111 research outputs found

    A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover

    Get PDF
    Bluespec SystemVerilog (BSV) is a Hardware Description Language based on the guarded action model of concurrency. It has an elegant semantics, which makes it well suited for formal reasoning. To date, a number of BSV designs have been verified with hand proofs, but little work has been conducted on the application of automated reasoning. We present a prototype shallow embedding of BSV in the PVS theorem prover. Our embedding is compatible with the PVS model checker, which can automatically prove an important class of theorems, and can also be used in conjunction with the powerful proof strategies of PVS to verify a broader class of properties than can be achieved with model checking alone

    Automated Logical Verification based on Trace Abstractions

    Get PDF
    We propose a new and practical framework for integrating the behavioralreasoning about distributed systems with model-checking methods.Our proof methods are based on trace abstractions, which relate thebehaviors of the program and the specification. We show that for finite-statesystems such symbolic abstractions can be specified conveniently inMonadic Second-Order Logic (M2L). Model-checking is then made possibleby the reduction of non-determinism implied by the trace abstraction.Our method has been applied to a recent verification problem by Broyand Lamport. We have transcribed their behavioral description of a distributedprogram into temporal logic and verified it against another distributedsystem without constructing the global program state space. Thereasoning is expressed entirely within M2L and is carried out by a decisionprocedure. Thus M2L is a practical vehicle for handling complex temporallogic specifications, where formulas decided by a push of a button are aslong as 10-15 pages

    A Case Study in Automated Verification Based on Trace Abstractions

    Get PDF
    In [14], we proposed a framework for the automatic verification of reactivesystems. Our main tool is a decision procedure, Mona, for MonadicSecond-order Logic (M2L) on finite strings. Mona translates a formula inM2L into a finite-state automaton. We show in [14] how traces, i.e. finiteexecutions, and their abstractions can be described behaviorally. Thesestate-less descriptions can be formulated in terms of customized temporallogic operators or idioms.In the present paper, we give a self-contained, introductory account ofour method applied to the RPC-memory specification problem of the 1994Dagstuhl Seminar on Specification and Refinement of Reactive Systems.The purely behavioral descriptions that we formulate from the informalspecifications are formulas that may span 10 pages or more.Such descriptions are a couple of magnitudes larger than usual temporallogic formulas found in the literature on verification. To securelywrite these formulas, we introduce Fido [16] as a reactive system descriptionlanguage. Fido is designed as a high-level symbolic language forexpressing regular properties about recursive data structures.All of our descriptions have been verified automatically by Mona fromM2L formulas generated by Fido.Our work shows that complex behaviors of reactive systems can beformulated and reasoned about without explicit state-based programming.With Fido, we can state temporal properties succinctly while enjoyingautomated analysis and verification

    Exploiting the Temporal Logic Hierarchy and the Non-Confluence Property for Efficient LTL Synthesis

    Full text link
    The classic approaches to synthesize a reactive system from a linear temporal logic (LTL) specification first translate the given LTL formula to an equivalent omega-automaton and then compute a winning strategy for the corresponding omega-regular game. To this end, the obtained omega-automata have to be (pseudo)-determinized where typically a variant of Safra's determinization procedure is used. In this paper, we show that this determinization step can be significantly improved for tool implementations by replacing Safra's determinization by simpler determinization procedures. In particular, we exploit (1) the temporal logic hierarchy that corresponds to the well-known automata hierarchy consisting of safety, liveness, Buechi, and co-Buechi automata as well as their boolean closures, (2) the non-confluence property of omega-automata that result from certain translations of LTL formulas, and (3) symbolic implementations of determinization procedures for the Rabin-Scott and the Miyano-Hayashi breakpoint construction. In particular, we present convincing experimental results that demonstrate the practical applicability of our new synthesis procedure

    Arrows for knowledge-based circuits

    No full text
    Knowledge-based programs (KBPs) are a formalism for directly relating agents' knowledge and behaviour in a way that has proven useful for specifying distributed systems. Here we present a scheme for compiling KBPs to executable automata in finite environments with a proof of correctness in Isabelle/HOL. We use Arrows, a functional programming abstraction, to structure a prototype domain-specific synchronous language embedded in Haskell. By adapting our compilation scheme to use symbolic representations we can apply it to several examples of reasonable size

