vide both exact and approximate memory modules [11, 29, 42, 43].
In some cases the assumption is that approximate memory can be
(in principle) arbitrarily incorrect, with the program empirically
producing acceptable results with the proposed memory implemen-
tation [29, 42]. Researchers have also developed techniques that
make it possible to reason quantitatively about how often the ap-
proximate memory may cause the computation to produce an in-
correct result [11].

Like all of these systems, Topaz leverages the reduced energy
consumption of approximate memories (in our experiments, the re-
duced memory consumption enabled by unreliable SRAM cache
memory) to reduce the overall energy consumption of the compu-



tation. Topaz goes beyond all of these systems in that it can detect
when the approximate memory has caused the computation to gen-
erate an unacceptably inaccurate result. In this case Topaz, unlike
these previous systems, takes steps to preserve the integrity of the
computation and prevent the unacceptable corruption of the over-
all result that the unacceptably inaccurate result would otherwise
produce. Specifically, the Topaz outlier detection and reexecution
mechanism enables the approximate computation to produce ac-
ceptably accurate results even in the presence of arbitrarily inaccu-
rate results (caused, for example, by approximate memories).

6.3 Approximate Arithmetic Operations
For essentially the entire history of the field, digital computers
have used finite-precision floating point arithmetic to approximate
computations over (conceptually) arbitrary-precision real numbers.
The field of numerical analysis is devoted to understanding the
consequences of this approximation and to developing techniques
that maximize the accuracy of computations that operate on floating
point numbers [3].

Motivated by the goal of reducing energy consumption, re-
searchers have proposed energy-efficient hardware that may pro-
duce reduced precision/incorrect results in return for energy sav-
ings [13, 21]. Researchers have also investigated methods that tune
the amount of precision to the needs of the computation at hand.
Hardware approaches include mantissa bitwidth reductions with
significant energy savings [25, 48] or fuzzy memoization [1]. It is
well-known that replacing selected double precision floating point
with single precision floating point can yield energy improvements
and acceptable accuracy [4, 8, 9, 22, 24, 27]. Building on this com-
mon knowledge, researchers have developed techniques that auto-
matically perform this transformation when it preserves acceptable
accuracy [26, 40]. It is also possible to deploy a wider range of
transformations in a randomized optimizer that aims only to pro-
duce acceptably accurate bit patterns and is agnostic to whether it
obtains these bit patterns using floating point operations or other
means [46].

7. Conclusion
As energy consumption becomes an increasingly critical issue,
practitioners will increasingly look to approximate computing as
a general approach that can reduce the energy required to execute
their computations while still enabling their computations to pro-
duce acceptably accurate results.

Topaz enables developers to cleanly express the approximate
tasks present in their approximate computations. The Topaz imple-
mentation then maps the tasks appropriately onto the underlying
approximate computing platform and manages the resulting dis-
tributed approximate execution. The Topaz execution model gives
approximate hardware designers the freedom and flexibility they
need to produce maximally efficient approximate hardware — the
Topaz outlier detection and reexecution algorithms enable Topaz
computations to work with approximate computing platforms even
if the platform may occasionally produce arbitrarily inaccurate re-
sults. Topaz therefore supports the emerging and future approx-
imate computing platforms that promise to provide an effective,
energy-efficient computing substrate for existing and future ap-
proximate computations.
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8. Appendix I: Alternative Output Representations
8.1 Visual Representations of Selected Outputs
8.1.1 Image Output for Scale
Below are the output images generated from the scale benchmark for the following scenarios: (1) No Outlier Detector (2) Outlier Detector
with Reexecution (3) Outlier Detector with Discard. The raw output image is on the left side of each entry. An image diff between the
generated image and the correct image is on the right side of each entry. In the image diff, identical pixels show up as white, and incorrect
pixels show up as varying shades of red (depending on magnitude of error).

(a) Scaled Baboon Image (b) Diff of Scaled Baboon Image with Correct Image

Figure 3: No Outlier Detector

(a) Scaled Baboon Image (b) Diff of Scaled Baboon Image with Correct Image

Figure 4: Outlier Detector with Discard Strategy



(a) Scaled Baboon Image (b) Diff of Scaled Baboon Image with Correct Image

Figure 5: Outlier Detector with Reexecution Strategy

8.1.2 Output Positions for Water
Below are the final positions for the water molecules generated from the scale benchmark for the following scenarios: (1) No Outlier Detector
(2) Outlier Detector with Reexecution (3) Outlier Detector with Discard. The raw output image is on the left side of each entry. In each entry,
the upper left plot is the left hydrogen molecule, the upper right plot is the right hydrogen molecule and the bottom plot is the oxygen
molecule. The generated positions are black ’x’s and the correct positions are red ’+’s.

Figure 6: Molecule Positions at Last Timestep for No Outlier Detector [red:correct, blue:generated]* all generated points are NaNs, and are
therefore not rendered.



Figure 7: Molecule Positions at Last Timestep for Outlier Detector with Discard Strategy [red:correct, blue:generated]

Figure 8: Molecule Positions at Last Timestep for Outlier Detector with Reexecute Stategy [red:correct, blue:generated]



8.1.3 Output Positions for Barnes
Below are the final positions for the planets generated from the scale benchmark for the following scenarios: (1) No Outlier Detector (2)
Outlier Detector with Reexecution (3) Outlier Detector with Discard. The raw output image is on the left side of each entry. The generated
positions are black ’x’s and the correct positions are red ’+’s.

Figure 9: Planetary Positions at Last Timestep for No Outlier Detector [red:correct, black:generated]* all generated points are NaNs, and are
therefore not rendered.

Figure 10: Planetary Positions at Last Timestep for Outlier Detector with Discard Strategy [red:correct, black:generated]



Figure 11: Planetary Positions at Last Timestep for Outlier Detector with Reexecute Strategy [red:correct, black:generated]

9. Appendix II: Outlier Detector Visualizations
Below are diagrams illustrating the outlier detector control dynamics for each benchmark output in the following scenarios:

1. No Outlier Detector

2. Outlier Detector with Reexecution

3. Outlier Detector with Discard

For each entry, there are three top-level visualizations:

1. Distribution Visualization(Left): In this plot, the error, correct and generated (under the current scenario) are shown. The y-axis for both
plots is the frequency, and the x axis is the output value.

• Correct Distribution (Top, Green): The green distribution on the top subplot is the correct distribution for a particular output.
• Generated Distribution (Top, Blue): The blue distribution on the top subplot is the distribution generated, given the current scenario.
• Error Distribution (Bottom, Red): The red distribution on the bottom subplot is the error distribution. Both the top and the bottom

subplots share the same x axis - which is labelled under the bottom subplot.

2. Outlier Detector Bounds(Middle): In this plot, the evolution of the outlier detector bounds over time and the reexecution rate are shown.
In both plots, the x axis is time. In the upper plot, the y axis is output value. In the lower plot the y axis is the reexecution rate.

• Upper Bound (Top, Green): The green line is the upper bound of the outlier detector over time.
• Average (Top, Blue): The blue line is the mean of the output over time.
• Lower Bound (Top, Red): The red line is the lower bound of the outlier detector over time.
• Right of Mean Reexecution Rate (Bottom, Green): The green line is reexecution rate of outputs that fall right of the mean.
• Average Reexecution Rate (Bottom, Blue): The blue line is the average reexecution rate.
• Left of Mean Reexecution Rate (Bottom, Red): The red line is the reexecution rate of outputs that fall left of the mean..



3. Outlier Detector Bounds overlay on Distributions (Right): In this plot, the evolution of the outlier detector bounds over time
superimposed on the output,generated and error distributions is shown. In both plots, the x axis is output value. In the both plots, the
y axis is frequency of each output for the output distributions (in Red, Blue, Green).

• Correct Distribution (Top, Green): The green distribution on the top subplot is the correct distribution for a particular output.
• Generated Distribution (Top, Blue): The blue distribution on the top subplot is the distribution generated, given the current scenario.
• Error Distribution (Bottom, Red): The red distribution on the bottom subplot is the error distribution. Both the top and the bottom

subplots share the same x axis - which is labelled under the bottom subplot.
• Upper Bound (Top; Bottom, Teal): The upper bound of the outlier detector over time (y axis).
• Average (Top; Bottom, Black): The mean of the output over time.
• Lower Bound (Top; Bottom, Pink): The lower bound of the outlier detector over time (y axis).

9.1 Outlier Detector with Discard Strategy
9.1.1 BlackScholes

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 12: BlackScholes: Outlier Detector with Discard Strategy Behavior for Price

9.1.2 Scale

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 13: Scale: Outlier Detector with Discard Strategy Behavior for Red Component



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 14: Scale: Outlier Detector with Discard Strategy Behavior for Blue Component

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 15: Scale: Outlier Detector with Discard Strategy Behavior for Green Component

9.1.3 Search

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 16: Search: Outlier Detector with Discard Strategy Behavior for Partial Eng Sum



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 17: Search: Outlier Detector with Discard Strategy Behavior for Partial ZCorr Sum

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 18: Search: Outlier Detector with Discard Strategy Behavior for CZ

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 19: Search: Outlier Detector with Discard Strategy Behavior for Step



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 20: Search: Outlier Detector with Discard Strategy Behavior for DE

9.1.4 Barnes

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 21: Barnes: Outlier Detector with Discard Strategy Behavior for Velocity[0]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 22: Barnes: Outlier Detector with Discard Strategy Behavior for Velocity[1]



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 23: Barnes: Outlier Detector with Discard Strategy Behavior for Velocity[2]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 24: Barnes: Outlier Detector with Discard Strategy Behavior for Acceleration[0]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 25: Barnes: Outlier Detector with Discard Strategy Behavior for Acceleration[1]