    Inductive representation, proofs and refinement of pointer structures

    Get PDF
    Cette thèse s'intègre dans le domaine général des méthodes formelles qui donnent une sémantique aux programmes pour vérifier formellement des propriétés sur ceux-ci. Sa motivation originale provient d'un besoin de certification des systèmes industriels souvent développés à l'aide de l'Ingénierie Dirigée par les Modèles (IDM) et de langages orientés objets (OO). Pour transformer efficacement des modèles (ou graphes), il est avantageux de les représenter à l'aide de structures de pointeurs, économisant le temps et la mémoire grâce au partage qu'ils permettent. Cependant la vérification de propriétés sur des programmes manipulant des pointeurs est encore complexe. Pour la simplifier, nous proposons de démarrer le développement par une implémentation haut-niveau sous la forme de programmes fonctionnels sur des types de données inductifs facilement vérifiables dans des assistants à la preuve tels que Isabelle/HOL. La représentation des structures de pointeurs est faite à l'aide d'un arbre couvrant contenant des références additionnelles. Ces programmes fonctionnels sont ensuite raffinés si nécessaire vers des programmes impératifs à l'aide de la bibliothèque Imperative_HOL. Ces programmes sont en dernier lieu extraits vers du code Scala (OO). Cette thèse décrit la méthodologie de représentation et de raffinement et fournit des outils pour la manipulation et la preuve de programmes OO dans Isabelle/HOL. L'approche est éprouvée par de nombreux exemples dont notamment l'algorithme de Schorr-Waite et la construction de Diagrammes de Décision Binaires (BDDs).This thesis stands in the general domain of formal methods that gives semantics to programs to formally prove properties about them. It originally draws its motivation from the need for certification of systems in an industrial context where Model Driven Engineering (MDE) and object-oriented (OO) languages are common. In order to obtain efficient transformations on models (graphs), we can represent them as pointer structures, allowing space and time savings through the sharing of nodes. However verification of properties on programs manipulating pointer structures is still hard. To ease this task, we propose to start the development with a high-level implementation embodied by functional programs manipulating inductive data-structures, that are easily verified in proof assistants such as Isabelle/HOL. Pointer structures are represented by a spanning tree adorned with additional references. These functional programs are then refined - if necessary - to imperative programs thanks to the library Imperative_HOL. These programs are finally extracted to Scala code (OO). This thesis describes this kind of representation and refinement and provides tools to manipulate and prove OO programs in Isabelle/HOL. This approach is put in practice with several examples, and especially with the Schorr-Waite algorithm and the construction of Binary Decision Diagrams (BDDs)

    Structural Invariants for the Verification of Systems with Parameterized Architectures

    Full text link
    We consider parameterized concurrent systems consisting of a finite but unknown number of components, obtained by replicating a given set of finite state automata. Components communicate by executing atomic interactions whose participants update their states simultaneously. We introduce an interaction logic to specify both the type of interactions (e.g.\ rendez-vous, broadcast) and the topology of the system (e.g.\ pipeline, ring). The logic can be easily embedded in monadic second order logic of finitely many successors, and is therefore decidable. Proving safety properties of such a parameterized system, like deadlock freedom or mutual exclusion, requires to infer an inductive invariant that contains all reachable states of all system instances, and no unsafe state. We present a method to automatically synthesize inductive invariants directly from the formula describing the interactions, without costly fixed point iterations. We experimentally prove that this invariant is strong enough to verify safety properties of a large number of systems including textbook examples (dining philosophers, synchronization schemes), classical mutual exclusion algorithms, cache-coherence protocols and self-stabilization algorithms, for an arbitrary number of components.Comment: preprint; to be published in the proceedings of TACAS2

    The verification of MDG algorithms in the HOL theorem prover

    Get PDF
    Formal verification of digital systems is achieved, today, using one of two main approaches: states exploration (mainly model checking and equivalence checking) or deductive reasoning (theorem proving). Indeed, the combination of the two approaches, states exploration and deductive reasoning promises to overcome the limitation and to enhance the capabilities of each. Our research is motivated by this goal. In this thesis, we provide the entire necessary infrastructure (data structure + algorithms) to define high level states exploration in the HOL theorem prover named as MDG-HOL platform. While related work has tackled the same problem by representing primitive Binary Decision Diagram (BDD) operations as inference rules added to the core of the theorem prover, we have based our approach on the Multiway Decision Graphs (MDGs). MDG generalizes ROBDD to represent and manipulate a subset of first-order logic formulae. With MDGs, a data value is represented by a single variable of an abstract type and operations on data are represented in terms of uninterpreted function. Considering MDGs instead of BDDs will raise the abstraction level of what can be verified using a state exploration within a theorem prover. The MDGs embedding is based on the logical formulation of an MDG as a Directed Formulae (DF). The DF syntax is defined as HOL built-in data types. We formalize the basic MDG operations using this syntax within HOL following a deep embedding approach. Such approach ensures the consistency of our embedding. Then, we derive the correctness proof for each MDG basic operator. Based on this platform, the MDG reachability analysis is defined in HOL as a conversion that uses the MDG theory within HOL. Then, we demonstrate the effectiveness of our platform by considering four case studies. Our obtained results show that this verification framework offers a considerable gain in terms of automation without sacrificing CPU time and memory usage compared to automatic model checker tools. Finally, we propose a reduction technique to improve MDGs model checking based on the MDG-HOL platform. The idea is to prune the transition relation of the circuits using pre-proved theorems and lemmas from the specification given at system level. We also use the consistency of the specifications to verify if the reduced model is faithful to the original one. We provide two case studies, the first one is the reduction using SAT-MDG of an Island Tunnel Controller and the second one is the MDG-HOL assume-guarantee reduction of the Look-Aside Interface. The obtained results of our approach offers a considerable gain in terms of heuristics and reduction techniques correctness as to commercial model checking; however a small penalty is paid in terms of CPU time and memory usag
    • …
    corecore