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 26: Barnes: Outlier Detector with Discard Strategy Behavior for Acceleration[2]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 27: Barnes: Outlier Detector with Discard Strategy Behavior for Phi

9.1.5 Water

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 28: Water: Outlier Detector with Discard Strategy Behavior for Res1[0] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 29: Water: Outlier Detector with Discard Strategy Behavior for Res1[1] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 30: Water: Outlier Detector with Discard Strategy Behavior for Res1[2] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 31: Water: Outlier Detector with Discard Strategy Behavior for Res1[3] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 32: Water: Outlier Detector with Discard Strategy Behavior for Res1[4] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 33: Water: Outlier Detector with Discard Strategy Behavior for Res1[5] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 34: Water: Outlier Detector with Discard Strategy Behavior for Res1[7] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 35: Water: Outlier Detector with Discard Strategy Behavior for Res1[8] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 36: Water: Outlier Detector with Discard Strategy Behavior for Res2[0] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 37: Water: Outlier Detector with Discard Strategy Behavior for Res2[1] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 38: Water: Outlier Detector with Discard Strategy Behavior for Res2[2] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 39: Water: Outlier Detector with Discard Strategy Behavior for Res2[3] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 40: Water: Outlier Detector with Discard Strategy Behavior for Res2[4] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 41: Water: Outlier Detector with Discard Strategy Behavior for Res2[5] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 42: Water: Outlier Detector with Discard Strategy Behavior for Res2[6] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 43: Water: Outlier Detector with Discard Strategy Behavior for Res2[7] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 44: Water: Outlier Detector with Discard Strategy Behavior for Res2[8] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 45: Water: Outlier Detector with Discard Strategy Behavior for Incr in Intermolecular Forces Computation

(a) Bounds Evolution and Reexecution Rate over
Time

Figure 46: Water: Outlier Detector with Discard Strategy Behavior for Result[0] in Potential Energy Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 47: Water: Outlier Detector with Discard Strategy Behavior for Result[1] in Potential Energy Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 48: Water: Outlier Detector with Discard Strategy Behavior for Result[2] in Potential Energy Computation

9.2 Outlier Detector with Reexecution Strategy
9.2.1 BlackScholes

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 49: BlackScholes: Outlier Detector with Reexecution Strategy Behavior for Price



9.2.2 Scale

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 50: Scale: Outlier Detector with Reexecution Strategy Behavior for Red Component

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 51: Scale: Outlier Detector with Reexecution Strategy Behavior for Blue Component

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 52: Scale: Outlier Detector with Reexecution Strategy Behavior for Green Component



9.2.3 Search

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 53: Search: Outlier Detector with Reexecution Strategy Behavior for Partial Eng Sum

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 54: Search: Outlier Detector with Reexecution Strategy Behavior for Partial ZCorr Sum

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 55: Search: Outlier Detector with Reexecution Strategy Behavior for CZ



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 56: Search: Outlier Detector with Reexecution Strategy Behavior for Step

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 57: Search: Outlier Detector with Reexecution Strategy Behavior for DE

9.2.4 Barnes

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 58: Barnes: Outlier Detector with Reexecution Strategy Behavior for Velocity[0]



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 59: Barnes: Outlier Detector with Reexecution Strategy Behavior for Velocity[1]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 60: Barnes: Outlier Detector with Reexecution Strategy Behavior for Velocity[2]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 61: Barnes: Outlier Detector with Reexecution Strategy Behavior for Acceleration[0]



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 62: Barnes: Outlier Detector with Reexecution Strategy Behavior for Acceleration[1]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 63: Barnes: Outlier Detector with Reexecution Strategy Behavior for Acceleration[2]

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 64: Barnes: Outlier Detector with Reexecution Strategy Behavior for Phi



9.2.5 Water

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 65: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[0] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 66: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[1] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 67: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[2] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 68: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[3] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 69: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[4] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 70: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[5] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 71: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[7] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 72: Water: Outlier Detector with Reexecution Strategy Behavior for Res1[8] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 73: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[0] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 74: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[1] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 75: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[2] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 76: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[3] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 77: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[4] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 78: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[5] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 79: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[6] in Intermolecular Forces Computation



(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 80: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[7] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 81: Water: Outlier Detector with Reexecution Strategy Behavior for Res2[8] in Intermolecular Forces Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 82: Water: Outlier Detector with Reexecution Strategy Behavior for Incr in Intermolecular Forces Computation



(a) Bounds Evolution and Reexecution Rate over
Time

Figure 83: Water: Outlier Detector with Reexecution Strategy Behavior for Result[0] in Potential Energy Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 84: Water: Outlier Detector with Reexecution Strategy Behavior for Result[1] in Potential Energy Computation

(a) Correct (green), Error (red), Accepted (blue)
Distributions over Time

(b) Bounds Evolution and Reexecution Rate over
Time (c) Bounds Evolution over Distribution

Figure 85: Water: Outlier Detector with Reexecution Strategy Behavior for Result[2] in Potential Energy Computation




